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Abstract. Collective variable-based enhanced sampling methods have been widely used to study thermo-
dynamic properties of complex systems. Efficiency and accuracy of these enhanced sampling methods are
affected by two factors: constructing appropriate collective variables for enhanced sampling and generating
accurate free energy surfaces. Recently, many machine learning techniques have been developed to improve
the quality of collective variables and the accuracy of free energy surfaces. Although machine learning has
achieved great successes in improving enhanced sampling methods, there are still many challenges and
open questions. In this perspective, we shall review recent developments on integrating machine learning
techniques and collective variable-based enhanced sampling approaches. We also discuss challenges and
future research directions including generating kinetic information, exploring high-dimensional free energy
surfaces, and efficiently sampling all-atom configurations.

1 Introduction

Molecular dynamics (MD) simulation is an important
tool to study thermodynamic properties and kinetic
properties of complex systems in chemistry, biology, and
materials science [1]. Potential energy functions used
in MD simulations usually have tremendous local min-
ima separated by high-energy barriers, while thermal
fluctuation is the only driving force of barrier crossing.
Therefore, the time to cross high barriers is close to
or longer than typical MD simulation timescales and a
sufficient sampling of barrier-crossing events can require
millisecond-scale MD simulations [2]. Various enhanced
sampling methods have been designed to assist barrier
crossing and these methods have achieved great suc-
cesses in understanding properties of various chemical
systems. [3–17].

In general, there are two categories of enhanced sam-
pling methods that focus on studying thermodynamic
properties. The first one is unbiased enhanced sam-
pling which preserves the Boltzmann distribution. The
efficiency of this type of enhanced sampling methods
is bounded by the central limit theorem, thus reduc-
ing sample correlation is the main theme of method-
ology development. One famous example of unbiased
enhanced sampling is the replica exchange method
such as parallel tempering [3] or Hamiltonian replica
exchange [4]. In the replica exchange approach, multi-
ple replicas of one MD simulation are running simulta-
neously with different temperatures or different poten-

a e-mail: chen4116@purdue.edu (corresponding author)

tial energy functions. Sample correlation is reduced by
exchanging configurations among replicas to prevent
trapping the simulated system in a stable conforma-
tion for a long time. The second type of enhanced
sampling methods biases the configuration distribution
away from the Boltzmann distribution. There are two
motivations to bias the Boltzmann distribution. First,
biasing the Boltzmann distribution improves statis-
tics at important high free energy locations, including
metastable conformations and transition states. Sec-
ond, increasing the probability of visiting barrier tops
can often reduce sample correlation to enhance sam-
pling efficiencies. Since preserving the Boltzmann distri-
bution is not required, designs of biased enhanced sam-
pling are more flexible. Even non-equilibrium dynamics
[5–9] has been adopted as long as the Boltzmann dis-
tribution can be recovered with post-analysis. Besides
two categories of methods for sampling the Boltzmann
distribution, there are many methods focusing on sam-
pling in a path ensemble which are necessary for study-
ing kinetic properties like rate constants [18–25]. We
want to emphasize that these methods are important
members in the family of enhanced sampling even if
they are not the main topic of this perspective.

Most biased enhanced sampling methods focus on
several important degrees of freedom. These degrees
of freedom are named as collective variables (CVs).
CVs form a reduced model for a complex process,
like a chemical reaction, a biomolecule conformational
change, or a material phase transition. With prop-
erly selected CVs, important potential energy barri-
ers are mapped onto a free energy surface (FES) so
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that biased enhanced sampling on the FES is able to
increase the frequency of barrier crossing. CV-based
enhanced sampling methods have been developed for
decades and there are enormous successful applications
of these methods [26–34]. However, there are many the-
oretical and practical challenges for these methods.

Recent developments on machine learning techniques
are changing the landscape of CV-based enhanced sam-
pling, especially on two aspects: CV design and FES
construction. In this perspective paper, we shall briefly
review CV-based enhanced sampling in Sect. 2 and we
shall introduce basic machine learning concepts in Sect.
3. After that, we shall present methods of training CVs
and FESes with machine learning techniques in Sects.
4 and 5. In Sect. 6, we shall discuss challenges and per-
spectives to develop CV-based enhanced sampling with
machine learning.

2 Collective variable-based enhanced
sampling

We start our discussion from introducing a system of
Na atoms with Cartesian coordinates x = {x1, ... ,xNa

}
where xi is the Cartesian coordinates of the i’th atom.
The system’s Hamiltonian is H = T +U where T is the
kinetic energy and U(x) is a potential energy function
which describes interactions among atoms. A set of d
physically intuited CVs q(x) = {q1(x), ... , qd(x)} ∈
R

d is introduced as a coarse-grained representation of
the system, where qi(x) is the i’th collective variable.
Fixing q(x) = s, a partition function at temperature T
is defined as

Q(s) = C

∫
dxe−βU(x)δ(q(x) − s), (1)

where C is a constant independent of s, β = 1/kT , and
δ(·) is the Dirac delta function. In other words, Q(s) is
defined as a integration of the Boltzmann factor e−βU(x)

over a manifold determined by q(x) = s. A free energy
surface A(s) is then defined from Q(s), i.e.

A(s) = −kT log Q(s) + C̃, (2)

where C̃ is also a constant independent of s. Since we
are interested in a free energy difference between two
conformations, C̃ is ignored in most cases.

Since a FES is a simplified model of a complex sys-
tem, the FES should be able to represent important
macroscopic states of molecules and materials, such as
stable conformations of molecules and stable phases of
materials. Moreover, it is possible to design CV-based
enhanced sampling with appropriate CVs to calculate
kinetics properties like rate constants [35]. In many
cases, timescales of these important conformational
changes or phase transitions are much longer then typ-
ical MD simulation timescales due to high free energy

barriers. For example, conformations of alanine dipep-
tide in vacuum can be represented by two Ramachan-
dran dihedral angles Φ and Ψ . Using these two dihedral
angles as CVs defines a FES on which three minima rep-
resent three stable conformations: C7eq, C5, and C7ax.
The height of the barrier separating C7eq and C7ax is
nearly 8kcal/mol higher than the free energy at the bot-
tom of C7eq well (see panel (b) in Fig. 1). Crossing
such a high barrier requires extremely long timescale
MD simulations. Therefore, efficiently exploring a FES
usually requires enhanced sampling techniques.

