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Abstract. The parquet approach to vertex corrections is unbiased but computationally demanding. Most
applications are therefore restricted to small cluster sizes or rely on various simplifying approximations. We
have recently shown that the bosonization of the parquet diagrams provides interpretative and algorithmic
advantages over the original purely fermionic formulation. Here, we present first results of the numerical
implementation of this method by applying it to the half-filled Hubbard model on the square lattice at
weak coupling. The improved algorithmic performance allows us to evaluate the parquet approximation
for a 16× 16 lattice, retaining the full momentum and frequency structure of the various vertex functions.
We discuss their symmetries and consider parametrizations of their momentum dependence using the
truncated-unity approximation.

1 Introduction

Methods of quantum field theory represent a corner-
stone of many-body physics. In their most general form,
they require the computation of multi-point correlation
functions, whose dependence on several momentum and
frequency labels lies beyond any practical implementa-
tion in most cases. An elegant formalism for the deriva-
tion of computationally feasible approximations for the
electronic self-energy was introduced by Hedin [1], who
expressed the latter in terms of the Green’s function
(G), the screened interaction (W ), and a vertex correc-
tion (γ). The simplest, so-called GW , approximation
already includes the feedback of collective excitations
on fermions and has become a standard tool of elec-
tronic structure theory; see, for example, Ref. [2] and
references therein.

It is hard to go beyond the GW approximation,
although it is desirable in cases of gross quantitative dis-
crepancies to experiment [2] or, for example, at strong
coupling where vertex corrections may alter the inter-
action between fermions and bosons qualitatively [3].
However, it is not a trivial task to even define proper
strategies to extend the GW approximation: as usual,
derivability from a potential leads to approximations
that respect conservation laws [4]; a positive semi-
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definite real-axis spectrum may also serve as a stringent
criterion [5,6]; and/or one may want to include strong
correlation effects [7,8]. Here, on yet a different note,
we are interested in an unbiased approach to the ver-
tex correction γ as it is provided, for example, by the
parquet approach [9,10] or by the functional renormal-
ization group (fRG, [11,12]), which respect the crossing
symmetry of two-particle correlation functions.

Following this path, we recently introduced a vari-
ation of Hedin’s equations which is equivalent to the
parquet approach [13]; or, vice versa, one may say
that the parquet approach was recast exactly into the
GWγ form. As such, it requires as an input the fully
irreducible vertex Λ of the parquet formalism, where
fully irreducible implies that it cannot be cut into two
parts by removing two Green’s function lines (GG-
irreducible, [14]). The quantities that appear in Hedin’s
equations are, however, irreducible with respect to the
bare interaction (U -irreducible, [13]). Therefore, the
reformulated parquet equations actually use Λ̃ = Λ−U
as a fundamental building block, where U is the Hub-
bard interaction. In the application presented in this
work, we consider the parquet approximation, where
Λ̃ vanishes, leading nevertheless to a highly nontrivial
approximation for the Hubbard model.

To put the unification of Hedin’s formalism with the
parquet approach into perspective, we recall that a
key technique of quantum field theory is the boldifica-
tion of Feynman diagrams: summarily denoting a par-
tial series of diagrams by an effective quantity, as for
example the self-energy, reduces the number of Feyn-
man diagrams [15] that need to be evaluated, at the
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expense of keeping track of the effective quantity which
has to be computed self-consistently. In Hedin’s origi-
nal approach further diagrams are summarized in the
screened interaction W and in the polarization, repre-
senting, respectively, a boson and a bosonic self-energy.
The corresponding reduction in the number of Feynman
diagrams is concisely put on display in Ref. [16], where
it is also noted that keeping track of yet another quan-
tity, the U -irreducible Hedin vertex γ which mediates a
Yukawa-like coupling between fermions and bosons, can
be used to boldify diagrams even further. In this spirit,
the key theoretical step taken in Ref. [13] is to boldify
a subset of diagrams arising from the Bethe–Salpeter
equations, which are of a simple structure. Namely,
the U -reducible diagrams, coined single-boson exchange
(SBE) in Ref. [17], are representable in terms of the
bold objects γ and W (see Fig. 1). The remaining U -
irreducible diagrams, to which we refer as multi-boson
exchange (M), do not permit a representation in terms
of γ,W alone, but instead capture repeated exchange
of bosons. The resulting picture of bosons mediating
effective interactions [18] is physically appealing and
remains valid even at strong coupling [3,19].

