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Abstract. Collective wisdom is the ability of a group to perform more effectively than any individual
alone. Through an evolutionary game-theoretic model of collective prediction, we investigate the role that
reinforcement learning stimulus may play the role in enhancing collective voting accuracy. And collective
voting bias can be dismissed through self-reinforcing global cooperative learning. Numeric simulations
suggest that the provided method can increase collective voting accuracy. We conclude that real-world
systems might seek reward-based incentive mechanism as an alternative to surmount group decision error.

1 Introductions

Why and how to make the many are smarter than the
few and how collective wisdom shapes business, eco-
nomics, societies, and nations? Collective wisdom, also
called group wisdom, and co-intelligence refer to shared
knowledge arrived at by individuals and groups. Collec-
tive wisdom, a long-standing problem in the social, bio-
logical, and computational sciences has been recognized
that group can be remarkably smart and knowledgeable
when compared with the judgements of individuals [1].

Collective decisions are central to human societies,
from small-scale social units such as families and com-
mittees to large-scale organization such as governments
and international organizations. Currently, humanity
is facing the most pressing collective decision chal-
lenges; for instance, global climate change negotiations,
poverty reduction action, COVID-19 like global pan-
demics collaborative control, etc. Collective wisdom is
closely related to the well-being of human society, since
wicked group decision-making will bring negative effects
to each individuals.

Indeed, both the animal world and humans are facing
the same collective dilemma. The phenomena of collec-
tive decision-making have been found in many biolog-
ical colonies, such as ants [2], bees [3], birds [4,5], and
fishes [6].

Individuals sometimes exhibit collective wisdom, and
other times, maladaptive herding is an enduring conun-
drum [7]. Many findings suggest fundamental cogni-
tive benefits of grouping; meanwhile, there is also con-
vincing arguments that interacting individuals may
sometimes generate madness of crowds, and undermine
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the collective wisdom [8]. For example, recent inves-
tigations demonstrate that herd behavior generated
through social influence can undermine the wisdom of
crowd effect in simple estimation tasks [9]. Herd behav-
ior, an alignment of thoughts or behaviors of individu-
als in a group, or imitation without individual rational
decision-making to be a cause of financial bubbles [10],
and volatility in cultural markets [11,12].

There is a long-standing recognition, especially for
humans, interdependence, and social influence between
individual decisions may undermine the wisdom of the
crowds effect. Collective wisdom optimization, in other
words, with the aim to overcome the mob effect to the
greatest extend and how to design an effective mecha-
nism to regulate the wisdom and madness of interactive
crowds should be the center of behavior research. Some
pioneering studies have made some progress towards
this focus. Such as maintaining individual diversity
among group members [13], balancing individual and
social information [14], increasing group size [15–17],
improving the plasticity and feedback ability of inter-
active social network structure [18], and social influ-
ence [9,19]. Especially, recent empirical social learning
strategies [7,20] with the aim to regulate the wisdom
and madness of interactive crowds.

The essence of collective wisdom is individual-based
group decision-making, which covers many subjects
such as cognition, social psychology, organizational
behavior, etc. In the famous work organization, Simon
regards decision-maker as an independent manage-
ment mode, and all the members of the organization
are decision-makers who reasonably choose means to
achieve a certain purpose. He believes that the essence
of any organization is a complex model of information
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communication and mutual relationship among group
individuals [21].

Indeed, group decision-making is deeply rooted in
cumulative bodies of social information [22], imitation
[23], cooperation, trust and trustworthiness [24], and
moral preference [25]. However, this question is chal-
lenging to study, and previous research has reached
mixed conclusions, because collective decision outcomes
depend on the insufficiently understood complex sys-
tem of cognitive strategies, task properties, and social
influence processes [26].