One common enhanced sampling approach is to bias
the Boltzmann distribution to enhance statistics in
some low probability regions, like metastable confor-
mations and transition states. Biasing the Boltzmann
distribution is achieved by modifying the equation of
motion. Without loss of generality, we shall use the
Brownian dynamics as the MD equation of motion. The
Brownian dynamics motion equation is

μdx = −∇U(x)dt +
√

2μkTdW, (3)

where μ is a friction coefficient. Sometimes, an extended
Lagrangian scheme is used in CV-based enhanced sam-
pling methods. In an extended Lagrangian scheme, CVs
are coupled to fictitious degrees of freedom s with har-
monic potentials [7,8,17,37], i.e.

μdx =

(
−∇U(x) −

∑
i

κi(qi(x) − si)∇qi(x)

)
dt

+
√

2μkTdW (4a)

μidsi = κi(qi(x) − si)dt +
√

2μikTdWi, (4b)

where μi is an artificial friction coefficient of a ficti-
tious degree of freedom and κi is an artificial coupling
constant. With Eqs. (4a) and (4b), Eq. (1) becomes

Q(s) = C ′
∫

dxe−βU(x)
∏

i

e−βκi(qi(x)−si)
2/2. (5)

Eq. (5) agrees with Eq. (1) in the limit of κi → ∞ for
all κi. Biased enhanced sampling methods modify either
Eq. (3) [5,6,9] or Eqs. (4a)–(4b) [7,8,16,17,37,38].

There are two possible ways to biasing the Boltz-
mann distribution: changing the potential energy func-
tion [5,6,9,17,38–41] and increasing the temperature
[7,8]. A biasing potential or biasing force is usually
introduced to reshape the potential energy function.
The biasing potential can either restrain the simulated
molecule around a conformation or the biasing poten-
tial can fill up minima on a FES to enhance barrier
crossing. One famous example of enhanced sampling
with restraint potential is the umbrella sampling. The
biasing potential used in the umbrella sampling shares
a form of

Ubias(x) =
∑

i

κi

2
(qi(x) − si)2. (6)

123



Eur. Phys. J. B (2021) 94 :211 Page 3 of 17 211

(b)
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Fig. 1 The FES of an alanine dipeptide a in vacuum with two Ramachandran dihedral angles Φ and Ψ as CVs is shown in
panel (b). The FES in kcal/mol is calculated by a 10ns well-tempered metadynamics simulation with the OPLS-AA force field
[36]. Panel c shows trajectories of dihedral angle Φ from a MD simulation (upper) and from the well-tempered metadynamics
simulation (lower). Without enhanced sampling, the alanine dipeptide molecule is not able to change its conformation to
C7ax within a 10 ns simulation due to high free energy barriers. On the contrary, well-tempered metadynamics significantly
enhances barrier crossing between C7eq/C5 and C7ax

[10,41,42]. There are many enhanced sampling meth-
ods focus on designing a biasing potential to assist bar-
rier crossing [5,6,9,16,39,40,43]. For example, meta-
dynamics constructs a biasing potential by depositing
Gaussian functions along a simulation trajectory {x(t)}
[5,6], i.e.

Ubias(x, t) =
∑

ti≤t

A(x(ti))

× exp

{
−1

2
(q(x) − q(x(ti)))

�Σ−1(q(x) − q(x(ti)))

}
,

(7)

where Σ is a diagonal matrix determining the width of
Gaussian functions and A(x) is a prefactor. A(x) is a
constant in the metadynamics [5] while A(x) declines
with increasing Ubias(x, t) in the well-tempered meta-
dynamics (WTM) [6]. There are many different mod-
ifications of metadynamics which can be found in an
excellent review [44]. Since nuclear forces control atomic
motions in MD simulations, directly applying a biasing
forces instead of a biasing potential leads to the adap-
tive biasing force (ABF) method [9]. In ABF, mean
forces F(q) felt by CVs are recorded and biasing forces
Fbias = −F(q) are applied to drive the system out of
a stable/metastable conformation [9]. There are also
methods applying potentials to restrain a system as well
as to filling up minima on the FES. A method, named as
“well-sliced metadynamics” that unifies both two types
of biasing potentials has also been proposed [38]. In
this method, a restraint potential has been applied to
enforce the simulated system explore interesting con-
formations, while a biasing potential of metadynamics-
type has also been used to enhance barrier crossing.

In “funnel metadynamics” which is useful to study the
drug binding problem, a funnel-like restraint potential
has been designed to confine a drug molecule’s diffusion
if the drug molecule is too far away form the protein
surface, and a biasing potential of metadynamics-type
can enhance sampling of the binding process [45].

As mentioned above, another approach to bias the
Boltzmann distribution is to increase the simulation
temperature. A naive way of increasing the whole sys-
tem’s temperature is not practical. However, increasing
the simulation temperature for CVs is feasible, and it
is the core idea of the adiabatic free energy dynamics
(AFED) [46], the driven adiabatic free energy dynamics
(d-AFED) [8], and the temperature accelerate molecu-
lar dynamics (TAMD) [7]. In order to avoid strong non-
equilibrium effects, large masses are assigned to CVs to
create an artificial time-scale separation between CVs
and other degrees of freedom. It is also possible to bias
the Boltzmann distribution by applying both a bias-
ing potential and a high temperature to CVs, like the
unified free energy dynamics [16]. We want to empha-
size that we only mention a few CV-based enhanced
sampling methods in order to motivate further discus-
sions. For more completed and detailed introductions to
CV-based enhanced sampling, please refer to following
outstanding reviews [47,48].