Furthermore, it is plausible that fewer Feynman dia-
grams correspond to reduced computational cost in
practical applications. Indeed, using the bosonized par-
quet approach, we are in a position to evaluate the
parquet approximation for the Hubbard model on a
16 × 16 lattice, which is, to our knowledge, the hith-
erto largest cluster size reached before any approxi-
mate parametrization of the momentum-dependent ver-
tex functions as, for example, the truncated unity (TU)
approximation [20–23]. We note in passing that the
performance may be also improved through a nonlo-
cal formulation of the parquet approach [24,25]. How-
ever, we refrain from applying any further approxima-
tions (besides the parquet approximation itself). There-
fore, the computational cost is reduced here only by the
asymptotic decay of the vertex functions M after the
SBE diagrams are treated separately, because the lat-
ter determine the parquet vertices asymptotically [26].
As a result, frequency summations involving the ver-
tex functions M decay by one power faster compared
to diagrams arising in the traditional parquet approach
and, hence, the number of Matsubara frequencies can
be reduced and the momentum grid refined. We thus
arrive at the full-fledged parquet approximation for the
Hubbard model, as envisioned in the seminal papers
[9,10], progressing further along the path of pioneering
applications to the Anderson impurity model [27] and
small Hubbard clusters [28,29].

Recently, the parquet approach has also been uni-
fied with the multi-loop functional renormalization
group (mfRG, [30–32]). By extension, the latter can
be recast in terms of boson exchange as well, a cor-
responding theory is presented in Ref. [33]. Further
efforts aim at unbiased extensions of the dynamical
mean-field theory (DMFT, [34]) to reach the strong-
coupling regime [24,35–37]. Implementation details of
the different methods vary widely and often addi-
tional approximations need to be applied. Therefore,

Fig. 1 Traditional and bosonized parquet decomposition,
drawn below and above the horizontal line, respectively. The
Hedin vertex (triangles) and the screened interaction (wig-
gly lines) are bold diagrammatic building blocks not used in
the traditional formalism. Arrows indicate attached Green’s
function legs; dots the bare interaction. Notice that equal-
ity holds for each column separately; here, we focus on the
horizontal particle–hole channel [second column, cf. Eq. (6)]

we put here a spotlight on the plain parquet approx-
imation as a (comparatively) simple reference case,
which nevertheless provides a quantitative descrip-
tion of the Hubbard model in the weak-coupling limit
[38,39]. The aim of this paper is therefore twofold:
On one hand, we discuss the qualitative behavior
of various correlation functions, evaluated within the
parquet approximation for the half-filled square lat-
tice at weak coupling. On the other hand, with the
full momentum dependence of the vertex functions
readily available, we put two important tools to the
test, namely, the TU approximation [23] and the ver-
tex asymptotics [26]. In the latter case, our presen-
tation extends to nonlocal correlations the investiga-
tion of Ref. [19], which compared the SBE diagrams
to the vertex asymptotics for the Anderson impurity
model.

The paper is structured as follows. We recollect def-
initions of the bosonized parquet formalism in Sect. 2.
The screened interaction and Yukawa couplings are pre-
sented in Sect. 3, various four-point vertex functions are
examined in Sect. 4. The convergence of the truncated
unity is benchmarked in Sect. 5. We conclude in Sect. 6.

2 Model, approximation, and observables

We consider the paramagnetic Hubbard model on the
square lattice at half-filling
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H = −
∑

〈ij〉σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij denotes the hopping between nearest neigh-
bors i and j, its absolute value t = 1 sets the unit of
energy. c, c† are the annihilation and creation opera-
tors with the spin index σ =↑, ↓. We denote the Hub-
bard repulsion between the densities nσ = c†

σcσ as U ;
we consider the weak-coupling regime, 2 ≤ U/t ≤ 4.
The lattice size is fixed to 16 × 16. The temperature is
T/t = 0.2.

We solve the Hubbard model (1) using the parquet
approximation [9,10]. In the following, we recollect only
the most essential definitions. Readers with a back-
ground in parquet theory find a complete set of def-
initions, derivations, and the calculation cycle of our
implementation in Ref. [13]. The notation used in this
work is fully equivalent to Ref. [13], it corresponds to
a compromise between notations frequently used in the
parquet and GW literature. On the other hand, read-
ers more familiar with the fRG find the corresponding
definitions in Refs. [18,33], which use a notation more
consistent with the fRG literature.