In particular, the group decision-making process can-
not avoid the conflict between individual and collective
interests or objectives. In such situation, collective wis-
dom is unavoidably to be riddled with social dilem-
mas [27] or tragedy of the commons, in which decisions
that make sense to each individual can aggregate into
outcomes in which everyone suffers. To understand the
collective decision performance of social learners fully
requires fine-grained quantitative studies of social learn-
ing strategies and their relations to collective dynamics,
linked to sophisticated computational analysis.

This kind of research not only has the theoretical
research value of social group psychology, but also has
the practical application value of surmounting group
non-cooperative behavior. For example, sustainability
challenges often require collective action by groups with
different background experiences and individual inter-
ests. To effectively initiate large-scale collective action
to sustain natural resources in a world of global envi-
ronmental change, how to design scientific and effec-
tive mechanism is a key problem. Indeed, exploring key
conditions or principles for the emergence of collective
intelligence have important implications from organi-
zation theory to economics, artificial intelligence, and
cognitive science [28].

In the context of evolutionary games and the pub-
lic cooperation, we point to a discovery of a general
and widely applicable phenomenon; stimuli strategy
[13] and learning dynamics are exploited for the effec-
tive resolution of madness of crowds. Specifically, with
the enlightment of learning-theoretic solution concepts
for social dilemmas [20,29], we shift attention to a
learning-theoretic alternative with the aim to resolve
social dilemma, so as to improve the level of collective
wisdom. And then as mechanism design in favor of our
societies and social welfare, we hope to deep understand
collective intelligence, so we can create and take advan-
tage of the new possibilities it enables.

2 Ground truth-based collective voting

Lorenz et al. presented an definition of a collection wise
based on the aggregate individual estimation if the esti-
mated average of the population comes close to the true
value [9]. In this case, single estimates are likely to lie far
away from the truth, but the heterogeneity of numer-
ous decision-makers generates a more accurate aggre-
gate estimation. This consideration not only reflects the

nature of group decision-making, but also provides a
train of thought and theoretic guide for our study.

In the following, we first present theoretic analysis on
the conditions that the individuals needed to improve
group voting accurate. We consider a binary outcome
Y ∈ {+1,−1}, and Y = −1 is the ground truth which
depends on many agents voting xi ∈ {−1,+1}, i =
1, ...n. We model this outcome as an estimator of the
average collective voting results of all attending indi-
viduals, that is

Ŷ =
1
n

n∑

i=1

xi. (1)

At initial round t = 1, since, without any prior
information, each agent has been assigned a subjec-
tive probability qi,t to choose ground truth −1, i.e.,
agent i prefers to choose −1 with probability qi,t. It
is assumed that the accuracy of an individual’s predic-
tion can be judged after each voting round. Then, in the
next voting round, agents are motivated by a stimulus
that offers rewards for making more accurate predic-
tions through increasing probability to select ground
truth. In the next section, we find that reinforcement
learning dynamic stimulus mechanism really improves
the accuracy of group decision-making through com-
puter simulation.

Here, use two measures to assess collective intel-
ligence accuracy. One measurement is self-reinforcing
cooperative voting probability Qt = (q1,t, ..., qn,t) of all
agents for ground truth at round t. The other is the
collective error at each round t, which is defined as the
absolute distance between estimator Ŷt that the collec-
tive vote agrees with the ground truth given the distri-
bution Qt = (q1,t, ..., qn,t) and ground truth Y . Equa-
tion (2) states that the collective error is equal to the
average individual estimate minus the ground truth

et = |Ŷt − Y |. (2)

Assuming each agent voting assessment xi,t ∈ {+1,
−1} satisfies binary distribution with probability pi,t to
choose +1, and probability qi,t prefer to select −1. The
expected collective voting result is then given by Eq.
(3)

E(Ŷt) = E

(
1
n

n∑

i=1

xi,t

)
=

∑n
i=1 pi,t
n

−
∑n

i=1 qi,t
n

,

(3)

where pi,t+qi,t = 1. Suppose we design a feasible mech-
anism, it can enhance collective voting accuracy, such
that for all voters, qi,t → 1 or pi,t → 0 when t → ∞.
Then, Eq. (3) gives us the theoretic result E(Ŷ∞) = −1.
It means that collective intelligence is improved steadily
as a function of voting round t.