Although trajectory-based enhanced sampling is not
the main topic, we want to briefly introduce the ideas of
trajectory-based enhanced sampling with three illustra-
tive methods. Trajectories, like configurations, can form
an ensemble known as the path ensemble, assigning
path probabilities to trajectories in the ensemble [18].
Sampling paths in the path ensemble leads to accurate
estimations of kinetic properties, e.g. transition prob-
abilities, correlation functions, and rate constants [18–
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25]. In transition path sampling [18,19], a initial path
is first proposed to connect two conformations A and
B. The path is described by a series of “beads” with
phase space coordinates {(x1,p1), ... , (xN ,pN )} where
(x1,p1) stay in conformation A and (xN ,pN ) stay in
conformation B. A Monte Carlo approach named as
“shooting move” [49] has been proposed to update the
path, analogy to updating coordinates in a Monte Carlo
sampling. In transition interface sampling [20], N inter-
faces are aligned between conformations A and B. The
rate constant from A to B can be evaluated by fluxes of
trajectories through interfaces and transition probabil-
ities of crossing a interface. Similarly, the milestoning
method [25,50] divides the configuration space to cells.
Short MD simulations are performed in each cell to eval-
uate the mean first passage time for the system to leave
one cell. These mean first passage times are then used to
evaluate other kinetic properties. While the main object
of enhanced sampling focusing on thermodynamic prop-
erties is the invariant probability p(x), the main object
of trajectory-based enhanced sampling is the transi-
tion probability p(x′, t′|x, t) since the transition prob-
ability determines path probabilities. Trajectory-based
enhanced sampling methods like milestoning are able
to recover the invariant probability for free, as long as
the transition probability is evaluated in these methods.
Trajectory-based sampling methods are also strongly
related to CVs. (1) Information provided by trajectory-
based sampling methods can be used to identify appro-
priate CVs. One famous example is the committor anal-
ysis from transition path sampling [51]. (2) Predefined
CVs are needed for some trajectory-based sampling
methods. For example, cells used in the milestoning
method are usually defined with CVs [52,53].

Although CV-based enhanced sampling methods
have been widely used in chemistry, biochemistry and
materials science, there are two fundamental issues
limiting applications of these methods. First, it is an
open question on how to construct optimal CVs. Sec-
ond, accurately generating a multidimensional FES is
still challenging. Fortunately, recent developments on
machine learning techniques bring a revolution to CV-
based enhanced sampling methods. In the next sec-
tion we shall introduce some basic concepts in machine
learning and we will discuss how to develop and
apply machine learning techniques to lift obstacles in
enhanced sampling methods in Sects. 4 and 5.

3 Introduction to machine learning

In physical sciences, new theories are usually estab-
lished based on inferences. Starting from fundamental
assumptions or experimental results, step-by-step infer-
ences lead to conclusions, rules, and theories. These
conclusions, rules, and theories are further applied to
new problems to explain observed physical phenomena
and to predict unknown experimental results. Besides
inference-based approaches, another way to explain
existing data and to predict new results focus on study-
ing data directly with theories and algorithms from

statistics, optimization, computer sciences, and so on.
The second approach is known as “machine learning”.
“Data” is the most important component of machine
learning. In general, there are three different types of
data: (1) a static set of data with labels, e.g. a set of
data {(x, f(x))} where f(x) serves as the label of x; (2)
a static set of data without labels, e.g. a set of data
{x}; (3) data depending on the on-the-fly execution of
a program or an experiment. Three different types of
data leads to three different types of machine learn-
ing methods: supervised learning, unsupervised learn-
ing, and reinforcement learning. In this section, we shall
adopt the linear regression method which is one of the
most elementary supervised learning method to illus-
trate how to train a model, how to validate a trained
model, and how to predict with a trained model. We
want to emphasize that we are only presenting the out-
line of the linear regression theory. For details and fur-
ther discussions, please refer to [54].

In a data set X = {(x, y)} with N samples (“training
data set”), y is related to x with yi = f(xi) + εi where
f(·) is an unknown function and εi is a random noise.
The linear regression model assumes that the unknown
function can be represented as a linear combination of
M basis functions φ1(x), ... , φM (x), i.e.

y =
M∑
i=1

wiφi(x) = w�φ(x), (8)

where w is a vector of expansion coefficients. Equation
(8) is named as a “model” with adjustable (“trainable”)
parameters w. To recover f(x), w has to be optimized
such that w�φ(xi) matches yi reasonably well for every
data point. This idea leads to the least squares objective
function or the least squares loss function.

L(w,X ) =
N∑

i=1

(w�φ(xi) − yi)2 . (9)

“Training” the linear regression model means minimiz-
ing L. Once L is minimized, the optimal w, named as
w∗, is given by

w∗ = (Φ�Φ)−1Φ�y, (10)

where Φij = φj(xi). With a new input x∗, the
trained linear regression model predicts an output y∗ =
w∗�φ(x∗). An obvious question with this linear regres-
sion model is how to choose an optimal M . If M is
too small, the model is not flexible enough to approx-
imate f(·) accurately, resulting in systematic errors in
predictions. On the other hand, if M is too large, the
model is overfitted and noisy predictions are generated.
In the scenario of overfitting, the training error given by
L(w∗,X ) is very small. However, a test error L(w∗, X̃ )
can be very large. X̃ = {(x̃, ỹ)} is another data set
(“test data set”) independent of X . It is because that
the magnitudes of some wi become artificially large in
order to learn the noise ε. To solve this problem, it
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is often necessary to restrain the magnitude of w by
adding a regularization term to L, i.e.

L(w,X ) =
N∑

i=1

(w�φ(xi) − yi)2 + λw�w. (11)

where λ is called a “hyperparameter”. λ determines the
ratio between the systematic error introduced by the
regularization term and the random error due to overfit-
ting. λ is not a trainable parameter and cross-validation
[55,56] is required to find out an optimal value of λ.