In the traditional parquet formalism, the full vertex
function is given in terms of the parquet decomposition

F = Λ + Φph + Φph + Φpp. (2)

Here, Λ is the fully GG-irreducible vertex as explained
in the introduction. The Φ’s denote the vertices GG-
reducible in the horizontal (ph), vertical (ph), and
particle–particle (pp) channel. Each vertex, e.g., Φph,α

(k, k′, q) carries a flavor label, in the particle–hole chan-
nel α = ch/sp corresponds to charge or spin, and k =
(k, ν), q = (q, ω) denote fermionic, bosonic momen-
tum, and Matsubara frequency, respectively. The par-
quet decomposition is shown at the bottom of Fig. 1.

On the other hand, Refs. [13,24] introduced a boson-
ized parquet formalism where vertex diagrams are fur-
ther decomposed, namely, the full vertex is expressed
through the SBE decomposition [17]

F = ΛUirr + Δph + Δph + Δpp − 2U. (3)

The Δ’s represent the U -reducible diagrams which can
be cut in two parts by removing a bare interaction
[13,33]. They are given in terms of the Yukawa cou-
pling (Hedin vertex) and the screened interaction; for
example

Δph,α(k, k′, q) = γα(k, q)Wα(q)γα(k′, q). (4)

The bare interaction arises as the leading order of all
the Δ’s, and it is therefore subtracted twice in Eq. (3)
to avoid overcounting. Notice that in Eq. (3), it also
carries a flavor label, U ch/sp = ±U .

In turn, ΛUirr is the fully U -irreducible vertex given
through a parquet-like decomposition

ΛUirr = Λ̃ + Mph + Mph + Mpp, (5)

where Λ̃ = Λ−U is the fully GG-irreducible vertex with
the bare interaction removed. The M ’s represent the
multi-boson exchange, they are GG-reducible but fully
U -irreducible vertices, whose momentum-energy depen-
dence does not dissociate in the manner of Eq. (4).

Inserting Eq. (5) into Eq. (3), the resulting vertex
decomposition of the bosonized parquet approach is
shown in Fig. 1, above the horizontal line. It is con-
venient to add and subtract the bare interaction, rep-
resented by a black dot, so that the diagrams above the
horizontal line are arranged consistently: summing the
diagrams in a column yields the corresponding vertex
of the traditional parquet formalism drawn below the
horizontal line; for example

Φph,α = Δph,α − Uα + Mph,α, α = ch, sp, (6)

which connects the traditional and the bosonized par-
quet quantities on the left- and right-hand side, respec-
tively. Finally, we introduce the parquet approximation

Λ̃ ≡ 0. (7)

As a matter of fact, this is a rich approximation with
nontrivial properties, as our results exemplify.

In this work, we consider only the particle–hole quan-
tities in Eqs. (4) and (6). In the traditional parquet
formalism the set of equations is closed via the Bethe–
Salpeter, Dyson, and Schwinger–Dyson equations. In
the bosonized formalism, the latter is replaced with
the Hedin equation (Σ = GWγ) and one defines a
bosonic self-energy (Π = GGγ), which determines the
screened interaction via another Dyson-like equation
(W = U + UΠW ). However, to keep the presenta-
tion concise and general, we refer to Refs. [13,18,33]
for detailed information including a calculation cycle
or (m)fRG flow equations, respectively.

In our numerical application, we use Nγ
ν = 32

fermionic and Nγ
ω = 32 bosonic Matsubara frequen-

cies for the Yukawa couplings γ. The M ’s are evaluated
on a smaller fermionic frequency grid, using NM

ν = 16
and NM

ω = 32 for bosonic frequencies. Even though fre-
quency summations like

∑
ν′ M(ν, ν′, ω)G(ν′)G(ν′ +ω)

decay by one power of ν′ faster compared to a sum-
mation over the corresponding Φ’s of the traditional
parquet approach, a cut-off error arises in the γ’s for
ν ≈ (2NM

ν + 1)πT . Using smaller momentum grids, we
checked that our results for small ν presented in the fol-
lowing are not affected qualitatively by the frequency
cut-off error. Quantitative convergence analysis for the
16 × 16 grid is however beyond computational capabil-
ity of the current implementation. As γ determines the
key observables G and W , it is desirable to achieve con-
vergence in γ with respect to frequencies which would
correspond to a very high standard of convergence for
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Fig. 2 Left: the screened interaction in the charge (red) and spin (blue) channel normalized by the bare interaction. Center
(right): real part of the Yukawa coupling in the charge (spin) channel as a function of q. Different palettes show the first
four fermionic frequencies ν, and color tones indicate momenta k (see text)

the parquet approach. An asymptotic treatment of γ
(beyond the leading constant γ = 1 + · · · ) lies, how-
ever, outside the established theory of vertex asymp-
totics [26]; this problem may be considered elsewhere
in the future.