For any voting round t, we prove that for any two
voting results xi,t, xj,t, they are uncorrelated, since
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Cov(xi,t, xj,t) = E(xi,txj,t) − E(xi,t)E(xj,t) = (pi,t −
qi,t)(pj,t − qj,t) − (pi,t − qi,t)(pj,t − qj,t) = 0. Then, we
have the variance of collective voting estimator

Var(Ŷt) =
1
n2

⎧
⎨

⎩

n∑

i=1

Var(xi,t) + 2
n∑

i�=j

Cov(xi,t, xj,t)

⎫
⎬

⎭

(4)

=
1
n2

n∑

i=1

Var(xi,t) =
1
n

{1 − (pi,t − qi,t)2}.

(5)

It gives that Var(Ŷt) → 0, as t → ∞, if qi,t → 1, i.e.,
pi,t → 0.

Next, we shift attention to a self-reinforcing cooper-
ative learning. We use computational experiments to
assess the collective voting accuracy with the frame-
work of stimuli strategy and learning dynamics.

3 Self-reinforcing cooperative learning

In this section, we illustrate that collective voting error
can be dismissed through self-reinforcing global coop-
erative learning dynamics.

3.1 Learning dynamics in social dilemma

Social dilemmas mean that everyone enjoys the bene-
fits of collective action, but free riders gain more with-
out contributing to the common good. For decades,
resolving or dismissing social dilemmas and promoting
cooperation has been a fascinating focus from a broad
range of disciplines. In social dilemma cases, everyone
always receives a higher payoff for defecting than for
cooperating, but all are better off if all cooperate than
if all defect. Such situation can be formalized as 2-
person games where each player can either cooperate
or defect. For each player, the payoff for both coop-
erate R is greater than the payoff obtained for both
defect is P , while one cooperates and the other defects,
the cooperator obtains S, and the defector receives T .
R > T > P > S resulted in the game of Stag Hunt, fear
but not greed. T > R > S > P resulted in the game
of Chicken, greed but not fear. And, T > R > P > S
resulted in the celebrated game of Prisoner’s Dilemma
(PD). The prisoner’s dilemma is a representative exam-
ple of non-zero sum game in game theory, which reflects
that the individual’s best choice is not the group’s best
choice. In other words, in a group, individuals make
rational choices, but often lead to collective irrational-
ity. As a classical example of an evolutionary game
that is governed by pairwise interactions, Prisoner’s
Dilemma game model is more suitable for our research
problems, i.e., conflict between individual and collec-
tive interests or objectives. Therefore, we choose Pris-

oner’s Dilemma game instead of game of Chicken or
Stag Hunt.

Macy and Flache [29] explored the learning dynam-
ics that observed in 2-player 2-strategy social dilemma
games. They used an elaboration of a conventional
Bush–Mosteller stochastic learning algorithm [30] for
binary choice cooperate or defect. In their model, the
individuals learn from the previous interactions and
outcomes and therefore adapt their decisions because
of experience. Especially interesting is the case; they
consider the influence of individual’s aspiration, habitu-
ation level, and learning rate on 2-player no-static equi-
libria mixed strategy.

The stochastic learning algorithm is summarized as
following. For each evolutionary game round, players
decide whether to cooperate or defect at random. Each
player’s strategy is defined by the probability of under-
taking each of the two actions available to them. After
players have selected an action according to their prob-
abilities, each one receives the corresponding payoff and
revises her strategy. The revision of strategies takes
place following a reinforcement learning approach: play-
ers increase their probability of undertaking a certain
action if it leads to payoffs above their aspiration level,
and decrease this probability otherwise. When learning,
players in the Bush–Mosteller model use only informa-
tion concerning their own past choices and payoffs, and
ignore all the information regarding the payoffs and
choices of their counterparts. However, in this paper,
we focus on a different situation, players in our model
use both information concerning their own past choices
and all the information regarding the payoffs of others.
The information of others is transmitted to individu-
als through average payoffs of all members. Meanwhile,
our model follows the same learning mechanism as that
in the Bush–Mosteller model. First, players (or voters
in our model) calculate their stimulus for the action;
second, they update their aspiration level; finally, both
current round stimuli st and voting probability pt result
in the updated probability for her next round voting.