The linear regression method can also be interpreted
with probability theory. Assuming that the noise ε is
distributed as a normal distribution with zero mean and
variance σ, a probability p(y|x,w, σ) can be defined as
p(y|x,w, σ) = N (y|w�φ(x), σ). If all data points in
the training data set are independent, a “likelihood”
probability is defined as

p(y|x,w, σ) =
∏

i

N (yi|w�φ(xi), σ), (12)

which tells us the probability to observe y = (y1, ... ,
yN )�, given a set of parameters w and inputs x =
(x1, ... , xN )�. A large likelihood probability means that
we have a better chance to observe y, therefore, w
is optimized if we maximize p(y|x,w, σ). Such an
approach is named as “maximum likelihood”. Loga-
rithm of the likelihood probability leads to the least
squares loss function given by Eq. (9).

Both the least squares approach and the maxi-
mum likelihood approach result in a single optimal
w∗. On the contrary, the Bayesian approach returns a
model that tells us the probability of w. The Bayesian
approach of linear regression starts from a famous rela-
tion:

p(w|y) =
p(y|w)p(w)

p(y)
, (13)

where p(w) as a “prior” distribution describes our
prior knowledge of p(w) and p(w|y) is called a “pos-
terior” distribution. Usually, a prior distribution is
an elementary probability distribution, e.g. p(w) =
N (w|0, λ−1I). Using this prior distribution
together with the likelihood in Eq. (12), the logarithm
of the posterior distribution is

log p(w|y) = − 1
2σ

N∑
i=1

(w�φ(xi)−yi)2− λ

2
w�w, (14)

where we discard the normalization constant. There-
fore, maximizing the posterior which tells us the most
possible choice of w is exactly the same as minimizing
the loss function Eq. (11). The similarity between Eqs.
(11) and (14) suggests that a prior distribution behaves
like a regularization term: our prior knowledge prevents
w from taking crazy values if there is not enough train-
ing data. However, the power of the Bayesian approach
is far beyond adding a regularization term. Given a new

input x∗, the Bayesian approach can predict the distri-
bution of y∗ which is given by

p(y∗|x∗,y) =
∫

p(y∗|x∗,w)p(w|y)dw. (15)

Equation (15) provides a full statistics of a prediction
including mean and confident interval.

Up to now, we have focused on the elementary linear
regression model to introduce various machine learn-
ing concepts. Besides linear regression, we also want
to briefly introduce the artificial neural network model
[57–59] that is commonly used in recent years [60]. An
artificial neural network shares a layered structure. We
define x(i) as the i’th layer’s inputs. The i’th layer’s
outputs, y(i), are given by

y(i)
j = f

(∑
k

W(i)
jkx

(i)
k + b(i)

j

)
, (16)

where W(i) and b(i) are trainable parameters called
weights and biases. An activation function f(·) is a non-
linear function to introduce non-linearity in the model,
typical choices of f(·) include sigmoid function, hyper-
bolic tangent function, and rectified linear unit (ReLU)
[61]. y(i) are then fed into the (i+1)’th layer as inputs.
A simple neural network contains only three layers: an
input layer, a hidden layer, and an output layer. Nowa-
days, deep neural network can have 102–103 layers [62].
Besides the most elementary neural network form intro-
duced above, there are many other important architec-
tures of artificial neural networks including the convo-
lutional neural network [63], the recurrent neural net-
work [59], the residual neural network [62], the graph
neural network [64], and so on. Training a neural net-
work is usually achieved by the backward propagation
algorithm [59,65,66].

4 From physics-intuited CVs to machine
learning-based CVs

Designing CVs is a key step when applying a CV-based
enhanced sampling method. Traditionally, physically
intuited CVs are used in enhanced sampling simula-
tions. A physically intuited CV either corresponds to
an experimentally measurable property or it is designed
by understanding underlying physics of the studied pro-
cess. For example, end-to-end distance is related to
mechanical pulling experiments of biomolecules [67].
and radius-of-gyration is designed to describe the “com-
pactness” of a molecule [68]. However, applying sam-
pling methods to study complex biomolecules and
materials with limited number (≤ 3) of physically intu-
ited CVs is very challenging. Sampling a complex sys-
tem efficiently may require 10–100 or more physically
intuited CVs [27,69,70]. It is because that many con-
formational transitions could happen when simulating
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a complex system, while one physically intuited CV
is appropriate to describe only a few conformational
changes. A limited number of physically intuited CVs
are not enough to represents all of these conforma-
tional transitions, and these CVs are not enough to
map all important transition barriers explicitly on the
FES [71]. Since CV-based enhanced sampling methods
are only capable of enhancing barrier crossing for bar-
riers on the FES, barriers not on the FES can signif-
icantly reduce the efficiency of a CV-based enhanced
sampling algorithm [71] or even reduce the accuracy
of sampling results [72]. In [71], an alanine dipeptide
molecule was simulated with metadynamics using the
radius-of-gyration and the number-of-hydrogen bond as
CVs. Barriers connecting C7eq and C7ax (see Fig. 1,
panel b) were not explicitly mapped on the FES, result-
ing in a long simulation time for the alanine dipeptide
molecule to leave the C7ax conformation. In [72], linear-
response theory was applied to evaluate the systematic
error of a FES generated by the TAMD method. The
error which is caused by the non-equilibrium factor in
TAMD is related to correlation functions of forces felt
by CVs and barriers not explicitly mapped on the FES
slow down the decay of correlation functions, resulting
in a large systematic error of the FES.