3 Screened interaction and Yukawa
coupling

Fermionic properties of the Hubbard model at weak
coupling, in particular the formation of a pseudogap in
the spectral function due to long-ranged spin fluctua-
tions, have been discussed in great detail in the recent
literature; see, for example, Refs. [39,40]. However, elec-
tronic correlations renormalize also the Yukawa cou-
pling between fermions and bosons, an effect which has
received much less attention [41]. The parquet approach
respects the crossing symmetry and hence provides us
by construction with the full dependence of the Yukawa
couplings on fermionic and bosonic momentum. Notice
that we do not enter the pseudogap regime, which
requires roughly 1000 lattice sites to avoid a finite-size
effect [39]. Nevertheless, we still observe an interesting
evolution of γ as antiferromagnetic fluctuations begin
to build up.

3.1 Screened interaction

The left panels of Fig. 2 show the static screened inter-
actions W ch/sp(q, ω = 0) along the high-symmetry
path. For comparison, we normalize it with the abso-
lute value U of the bare interaction. The sign of the
different curves, therefore, signals repulsion (W/U > 0)
or attraction (W/U < 0) and the amplitude indicates
whether the interaction U ch/sp = ±U in the respec-
tive channel is screened (|W/U | < 1) or enhanced

(|W/U | > 1). As expected, with increasing U , a strong
attractive interaction develops in the spin channel along
the q = (π, π) direction.

3.2 Yukawa couplings

The center and right panels show the Yukawa cou-
pling γch/sp(k, ν,q, ω = 0) between fermions and static
charge/spin fluctuations as a function of the bosonic
momentum q for U/t = 2 and U/t = 3. The four
color palettes (blue, red, green, and yellow) correspond
to the four smallest fermionic Matsubara frequencies
(ν0 = πT, ν1 = 3πT, ν2 = 5πT, ν3 = 7πT ), respec-
tively. Colors from dark to light indicate fermionic
momenta k = (x, π − x) on the Fermi surface, where
x ∈ {0, π/8, π/4, 3π/8, π/2}, starting with the antinode
(0, π) [darkest] and ending with the node (π/2, π/2)
[lightest]. Notice that the panels show the respective
real part of γ.

Overall, γch/sp depend most strongly on q, less
strongly on ν, and the least on k (dependence on ω
will be considered elsewhere). However, this can not be
generalized, as γch(k, ν = πT,q, ω = 0) shows a siz-
able k-dependence for U/t = 3, whereas γsp is largely
independent of k for the same set of parameters and
labels. In the non-interacting system, the Yukawa cou-
pling is unity; Fig. 2 shows that a weak interaction
leads to screening (γch/sp < 1). Notice that γ deter-
mines both the fermionic (Σ = GWγ), as well as the
bosonic self-energy (Π = GGγ), which also enters Σ
via W . Close to an instability an increase of γ, even by
a few percent, can drastically enhance W . Indeed, we
showed recently that even for the harmless parameters
U/t = 2, T/t = 0.2, the screening of γsp is indispensable
to obtain a reasonable approximation for Σ [13].

Furthermore, as the system is driven to the anti-
ferromagnetic instability, fermions decouple from the
soft bosons (γsp → 0 as W sp → −∞), since the
Goldstone excitations of the ordered phase are pro-
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Fig. 3 Numerical validation of Eq. (9) for the static charge
Yukawa coupling γch(k,q, ν, ω = 0): shifting k by −q is the
same as going from k to −k

tected (Adler principle, [42,43]). Indeed, comparing
U/t = 2 and U/t = 3 in Fig. 2, we see that γsp is
much more strongly screened around q = (π, π) for
the larger interaction, which corresponds to a longer
correlation length (see also Sect. 5). On the other
hand, we found in recent investigations that, as soon
as fermionic states are destroyed due to the feedback
from the spin fluctuations, this requirement is lifted and
γsp rises again for those k where a pseudogap opens,
resulting in a nodal/antinodal dichotomy of γsp with
respect to k [3,41]. There hence exists a subtle interplay
between bosonic fluctuations, Fermi surface features,
and the Yukawa couplings, which needs to be consid-
ered when dependencies of the latter are neglected or
parametrized.

