Skip to main content
Log in

Tests of analytical hadronisation models using event shape moments in e+e annihilation

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Predictions of analytical models for hadronisation, namely the dispersive model, the shape function and the single dressed gluon approximation, are compared with moments of hadronic event shape distributions measured in e+e annihilation at centre-of-mass energies between 14 and 209 GeV. In contrast to Monte Carlo models for hadronisation, analytical models require to adjust only two universal parameters, the strong coupling and a second quantity parametrising non-perturbative corrections. The extracted values of α S are consistent with the world average and competitive with previous measurements. The variance of event shape distributions is compared with predictions given by some of these models. Limitations of the models, probably due to unknown higher order corrections, are demonstrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B 47, 365 (1973)

    Article  ADS  Google Scholar 

  2. D. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  3. D. Gross, F. Wilczek, Phys. Rev. D 8, 3633 (1973)

    Article  ADS  Google Scholar 

  4. H. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  5. C. Pahl, S. Bethke, S. Kluth, J. Schieck, Eur. Phys. J. C 60, 181 (2009)

    Article  ADS  Google Scholar 

  6. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 40, 287 (2005)

    Article  ADS  Google Scholar 

  7. Y. Dokshitzer, G. Marchesini, B. Webber, Nucl. Phys. B 469, 93 (1996)

    Article  ADS  Google Scholar 

  8. G. Korchemsky, S. Tafat, J. High Energy Phys. 0010, 010 (2000)

    Article  ADS  Google Scholar 

  9. E. Gardi, G. Grunberg, J. High Energy Phys. 9911, 016 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Gardi, J. High Energy Phys. 0004, 030 (2000)

    Article  ADS  Google Scholar 

  11. A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C 35, 457 (2004)

    Article  ADS  Google Scholar 

  12. P. Achard et al. (L3 Collaboration), Phys. Rep. 399, 71 (2004)

    Article  ADS  Google Scholar 

  13. P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 456, 322 (1999)

    Article  ADS  Google Scholar 

  14. P.A. Movilla Fernández, S. Bethke, O. Biebel, S. Kluth et al. (JADE Collaboration), Eur. Phys. J. C 22, 1 (2001)

    Article  Google Scholar 

  15. M. Dasgupta, G. Salam, J. Phys. G 30, R143 (2004)

    Article  ADS  Google Scholar 

  16. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, J. High Energy Phys. 12, 094 (2007)

    Article  ADS  Google Scholar 

  17. S. Weinzierl, Phys. Rev. Lett. 101, 162001 (2008)

    Article  ADS  Google Scholar 

  18. P.A. Movilla Fernández, O. Biebel, S. Bethke, S. Kluth, P. Pfeifenschneider et al. (JADE Collaboration), Eur. Phys. J. C 1, 461 (1998)

    Article  ADS  Google Scholar 

  19. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, J. High Energy Phys. 05, 106 (2009)

    Article  ADS  Google Scholar 

  20. S. Catani, M. Seymour, Phys. Lett. B 378, 287 (1996)

    Article  ADS  Google Scholar 

  21. R. Ellis, D. Ross, A. Terrano, Nucl. Phys. B 178, 421 (1981)

    Article  ADS  Google Scholar 

  22. M. Beneke, Phys. Rep. 317, 1 (1999)

    Article  ADS  Google Scholar 

  23. C. Pahl, in High Energy Physics ICHEP 2008, Proceedings of the 34th International Conference, to appear

  24. Y. Dokshitzer, G. Marchesini, B. Webber, Phys. Lett. B 352, 451 (1995)

    Article  ADS  Google Scholar 

  25. Y. Dokshitzer, in High Energy Physics ICHEP 1998, Proceedings of the 29th International Conference (1999), p. 305

  26. R. Ellis, W. Stirling, B. Webber, QCD and Collider Physics. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, vol. 8 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  27. Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam, Nucl. Phys. B 511, 396 (1998)

    Article  ADS  Google Scholar 

  28. Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam, J. High Energy Phys. 05, 003 (1998)

    Article  ADS  Google Scholar 

  29. M. Dasgupta, L. Magnea, G. Smye, J. High Energy Phys. 11, 025 (1999)

    Article  ADS  Google Scholar 

  30. P.A. Movilla Fernández, Nucl. Phys. Proc. Suppl. 74, 384 (1999)

    Article  ADS  Google Scholar 

  31. Y. Dokshitzer, G. Marchesini, G. Salam, Eur. Phys. J. C 1, 3 (1999)

    Google Scholar 

  32. O. Biebel, Phys. Rep. 340, 165 (2001)

    Article  ADS  Google Scholar 

  33. B. Webber, Nucl. Phys. Proc. Suppl. 71, 66 (1999)

    Article  ADS  Google Scholar 

  34. H.J. Lu, C.A.R. Sa de Melo, Phys. Lett. B 273, 260 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Gardi, Private communication

  36. T. van Ritbergen, J. Vermaseren, S. Larin, Phys. Lett. B 400, 379 (1997)

    Article  ADS  Google Scholar 

  37. M. Czakon, Nucl. Phys. B 710, 485 (2005)

    Article  ADS  MATH  Google Scholar 

  38. P. Pfeifenschneider et al. (JADE and OPAL Collaboration), Eur. Phys. J. C 17, 19 (2000)

    Article  ADS  Google Scholar 

  39. P.A. Movilla Fernández, Ph.D. thesis, RWTH Aachen (2003). http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-4836

  40. S. Kluth, Rep. Prog. Phys. 69, 1771 (2006)

    Article  ADS  Google Scholar 

  41. G. Salam, D. Wicke, J. High Energy Phys. 05, 061 (2001)

    Article  ADS  Google Scholar 

  42. Delphi collaboration, 2000-116 CONF415 (2000), unpublished

  43. http://durpdg.dur.ac.uk/HEPDATA/

  44. C. Pahl, Ph.D. thesis, TU München (2007). http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20070906-627360-1-2

  45. S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahl, C., Bethke, S., Biebel, O. et al. Tests of analytical hadronisation models using event shape moments in e+e annihilation. Eur. Phys. J. C 64, 533–547 (2009). https://doi.org/10.1140/epjc/s10052-009-1167-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1167-z

PACS

Navigation