The motivation to use physics-intuited CVs is that
the corresponding FES is physically meaningful. Nev-
ertheless, it is possible to simulate a complex system
with sophisticated CVs even if the physical meaning
of the FES is insignificant [73,74]. In this case, gen-
erating a FES is not the main subject of the simula-
tion. Instead, sample weights are evaluated by unbias-
ing algorithms [75–83], and unbiased samples are pro-
jected onto physics-intuited CVs in post-analysis [71].
Without requiring physics intuited CVs, a lot of meth-
ods have been developed to construct CVs directly from
mining simulation data (configurations) [71,73,84–96],
which greatly enriches the CV library. Designing CVs
which aims to find a low-dimensional representation
from high-dimensional configurations exactly matches
the task of dimensionality reduction algorithms. Dimen-
sionality reduction methods have been widely stud-
ied in the machine learning community. The moti-
vation to develop dimensionality reduction methods
is an assumption that data points stays around a
low-dimensional manifold even if the data points are
embedded in a high-dimensional space. The panel
(a) of Fig. 2 presents a set of two-dimensional data
points. The points concentrate around a curve (one-
dimensional manifold) instead of being randomly scat-
tered across the two-dimensional space. Therefore, it
is possible to find out a one-dimensional representa-
tion of the data points without prior knowledge of
the curve, which is the goal of dimensionality reduc-
tion methods. Examples of dimensionality reduction
algorithms include principle component analysis (PCA)
[97], isomap [98], locally linear embedding (LLE) [99],
diffusion map [100], t-distributed stochastic neighbour
embedding [101] and many others [102]. There are var-
ious studies applying different dimensionality reduc-
tion algorithms to construct CVs [92–94,103,104]. How-

ever, most dimensionality reduction algorithms only use
information of the data probability distribution, while
configurations from a MD simulation also represent
simulation kinetics. It is often believed that kinetics
provides the key information for CV design. For exam-
ple, the isosurface of a good CV should be an approxi-
mation of the committor isosurface which is determined
by kinetic information [105,106]. Therefore, it is natu-
ral to utilize kinetic information to construct a machine
learning-based CV. In practice, other criteria like pre-
serving structure similarity are also used in training
machine learning-based CVs. In the next section we
shall present several example to train CVs from MD
simulations.

Principle component analysis (PCA) We start our
discussions from the principle component analysis,
which is an elementary dimensionality reduction algo-
rithm. PCA attempts to decompose the sample covari-
ance matrix and to find out directions with large vari-
ants. As shown in the panel (a) of Fig. 2, v1 is the
eigenvector of data covariance matrix with the larger
eigenvalue. Therefore, v1 could represent a “flexible
mode” while v2, the eigenvector with the smaller eigen-
value, may represent a vibrational mode of less inter-
est. Therefore, v1 is a more suitable CV compared to
v2. PCA is a very simple approach to train CVs, and
its drawbacks are obvious. The CV v1 is a linear com-
binations of coordinates x1 and x2. However, panel (a)
of Fig. 2 clearly shows that the actual low-dimensional
manifold is non-linear. Since linear PCA is not able to
accurately model a non-linear manifold, a non-linear
dimensionality reduction method is required for con-
structing CVs.

Sketch map The second direction to develop machine
learning-based CVs is based on preserving the struc-
tural similarity. In most cases, Cartesian coordinates x
of the studied molecule, like a biomolecule, are clus-
tered around stable conformations. In order to preserve
clustering information, sketch map trains CVs based on
non-linear distance matching with the following objec-
tive function:

L =
∑
ij

(F (‖xi − xj‖) − f(‖qi − qj‖), (17)

where both F (·) and f(·) are switch functions [73,74].
F (‖xi − xj‖) ≈ 1 if ‖xi − xj‖ is smaller then a typical
cluster size and F (‖xi − xj‖) becomes 0 if xi and xj

are far apart. f(·) is similar with F (·). L is small only
if a cluster of configurations stay within one cluster in
the low-dimensional CV-space. Sketch map has been
used to identify stable conformations from enhanced
sampling simulations [73,74,107,108].

t-Distributed stochastic neighbor embedding (t-SNE)
Besides measuring similarity between two samples with
distance, probability distributions are also used to
describe sample similarity. This idea leads to a method
named as “stochastic neighbor embedding (SNE)”
[109]. In SNE, a conditional probability is first defined,
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(a)

(b)

Fig. 2 Panel a illustrates the dimensionality reduction
problem. Red two-dimensional points are scattered around
a blue curve which is unknown to a dimensionality reduc-
tion algorithm and the goal of the dimensionality reduc-
tion algorithm is to recover the blue curve. Green arrows
are corresponding to eigenvectors of the sample covariance
matrix. The longer arrow, v1, is the eigenvector with the
larger eigenvalue, while the shorter arrow, v2, is the eigen-
vector with the smaller eigenvalue. Panel b shows the FES
corresponding to two StKE CVs [71]. Configurations are
sampled by a ∼ 7 ns active enhanced sampling simulation
with the OPLS-AA force field [36]

i.e.

ph
j|i =

Kh(xi,xj)∑
k �=i Kh(xi,xk)

, i 	= j

ph
i|i = 0, (18)

where Kh(·, ·) is a symmetric kernel function. A joint

probability is then defined as ph
ij =

ph
i|j+ph

j|i
2N where N

is the number of samples. The design of the joint dis-
tribution ensures every sample contributes significantly
to the loss function. Similar joint probabilities pl

ij are
defined with respect to a low-dimensional representa-

tion q, i.e. pl
ij =

pl
i|j+pl

j|i
2N , where pl

j|i = Kl(qi,qj)∑
k �=i Kl(qi,qk)

for i 	= j and pl
i|i = 0. The Kullback–Leibler (K–L)

divergence between ph
ij and pl

ij is minimized to preserve
data similarity, i.e. the objective function of SNE is

L =
∑
ij

ph
ij

ph
ij

pl
ij

≡ DKL(ph‖pl), (19)

where DKL(·‖·) denotes the K–L divergence. In SNE,
both Kh and Kl are Gaussian kernels. However, Gaus-
sian kernels suffer from the “curse of dimensionality”.
The distance between two high-dimensional data points
is usually much longer then the distance between their
low-dimensional projections. Therefore, a fat tail ker-
nel has been used to faithfully preserve the distance
between two moderately separated high-dimensional
samples. The idea of using mismatched kernel tails to
compensate mismatched dimensionality leads to t-SNE
in which Kl is a Student’s t-distribution [101]. t-SNE
has been applied to train a low dimensional representa-
tion of configurations to analysis MD trajectories [104].