3.3 Symmetries

We also discuss symmetries of the Yukawa couplings,
see Refs. [44,45]. First, we note that inversion symmetry
of the lattice, as well as time-reversal and SU(2) sym-
metry are required for the derivation in Ref. [13] and
by our implementation. This set of symmetries allows
to interchange the fermionic labels of the full vertex
function F (k, k′, q) = F (k′, k, q); see also Refs. [14,45].
Since the Yukawa coupling is just a four-point vertex
with tapered Green’s function legs on one side (plus
1) [13], the symmetry of the full vertex implies that it
does not matter on which side the legs are attached. As
a result, the left- and right-handed Yukawa couplings
shown in Fig. 1 are identical. It is important to keep
in mind, however, that in a more general setting, our
formalism needs to be re-derived using left- and right-
handed Yukawa couplings [18,33].

A symmetry valid by definition is due to complex
conjugation, γ∗(k, q) = γ(−k,−q). On the other hand,
the γ’s are invariant under symmetry operations of
the point group of the lattice [46]. For example, inver-
sion symmetry implies γ(k,q, ν, ω) = γ(−k,−q, ν, ω).
Since the symmetry operations needs to be applied

to both momenta at the same time, in a practi-
cal implementation only one of the momenta can be
mapped to the irreducible wedge of the lattice. Hence,
for the 16 × 16 square lattice, each Yukawa cou-
pling requires ∼ 45

256 (256)2Nγ
ν Nγ

ω complex numbers.
Inversion combined with complex conjugation further
implies γ(k,q, ν, ω) = γ∗(k,q,−ν,−ω), and hence

Re γ(k,q, ν, ω = 0) =Re γ(k,q,−ν, ω = 0). (8)

In the considered weak-coupling regime, we find that
the imaginary part Im γ is negligibly small. Moreover, it
vanishes for momenta k and k+q on the Fermi surface
[e.g., for any k on the Fermi surface and q = (π, π)].
For these reasons, we can ignore the imaginary part in
the following.

Finally, we verify numerically that a nontrivial sym-
metry of the γ’s is respected by our implementation.
Namely, the full four-point vertex satisfies by defini-
tion the “swapping symmetry” Fkk′q = Fk′+q,k+q,−q

[47]. Together with Fkk′q = Fk′kq, it follows [48] that
γch/sp(k−q, q) = γch/sp(k,−q) 1. We set q = (q, ω = 0),
resulting in

γch/sp(k − q,q, ν, ω = 0)

= γch/sp(k,−q, ν, ω = 0)

= γch/sp(−k,q, ν, ω = 0). (9)

In the last line, we applied the inversion symmetry.
Equation (9) implies for γch/sp(k,q, ν, ω = 0) that shift-
ing k → k−q has the same effect as k → −k. That this
is indeed the case in our implementation can be seen in
Fig. 3 which shows Re γch for, e.g., q = (π/2, π/4) and
q = (3π/4, 0). We chose here γch for U/t = 3, as it
depends strongly on k (see Fig. 2), and incommensu-
rate q for a generic result. Symmetries put strong con-
ditions on the γ’s which are useful to verify code during
debugging, or to save memory space.

4 Single- and multi-boson exchange

We analyze the quantities Φ,Δ, and M in Eq. (6).
These are four-point vertex functions depending on
three momenta k,k′,q, and three frequencies ν, ν′, ω.
To get a grasp of these quantities, we focus on fermionic
momenta kF ,k′

F on the Fermi surface which traverse
the path shown in Fig. 4, thereby passing through all
four antinodal points. The fermionic frequencies are set
to ν = ν′ = πT or ν = −ν′ = −πT . We focus on
the static limit ω = 0 and first set the bosonic transfer
momentum to q = (π, π), which always guides scattered
quasiparticles to final states on the Fermi surface. In
this manner, we plot the real part of M sp(kF ,k′

F ,q =

1 For completeness, we report also the corresponding sym-
metry for the singlet particle–particle vertex [13]: γs

k+q,q =
γs

−k,q.
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Fig. 4 Path on the Fermi surface traversed by kF ,k′
F

(π, π), ν = πT, ν′ = πT, ω = 0) for U/t = 2 in the
top left panel of Fig. 5. Comparison with Δsp with
the same labels, drawn in the center, shows that the
latter exhibits a higher symmetry with respect to the
fermionic momenta. Finally, Φsp on the right is obtained
as the sum of M sp and Δsp, with the bare interaction
U sp = −U subtracted [cf. Eq. (6) and compare the mag-
nitude of the color bars]. The high symmetry of Δsp,
which repeats along each of the four edges of the Fermi
surface (cf. Fig. 4), implies that in a scattering event of
two quasiparticles, mediated by this vertex, it is irrel-
evant to which of the four edges their initial momenta
belong. In contrast, the lower symmetry of M sp implies
that it mediates scattering events where it does matter
whether the respective scattering partner lives on the
same, an adjacent, or on the opposite edge of the Fermi
surface.