The above steps form a closed loop and identified as
two no-static equilibria formally defined in [31]. One is
named self-correcting equilibrium (SCE) which is char-
acterized by dissatisficing behavior. The other is named
the self-reinforcing equilibrium (SRE). An SRE corre-
sponds to a pair of pure strategies (i.e., qt subject to
{0, 1}), such that its certain associated outcome gives a
strictly positive stimulus to players. SRE can be inter-
preted as a mutually satisfactory outcome. The number
of SRE in a social dilemma depends on rewarded play-
ers. Near an SRE, there is a high chance that the sys-
tem will move towards it. Therefore our investigation is
restricted to the analysis of SRE.

3.2 Description of the model

Our model is based on the Bush–Mosteller stochastic
learning model, but we extend 2-person games to a n-
voters collective voting situation. An learning dynamics
of individuals cooperating to obtain a collective voting
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benefit is here modeled as an evolution of cooperation,
where the each voter interacts with other n − 1 indi-
viduals via n-player Prisoner’s Dilemma game. At each
voting round, each individual voting result depends on
the other n − 1 voters.

The probability qd,t+1 of taking a decision d = −1
at round t + 1 for each voter is updated by the conse-
quences of her previous decision d ∈ {+1,−1} at time
t. These consequences are described as negative (pun-
ishment) when voter choose +1, and positive (reward)
stimulus st when voter choose ground truth −1. The
outcome {(+1,+1), (−1,−1), (+1,−1), (−1,+1)}
induces a payoff �t corresponding to one of the value
(R,P, T, S) for each voter. This payoff results in a cor-
responding stimulus for each agent associated with a
voting decision {+1,−1}, such that described in Eq.
(6)

sd,t =
Πd,t − At

sup[|R − At|, |P − At|, |S − At|, |T − At|] . (6)

Often, people in social dilemmas attend more to the
group’s payoffs than to their own. Thereby, we set
Πd,t is the average payoff rewarded for a voter i,
given the other n − 1 individuals payoff, i.e., Πd,t =
1

n−1

∑
j �=i �j,t, j = 1, ..., n. Then, we can compute and

analyze the voting results and learning dynamics of the
n individuals simultaneously. The denominator denotes
the upper bound of possible difference between the
mean payoff Πd,t for each individual and its aspiration
level At, and therefore, −1 ≤ sd,t ≤ 1. Then, the aspi-
ration level is updated as

At+1 = (1 − h)At + hΠd,t. (7)

Aspiration level is a relevant aspect of decision-
making [32]; the overall probabilities of voting result
{+1,−1} are relative to the aspiration level and
expected utility. Equation (7) suggests that the updated
aspiration level is a weighed mean between previous
round aspiration and the averaged payoff with consid-
ering habituation parameter h. Where the habituation
rate h describes the voter subjective will to change her
previous round decision. For each voter, both current
round stimuli sd,t and voting probability qd,t result in
the updated probability as in Eqs. (8, 9) for her next
round voting, with considering learning rate l. Such
that in the case of sd,t ≥ 0

qd,t+1 = qd,t(1 − lsd,t), (8)

for the case of sd,t < 0,

qd,t+1 = qd,t − (1 − qd,t)lsd,t. (9)

The learning rate l is a adjustable parameter between
0 and 1. Where 0 < qd,t+1 < 1 and suggests a tendency
for a agent to repeat rewarded voting result and to avoid
punished decision. Although both habituation level and
learning rate destabilize cooperation, the model implies

a cooperative SRE if (and only if) voters’ aspiration
levels are lower than the payoff for group coopera-
tion. With this short sequence, the model is completely
implemented and we can repeat this procedure for an
arbitrary number of iteration.