Autoencoder An autoencoder model contains an
encoder and a decoder. The encoder is a function fe

that maps high-dimensional inputs x to low-dimensional
latent variables q while the decoder fd decodes q back
to high-dimensional outputs x′ [110]. Nowadays, both
fe and fd are usually represented by neural networks.
The encoder is a natural choice of CVs: x represent
Cartesian coordinates or high-dimensional features of a
configuration while q are low-dimensional CVs. There
is no unique way to design an encoder and we will intro-
duce several examples.

In the first example, an autoencoder has been trained
by optimizing the following loss function:

L =
∑

n

‖xn − fd(fe(xn))‖2 + Regularization, (20)

where the regularization term is usually a summation
of the L2 norm of parameters in fd and the L2 norm of
parameters in fe. Equation (20) minimizes the differ-
ence between an encoder’s inputs and the correspond-
ing outputs of the decoder [91]. In practice, x could
be atomic Cartesian coordinates or internal coordinates
of the studied molecule. If x are internal coordinates
which are invariant under rigid rotation, Eq. (20) can
be applied directly. However, further modifications of
Eq. (20) are needed to train rotation-invariant CVs if
Cartesian coordinates are used [91] as the encoder’s
inputs. The trained encoder can be used to indicate
regions in x space that are already been sampled by MD
simulations. Umbrella sampling simulations are then
employed with restraint potentials located at bound-
aries of the sampled regions. Configurations from these
simulations further expand the sampled regions. The
iterations continue until the sampling process converges
[91]. In the second example, the objective function
to train an autoencoder is a linear combination of
coordinate-matching objective function (Eq. 20) and
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sketch-map objective function (Eq. 17) [111]. This work
further demonstrates that the trained decoder is capa-
ble of generating all-atom structures from latent vari-
ables. In the third example, an autoencoder model has
been developed by integrating kinetic information, e.g.
the input of encoder is x at time t and the output of
decoder is x′ at time t + τ [112].

A recent development of autoencoder theory is based
on the Bayesian theory. This autoencoder method,
named as “variational autoencoder” is a generative
model to generate x following a probability distribu-
tion p(x) [110]. In the variational autoencoder model,
an “Evidence Lower Bound” (ELBO) [54] loss function
is optimized, i.e.

L=
∑

i

DKL(p̃φ(qi|xi)‖p(qi))−Ep̃φ(qi|xi) [log pθ(xi|qi)] ,

(21)
where p̃φ(q|x) approximates p(q|x) and p(q) is a prior
distribution of q which is usually a standard normal
distribution. The first term of Eq. (21) is a regulariza-
tion term to make sure p̃φ(q|x) staying close to p(q).
Minimizing the second term of Eq. (21) attempts to
match the decoder outputs with the encoder inputs,
i.e. the decoder has the largest probability to output x
if this x are the encoder’s inputs. In practice, p̃φ(q|x) is
a normal distribution whose mean and standard devia-
tion are outputs of the encoder neural network. pθ(x|q)
is another normal distribution with mean generated
by the decoder neural network and standard devia-
tion as hyperparameters. The decoder can be easily
adopted as a configuration generator [95], while apply-
ing the encoder as CVs is not straightforward. Varia-
tional autoencoder suggests that q is a random variable
instead of a deterministic function of x. In order to use
q in a enhanced sampling method like metadynamics,
an extra fitting step has been designed to train a deter-
ministic function qd(x) such that the K–L divergence
between the probability of qd and the marginal proba-
bility distribution of q is minimized [86].

Classification neural network Recently, artificial neu-
ral networks have achieved great successes in classifi-
cation problems. In a classification problem, e.g., rec-
ognizing objects in an image, the image is fed into a
neural network and the neural network returns prob-
abilities of assigning different classes to a pattern on
the image. Similarly, local order parameters are also
“classifiers” that indicate whether a local structure of
a solid state material belongs to a fcc structure, a bcc
structure, a disordered structure or other structures. A
classification deep neural network which outputs prob-
abilities of assigning crystal structure classes performs
as a local order parameter q [96]. A global order param-
eter is then defined as Q = 1

N

∑
i qi, where i loops over

N atoms. Q has been applied successfully to study solid
state phase transitions [96].

Time-lagged independent component analysis (TICA)
As discussed above, preserving kinetic information is
an important guideline of CV design. One success-
ful approach to train CVs with kinetic information

is “Time-lagged Independent Component Analysis”
(TICA). In TICA, a time correlation matrix C is built
with a set of predefined high-dimensional trail CVs, i.e.
Cij(τ) = 〈qh

i (x(t))qh
j (x(t + τ))〉 where τ is a lag time

[113,114]. The motivation of TICA is obvious: optimal
CVs should represent slow modes which are character-
ized by slow-decay correlation functions. By solving the
generalized eigenvalue problem C(τ)q̃ = λC(0)q̃, an
optimal CV is the eigenvector with the largest eigen-
value. The lag time τ should be selected to distin-
guish fast and slow modes. TICA is an important tool
to construct a Markov state model [88,115–117] and
TICA CVs trained from MD simulations are able to
accelerate metadynamics simulations [89]. With proper
approaches to unbias correlation functions from biased
enhanced sampling, it is also possible to use biased
enhanced sampling trajectories to train TICA CVs
[118].

Past-future information bottleneck (PIB) Studying
correlation functions is not the only way to utilize
kinetic information, such information can also be recov-
ered by directly investigating the relationship between
x(t) and x(x + Δt). Following this idea, CVs are con-
structed by the principle of past-future information bot-
tleneck [87,119]. In past-future information bottleneck,
CVs q(x) are trained by maximizing an objective func-
tion

L = I(q(x(t)),x(t + Δt)) − γI(x(t),q(x(t))), (22)

where I(u,v) is mutual information between two ran-
dom variables u and v. Maximizing I(q(x(t)),x(t+Δt))
means q(x(t)) contains as much information as possible
to predict the future states x(t + Δt) while minimizing
I(x(t),q(x(t))) keeps the form of q as simple as possible
[87].