Let us now consider the effect of flipping the sign
of one fermionic frequency, ν → −πT . According to
Eq. (8) in the previous section and for vanishing Im γsp,
γsp(ω = 0) is symmetric with respect to ν. Since the
frequency dependence of the Δ’s stems from the γ’s,
Δ(ω = 0) is also invariant under the sign flip, which
can be seen in the bottom center panel of Fig. 5.
The situation is again quite different for M sp whose
momentum structure is completely overturned under
the sign flip of ν. It was observed already in Refs.
[17,19] that the fully U -irreducible vertex changes dras-
tically when going from the sectors sgn(ν) = sgn(ν′) to
sgn(ν) = −sgn(ν′). Apparently, in case of nonlocal cor-
relations, this is intertwined with its dependence on the
fermionic momenta.

The patterns visible in Φsp arise from the superposi-
tion of those in M sp with the more symmetric ones in
Δsp, with an optically astounding result. Notice, how-
ever, that the color plot overemphasizes small varia-
tions in these quantities. It is |Δsp − U sp| � |M sp|,
because the former inherits a large absolute value from
W sp(q = (π, π), ω = 0), and a weak k dependence from
γsp (cf. Fig. 2). We find that for larger interaction, the
difference in magnitude is even more enhanced and a
discussion of the tiny variations is moot.

However, in the charge channel, we find that |M ch|
is comparable to |Δch − U ch| at small frequencies and
depends more strongly on kF and k′

F ; see Fig. 6. The
resulting patterns in Φch are therefore dominated by
M ch. Again, Δch is symmetric with respect to momenta

Fig. 5 Momentum dependence of spin multi- (left) and
single-boson (center) exchange for U/t = 2. Right pan-
els show the corresponding reducible vertex of the tradi-
tional parquet formalism. Top (bottom) panels show ν = πT
(ν = −πT ). The two fermionic momenta traverse along the
entire Fermi surface, as shown in Fig. 4, other labels as
shown in the title. Figures 5, 6, 7 show the respective real
part of the vertex functions

Fig. 6 Charge quantities corresponding to Fig. 5
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and under a sign flip of ν, whereas M ch not only changes
its asymmetric momentum structure completely under
the sign flip, but also its magnitude by a factor 4 to
8. Finally, we also present the charge quantities for an
incommensurate bosonic momentum, q = (π/2, π/4),
in Fig. 7. Although Δch retains some regularity com-
pared to M ch, it loses much of its symmetry with
respect to momenta, but remains symmetric under
under a sign flip of ν.

5 Truncated unity and vertex asymptotics

5.1 Convergence of the truncated unity

While in this work, we kept the full momentum depen-
dence of the various vertex functions, this is in gen-
eral undesirable beyond applications to simple model
systems. It is therefore, on one hand, a question of
practical interest to parametrize the momentum depen-
dencies in a memory-efficient way. On the other hand,
the formal construction of the theory should also work
toward this goal. Here, for example, the single-boson
exchange Δ is by construction parametrized through W
and γ. However, if a simplified parquet or fRG scheme
keeps also the multi-boson exchange M , the question
arises whether the bosonized theory offers any advan-
tages over a traditional fermionic formulation using the
Φ’s. Moreover, the vertex asymptotics [26] is often used
to parametrize the Φ’s at high frequencies. Since the
vertex asymptote corresponds itself to high-frequency
limits of the Δ’s [17,19], the bosonized theory may only
offer advantages in the low-frequency regime.

In this regard, Ref. [19] recently demonstrated that
the Δ’s capture resonant low-frequency features of the
local full vertex function Floc of the Anderson impu-
rity model (AIM). Even though other low-frequency
features reside in the M ’s, the two-particle quantities of
the DMFT approximation are recovered to good accu-
racy using only the Δ’s (cf. Fig. 1; Floc was approx-
imated by neglecting all of the M ’s). If however low-
frequency information in the Δ’s is also neglected, the
parametrization of Floc fails at strong coupling [19].
Concretely, we find the difference between Δsp and its
asymptotic expression as follows:

Δsp(k, k′, q) = W sp(q) [γsp(k, q) + γsp(k′, q) − 1]

+ Δsp
R (k, k′, q)

Δsp
R (k, k′, q) = [γsp(k, q) − 1]W sp(q)[γsp(k′, q) − 1],

(10)

and Ref. [19] showed for the AIM (k, k′, q → ν, ν′, ω)
that an approximation for Floc should keep the term
Δsp

R , which vanishes asymptotically for |ν| → ∞ and/or
|ν′| → ∞.