4 Results and discussion

In our simulation, we focus on typical Prisoner’s
Dilemma game is formally characterized by a certain
ordering of the four payoff values (Ti = 4 > Ri =
3 > Pi = 1 > Si = 0), i = 1, ..., n. We set number
of voters n = 5000, iterative learning round 1000. To
model a more realistic situation, we consider the habit-
uation rate and learning rate heterogeneous distribu-
tion among voters, and assume the initial parameters
to be Gaussian distributed. Therefore, we set habitua-
tion rate vector

−→
h ∼ abs(N(0.1, 0.04)), learning rate

vector
−→
l ∼ abs(N(0.5, 0.05)), and initial probabili-

ties for voting ground truth vector subject to −→q1 ∼
abs(N(0.5, 0.01)). Where “abs” denotes absolute value
operation; for example, abs(N(0.1, 0.04)) means that
taking the absolute value of the random number from
the normal distribution with expectation 0.1 and vari-
ance 0.04.

Aspiration yield unexpected insights into the global
dynamics of cooperation in social dilemmas. Results
from the two-person game suggest that a self-reinforcing
cooperative equilibrium solution is viable only within
a narrow range of aspiration levels. For this rea-
son, we first analyze the aspiration levels influence
on P{(−1, ...,−1)|SRE} and mean of collective voting
error. Where P{(−1, ...,−1)|SRE} defined as the prob-
ability that n = 5000 voters select ground truth −1 on
certain fixed aspiration level, and the mean of collec-
tive voting error ea = 1

n

∑1000
t=1 |Y − Ŷt| is defined as the

average absolute error after each 1000 rounds collective
voting for a fixed aspiration level a.

Under the assumption that all voters’ aspirations
are at the same level. To investigate the dependence
of collective voting error ea and P{(−1, ...,−1)|SRE}
on aspiration levels, for fixed initial parameter vector
distribution

−→
h ∼ abs(N(0.1, 0.04)),

−→
l ∼ abs(N(0.5,

0.05)), −→q1 ∼ abs(N(0.5, 0.01)), we vary the aspiration
level across the entire range of payoffs (from 0 to 4)
in steps of 0.1, given they locked in a SRE within
1000 iterations. The corresponding results are shown
in Fig. 1. We observed that P{(−1, ...,−1)|SRE}
decreases rapidly to zero with the increase of aspira-
tion level a within (0, 1). That means a fair interaction
between individual and other members is only possible
in a narrow range of aspiration levels, i.e., SRE solu-
tion is viable only within a narrow range of aspiration
levels such as (0, 1). Meanwhile, the mean of collective
voting error ea increases with the increase of aspiration
levels when the level is greater than 1. The plots in
Fig. 1 shows that to obtain acceptable collective voting
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Fig. 1 Dependence of P{(−1, ...,−1)|SRE} and collective voting error ea on the aspiration level a. It is the probability
that voting for ground truth for 5000 voters, given they locked in a SRE within 1000 rounds. For all voters, we considered

the fixed initial parameters distribution
−→
h ∼ abs(N(0.1, 0.04)),

−→
l ∼ abs(N(0.5, 0.05)), −→q 1 ∼ abs(N(0.5, 0.01)). Each plot

is based on 100 replications at each level of aspiration

accuracy, we should choose an appropriate aspiration
level.

In the following simulations, to restrict the aspi-
ration level to the effective interval (0, 1), we set
aspiration level −→a ∼ U(0, 1), where U denotes uni-
form distribution. Meanwhile, habituation rate

−→
h ∼

abs(N(0.1, 0.04)),
−→
l ∼ abs(N(0.5, 0.05)), and initial

probabilities for voting ground truth −→q 1 ∼ abs(N(0.5,
0.01)) remain unchanged.