Diffusion map It is also possible to approximate
kinetic information, like transition probabilities, with
the Boltzmann distribution. L, the infinitesimal gener-
ator of Eq. (3), describes dynamical behaviors of a sys-
tem, i.e. the time-dependent probability density ρ(x, t)
becomes

ρ(x, t) = ρ(x) +
∑

i

cie
−λitψi(x)ρ(x), (23)

where λi > 0 and ψi is the i’th eigenvalue and the
i’th eigenfunction of L and ρ(x) is the Boltzmann dis-
tribution. ci are determined by the initial probability
distribution. Equation (23) suggests that ψ(x) with
small λ are “slow” degrees of freedom. Thus eigen-
functions ψ(x) with small λ become natural choices of
CVs [94,120]. However, computational costs of solving
the eigenfunction problem of L are prohibitively high
for realistic systems. Fortunately, diffusion map pro-
vides an alternative approach to approximately solve
the eigenproblem of L [100,121].

Assuming a set of sample {xi} generated from Eq.
(3), a kernel matrix is defined as Kij = G(xi,xj) where
G(x,y) is a Gaussian kernel function with broadening
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σ. The kernel matrix is then scaled by the Boltzmann
distribution, i.e. Dij = Kij/(

√
ρ(xi)

√
ρ(xj)). Finally,

Dij is normalized to form a transition matrix: Mij =
Dij/(

∑
k Dik). In the limit of infinite samples and σ →

0, the right eigenvectors of M weakly converges to the
eigenfunction of L [100,121]. Diffusion map has been
used to analysis MD simulation data [94] and diffusion-
map-based enhanced sampling methods have also been
developed [120].

Spectral gap optimization of order parameters
(SGOOP) The second example of training kinetics-
based CVs with thermodynamic properties is spectral
gap optimization of order parameters (SGOOP) [84].
In SGOOP, grids are first built in the low-dimensional
CV-space. The time-dependent probability of CVs on
the n’th grid point, pn(t), is propagated with

∂pn

∂t
=

∑
m

Kmnpn, (24)

where m and n loop over all grids in the CV-space.
A transition probability Ω is estimated by Ω =
exp{Kδt} ≈ I + Kδt where δt is a small time interval.
Ω is generated by the maximum caliber approach, i.e.
maximizing entropy of microscopic paths with physical
constraints [122]. The entropy is defined as

S = −
∑
mn

pnΩmn log Ωmn. (25)

A path-dependent physical observable A discretized on
grids is denoted as Amn. Optimal Ωmn can be obtained
by maximizing S defined in Eq. (25) with a constraint
that the path-ensemble averaging of Amn equals a cer-
tain value. It has been shown that solving the maxi-
mization problem leads to Ωmn =

√
pn

pm
e−λAmn , where

λ is the Lagrange multiplier [123]. In the simplest case,
the average times of transitions with Amn = 1 is the
only constraint physical quantity, leading to Ωmn =√

pn

pm
e−λ which has been used in SGOOP. Ω as well

as its eigenvalues ε varies with different CVs. Maximiz-
ing the spectral gap |εα − εα+1| results in optimal CVs
where α represents the number of barriers on the FES
[84].

Stochastic kinetic embedding (StKE) Although diffu-
sion map provides an approach to project existing sam-
ples, using ψi(x) as CVs in enhanced sampling simu-
lations requires explicit function form of ψi(x) so that
∇ψi(x) can be evaluated analytically. We will intro-
duce an alternative method, named as stochastic kinetic
embedding (StKE) [71], which is based on diffusion map
to construct differentiable CVs.

Assuming that a system can be described by a
large number of physically intuited CVs qh (high-
dimensional CVs) with a FES Ah(sh) at qh(x) = sh,
StKE approximates dynamics of CVs as a Brownian
dynamics, i.e.

μ̃dsh = −∇Ah(sh)dt +
√

2μ̃kTdW (26)

where μ̃ is an effective friction coefficient. In princi-
ple, a generalized Langevin equation should be used
to accurately model CV dynamics [124,125]. However,
several studies have suggested that Brownian dynamics
is a reasonable approximation of CV dynamics in meta-
dynamics simulations [126,127]. StKE aims to learn a
low-dimensional representation sl(sh; θ), where θ are
trainable parameters. Similar to diffusion map, we can
build a Markov chain with transition matrix Mh

ij from
samples {sh

i }. Similarly, we can construct a transition
matrix M l

ij ≡ M l
ij({sl(sh, θ)}) with respect to the low-

dimensional representation sl(sh; θ). If sl is an opti-
mized low-dimensional representation of sh, M l

ij should
be close to Mh

ij . Therefore, the K–L divergence has been
used to train sl(sh; θ), i.e. the loss function becomes

L =
∑
ij

Mh
ij log

Mh
ij

M l
ij

. (27)

In practice sl(sh; θ) is modeled by a deep neural net-
work and θ are trained by optimizing Eq. (27). Panel
(b) of Fig. 2 presents the FES of alanine dipeptide in
vacuum with StKE CVs. It is clear that StKE CVs are
able to map stable conformations and transition paths
explicitly on the FES.

5 Learning FES from enhanced sampling
simulations

One of the most important goal of an enhanced
sampling simulation is to generate a FES associated
with selected CVs. There are different approaches to
calculate FES from simulation trajectories according
to different enhanced sampling methods. For exam-
ple, weights can be assigned to configurations from
umbrella sampling via the weighted histogram analysis
method (WHAM) [79], the multistate Bennett accep-
tance ratio (MBAR) [80], and the family of transition-
based reweighting analysis methods (TRAM) [81–83].
Metadynamics is able to generate a FES either by
inverting a biasing potential or by unbiasing samples
[5,6,75–77,83]. In d-AFED/TAMD, a FES is calculated
with the probability of s or by fitting mean forces.
[7,8,16,128]. In ABF, a FES is fitted by matching mean
forces if d > 1 [9]. In general, a FES is usually evaluated
with CV probability and/or mean forces.