Here, we draw an analogy to the present investiga-
tion: while the effective AIM of the DMFT approxima-
tion exhibits strong local spin fluctuations at strong
coupling, here the Hubbard model at weak coupling

Fig. 7 Charge quantities as in Fig. 6 for incommensurate
bosonic momentum q = (π/2, π/4)

develops long-ranged spin-density wave fluctuations.
Physically, these scenarios are of course quite different;
for example, in the AIM γsp seems to diverge for small
ν and low temperature [19], while Fig. 2 shows that
in the Hubbard model, 0 < γsp < 1 is screened. How-
ever, a similarity is that the screened interaction W sp

is large, either due to the local moment in the AIM, or,
here, because of the growing antiferromagnetic correla-
tion length ξ. In the latter case, it is therefore plausible
that the term Δsp

R in Eq. (10) grows with ξ, and at the
same time also develops a strong dependence on the
bosonic momentum q. In this case, it could be advanta-
geous to keep Δsp

R parametrized as a part of Δsp, rather
than to assign it to a memory-intensive four-point ver-
tex. This is what we show in the following.

To this end, we expand the q-dependence (see
remarks, Sect. 5.2) of various vertices in the form-factor
basis [23] and observe the convergence with respect to
the number of expansion coefficients; see also Ref. [13]
where this was done for U/t = 2 and T/t = 0.2. To keep
the maximal number of form factors f(�,q) small, we
use results for an 8×8 lattice. We transform, for exam-
ple, Φsp to the form-factor basis and back into q-space,
after discarding all but N� form factors

Φsp(q, N�) ≡
N�∑

�=1

f∗(�,q)
∑

q′
f(�,q′)Φsp(q′), (11)

where we set ν = ν′ = πT, ω = 0,k = k′ = (π
2 , π

2 ) fixed.
The complete q dependence is thus recovered for N� =
64, but the series may be truncated at a smaller N� if
the expanded vertex is sufficiently short-ranged in real
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space (truncated unity). Blue lines in Fig. 8 show for
q = (π, π) the thus expanded Φsp, the reducible vertex
of the traditional parquet formalism, for U/t = 2, 3, 4.
Notice that in the considered regime, the antiferromag-
netic correlation length ξ increases monotonously with
U . Namely, we find for U/t = 2 and 3 that ξ ≈ 1.5 and
2, respectively, which are consistent with our calcula-
tions for the 16 × 16 lattice. For U/t = 4, we expect a
sizable finite-size effect for the 8 × 8 lattice [49], which
arises for ξ on the order of half the linear lattice size or
larger.

Since the form-factor expansion of Φsp with respect
to q converges only slowly, Ref. [24] introduced the idea,
within the bosonized parquet approach, to expand only
the multi-boson exchange M sp in form factors, while
the full momentum dependence of Δsp was kept. Using
Eq. (6), this corresponds to the approximation Φsp(q) ≈
M sp(q, N�) + Δsp(q) − U sp. Red lines in Fig. 8 show
this result again for q = (π, π). For U/t = 2, 3, 4, this
approximation lies close to the fully converged Φsp even
for N� = 1. This indicates, remarkably, that the relative
importance of M sp compared to Δsp does not increase
with ξ at all (even if the correlations described by M sp

grow in range as ξ increases, they do not grow faster
than it is the case for Δsp).

On the other hand, we show now that the relative
importance of the term Δsp

R compared to Δsp does
increase with the correlation length. To this end, we
expand this term together with M sp, such an approx-
imation may be written as Φsp(q) ≈ M sp(q, N�) +
Δsp

R (q, N�) + (Δsp(q) − Δsp
R (q)) − U sp. This corre-

sponds to a parametrization of Φsp where its high-
frequency limits are given through the vertex asymp-
tote, Δsp − Δsp

R , retaining full momentum dependence,
while the rest function M sp + Δsp

R is expanded in form
factors. The convergence of this parametrization can be
observed in the green lines drawn in Fig. 8. As expected,
the convergence with form factors worsens considerably
as the correlation length increases at larger U/t; in fact,
for U/t = 4, it becomes comparable to the slow conver-
gence of Φsp. We conclude that it is advantageous to
keep ΔR parametrized through Δ, rather than to com-
bine it with M sp in a rest function.