The corresponding probabilities for voting ground
truth −→q t are shown in Fig. 2. Here, the probabilities
qi,t, i = 1, ..., 5000 are color-coded. To get an overview
of the overall development of the population, for each
iteration, the probabilities are sorted in ascending order
and every row corresponds to an individual. As Fig. 2
shown after 50 rounds of reinforcement learning, nearly
all voters prefer to select ground truth −1 with almost
probability 1; we observe an obvious trustful SRE in
the Prisoner’s Dilemma.

We also calculate the average fraction of voting
ground truth as a function of reinforcement learning
step, given all players locked in a SRE within 1000
rounds for random initialized

−→
h ,

−→
l and viable aspira-

tion level −→a . We see that in Fig. 3, the ratio of voters
with probability 1 to choose ground truth is evanes-
cently large with increase of voting round.

At the same time, as we observed in Fig. 4, both the
collective error et and Var(Ŷ ) tend to zero; the simula-

Fig. 2 The results show the development of the probability
of choosing ground truth during 1000 rounds for each of
the 5000 voters. Note that the probabilities in each column
are sorted in ascending order, to visualize the development
for the whole population. Here, we set the random initial

parameters
−→
h ∼ abs(N(0.1, 0.04)),

−→
l ∼ abs(N(0.5, 0.05)),−→q 1 ∼ abs(N(0.5, 0.01)), and −→a ∼ U(0, 1)

tion results are well matched with our theoretic analy-
sis. Furthermore, as the findings shown in Fig. 5, it can
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Fig. 3 Percentage of choosing ground truth as a function of learning rounds, given they locked in a SRE within 1000
iterations. For all voters, we considered the random initial parameters as that in Fig. 2

Fig. 4 Variation of collective voting error and the variance of collective voting estimator as a function of learning rounds

be find that Ŷ is approximate to ground truth −1 as a
function of learning rounds. Both theoretic analysis and
numeric simulations suggest that reinforcement learn-

ing dynamic stimulus mechanism achieves its design
performance in general, which really improves the accu-
racy of collective voting.
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Fig. 5 Collective voting estimator Ŷt is approximate to ground truth −1 as a function of collective voting learning rounds

Statistical explanations for our proposed swarm intel-
ligence promotion approach argue that group accuracy
relies on estimates taken from groups where individu-
als errors are correlated through stimuli strategy and
learning dynamics mechanism. Thus, when the number
of individuals in the group is large enough, although
decentralized decision-making individuals may have
estimates both far above and far below the true value,
in aggregating these errors cancel out, leaving an accu-
rate group judgement. The conclusion is agreed with
the opinion of the classic wisdom of the crowds theory,
increasing group size may increase collective accuracy
[15–17]. However, we argue that increasing group size
may not necessarily improve collective judgement accu-
racy without designing scientific and effective strategies
to improve collective wisdom.

5 Conclusions

Collective wisdom is critical to solving many scientific,
business, and other problems. In this paper, we show
that collective intelligence can be improved through
reinforcement learning incentive approach in evolution-
ary game. The study maps the landscape for the collec-
tive voting dynamics at the cognitive level, beginning
with the simplest possible iterated social dilemma. The
results convincingly support the fact that the evolution
of cooperation promotes the wisdom of groups. Par-
ticularly, we show that reward-based incentive scheme
might be a feasible alternative to overcome mob effect
or herding effects and improve collective wisdom, and

shed light on the ability of groups to resolve collec-
tive action problems. We illustrate the usefulness of
the framework to resolve social dilemma through stim-
uli strategy and learning dynamics, while promoting
collective wisdom and enhancing the predictability or
judgement of human social activity. Echoing the conclu-
sion “wisdom of groups promotes cooperation in evolu-
tionary social dilemmas” [28], our result suggests that
cooperation in evolutionary social dilemmas also pro-
motes “wisdom of groups”.
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