5.2 Remarks

Several remarks are in order to put the result reported
in Fig. 8 into perspective. First, we recall that the
truncated unity is intended foremost to parametrize
the dependence on fermionic momenta k,k′, which is
often much weaker than the q dependence. However,
an unbiased approach to two-particle correlations, such
as parquet or fRG schemes, requires channel projec-
tions which map the q dependence in one channel to the
k,k′ dependence in another. It was therefore noted in
Ref. [23] that the truncated-unity cut-off unfortunately
also appears in bosonic arguments. This explains the
fast convergence of the truncated unity in Refs. [24,41],
where it was only applied to the M ’s. In this respect,
it is also encouraging that the relative importance of

Fig. 8 Convergence of the truncated unity applied in three
different ways: blue lines show the direct application to Φsp,
cf. Ref. [23]; red lines the application only to M sp, cf. Refs.
[24,41]. Green lines indicate application to M sp + Δsp

R , the
rest function of the vertex asymptote [26]

M sp compared to Δsp appears to be independent of
the correlation length (Fig. 8), so that the quality of
a fixed truncated-unity cut-off N� does not deterio-
rate with growing ξ. Hence, while a purely fermionic
mfRG scheme using the truncated unity approximation
is quantitatively accurate for small ξ [38], the fast con-
vergence of the truncated unity in our bosonized for-
malism becomes crucial for larger ξ [24]. We expect
this benefit to translate directly to the corresponding
bosonized (m)fRG schemes of Refs. [18,33].

Compared to the traditional parquet formalism, the
improved performance of our implementation, and the
generally weaker momentum dependence of the quanti-
ties calculated in it, are reminiscent of similar observa-
tions in the context of vertex-corrected GW approaches
[2,50].

On the other hand, one has to keep in mind that the
practical advantage of the bosonized formalism depends
on the physical regime and the correlation functions of
interest. For example, we find in the half-filled Hubbard
model at weak coupling that |Δsp −U sp| is much larger
than |M sp|; however, in the charge channel, we find
the opposite in the low-frequency regime. In particular
in applications to pseudogaps induced by spin-density
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wave fluctuations the charge sector is of a lesser inter-
est; however, it remains to be seen how much improve-
ment the bosonized formalism offers in other physical
settings. One may hope that in a regime which exhibits
strong charge fluctuations, the importance of Δch may
be enhanced over M ch.

However, a case where a breakdown of the fast con-
vergence of the truncated unity can be expected is,
for example, a regime of long-ranged d-wave singlet
fluctuations. They are captured by the corresponding
M s of the particle–particle channel [18]. How much
the results suffer from this may depend on the impor-
tance of the feedback of the d-wave fluctuations on
other channels, which requires a projection operation,
as discussed above. In this regard, it is intriguing to
consider a re-bosonization and suitable parametriza-
tion (through new γ’s and W ’s) of the corresponding
strongly fluctuating channel captured by the M ’s. As
the example of the d-wave shows, the bosonized for-
malism does not come with an autopilot for improved
performance. However, in any case, the interpretative
advantages of the bosonization remain, and there are,
to our knowledge, no disadvantages associated with it.

6 Conclusions

We applied the parquet approximation to the Hubbard
model on a 16 × 16 lattice and presented two-particle
correlation functions corresponding to the bosonized
parquet formalism introduced in Refs. [13,24].

The vertex functions reveal intriguing patterns as
functions of the momenta, and the few shown exam-
ples scratch only the surface of the diverse variations
that we observed in our calculations. It is an exciting
outlook to consider the effects of next-nearest neighbor
hopping, doping, larger interaction [24,51], and other
modifications, where one or the other of the patterns
may emerge as a physically important one.

We applied the truncated unity to quantities defined
in the bosonized parquet formalism and benchmarked
its convergence with the number of form factors. Sim-
ilar to Ref. [19] our analysis reveals that, in the con-
sidered setting, the formalism extends the asymptotic
parametrization of the vertex functions [26] in a prac-
tically useful way to low frequencies. In particular,
it facilitates fast convergence of the truncated unity
approximation even in the presence of long-ranged anti-
ferromagnetic correlations.

Our implementation can be used to investigate the
properties of parquet-based approximations in their
pure form for reasonably large lattice sizes, such as the
fulfillment of Ward identities [52,53] or nontrivial sum
rules for the vertex functions [54], without any addi-
tional approximations.
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