Histogram or kernel density estimation is a common
approach to evaluate a probability distribution. With
kernel density estimation, the probability at point s is
given by ρ(s) = 1

N

∑
i ωiK(s, si), where ωi is the weight

of the sample si and K(s, si) is a symmetric, positive-
definite kernel function. A kernel can either have a fixed
bandwidth (broadening) or a flexible bandwidth [129–
131]. Besides kernel density estimation, there are other

123



211 Page 10 of 17 Eur. Phys. J. B (2021) 94 :211

machine learning approaches to learn a probability dis-
tribution. For example, a mixture model like a mixture
of Gaussians can also model a probability distribution.
The Gaussian mixture model is usually used as a clus-
tering algorithm with a model probability distribution
(likelihood)

ρGM(s|{p}, {μ}, {Σ}) =
NC∑
i=1

piN (s|μi,Σi), (28)

where pi is a marginal distribution of s corresponding
to the i’th cluster [132]. N (s|μi,Σi) is a normal dis-
tribution function with mean μi and covariance matrix
Σi associated with the i’th cluster. Training a Gaussian
mixture model with maximum likelihood results in opti-
mized μi, Σi, and pi, as well as probabilities of iden-
tifying each sample in all clusters. The log likelihood
function of a Gaussian Mixture model is

∑
i log ρ(si)

and maximizing the log likelihood function is equivalent
to minimizing the K–L divergence DKL(ρsamp||ρGM),
where ρsamp is the sample probability distribution.
Therefore, optimizing ρGM not only classifies samples
but also establishes an optimized probabilistic model
of ρsamp. In practice, the number of Gaussians used
in the Gaussian mixture model can be determined by
Bayesian inference criterion which is a criteria for model
selection [133]. Gaussian Mixture models have been
used in enhanced sampling algorithms to approximate
CV distributions [70,133]. Besides Gaussian Mixture
models, some generative models are also capable of pre-
dicting the probability of a sample besides generating
new samples. For example, propagating along one direc-
tion of a normalizing flow model [134] generates a ran-
dom sample while propagating along the other direction
of the normalizing flow model returns the probability
of an input sample. Detailed discussions about normal-
izing flow models can be found in the next section.

Another approach to generate a FES is to “integrate”
mean forces. If d = 1 and Eq. (3) is used, mean force
F (s) at q(x) = s can be evaluated by

−dA

dq

∣∣
q(x)=s

≡ F (s)

= E

(
−∂U

∂q
− ∂ log |J |

∂q

∣∣q(x) = s

)
,

(29)

where J is the Jacobian matrix of generalized coordi-
nates [11]. Theoretically, applying Eq. (29) requires full
knowledge on the Jacobian matrix, which is impractica-
ble for CVs with complex function forms. To simplify
Eq. (29), alternative formulas have been proposed in
ABF and blue moon sampling [135–137]. The formula
to calculate mean force is greatly simplified with the
extended Lagrangian framework, i.e.

Fel(s) = E
(
κ(q(x) − s)

∣∣s) . (30)

We want to emphasize that extending Eq. (30) to d > 1
is trivial, which is suitable for multi-CV simulations.
However, a systematic error exists in Fel with finite
κ. Decreasing the systematic error requires increas-
ing κ, while increasing κ can significantly enlarge the
variance of κ(q(x) − s), leading to a large statisti-
cal error. In practice, κ should be tuned to balance
the systematic error and the statistical error. Recently,
a new mean force estimator, named as “corrected z-
averaged restraint (CZAR) estimator”, has been devel-
oped, which can significantly reduce the systematic
error [17].

With the CV probability and/or mean forces, it is
possible to construct a FES with various machine learn-
ing models. The simplest model is linear regression
which expands the FES with a linear combination of
basis functions, i.e.,

A(s) =
∑

i

CiΦi(s), (31)

where {Ci} are expansion coefficients and {Φi(s)} are
basis functions. This approach has been applied to
metadynamics in the extended Lagrangian framework
[128], unified free energy dynamics [16], ABF [9,17]
and other methods [41,138]. Linear regression has been
widely used due to its quadratic objective function with
a unique global minimum. However, this method scales
poorly with the number of CVs (dimensionality) d.
For example, constructing a four-dimensional FES is
already non-trivial [16]. Therefore, applying the linear
regression method to learn a high-dimensional FES is
not feasible.

Other advanced machine learning methods have been
used to train a FES. We will describe several models in
this section to introduce basic ideas of training a FES.

Artificial neural network Artificial neural networks
have been used in various studies to train FESes due to
their capabilities to accurately approximate arbitrary
smooth functions with reasonable computational costs
[139]. In one study, a neural network has been trained
by matching the neural network’s gradient with mean
forces (force estimator) [140,141]. Fitting a neural net-
work with free energies evaluated at different points
in the CV-space (energy estimator) has also been pro-
posed [142]. Although a neural-network-based FES can
be trained with either a force estimator or an energy
estimator, combing two estimators can significantly
improve the accuracy of the trained FES [143]. Besides
training a neural-network-based FES as a post-analysis
of enhanced sampling simulations, neural networks also
serve as biasing potentials in various enhanced sam-
pling methods. For example, an artificial neural network
has been used to construct a biasing potential in the
variational enhanced sampling method where the con-
verged biasing potential can further be used to evaluate
the FES [144]. Within the ABF framework, a neural
network has been trained to provide smooth estima-
tions of mean forces [145]. In a reinforcement-learning-
based enhanced sampling approach, a neural-network-
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represented FES can indicate regions in the CV space
with insufficient samples to guide MD simulations to
explore these regions [141].

Kernel methods Kernel methods such as kernel ridge
regression (KRR) and support vector regression have
also been tested as possible models to train a FES [142].
Kernel regression is closely related to linear regression
by recasting the regression problem with dual formula-
tion [54]. Therefore, kernel regression deals with kernel
functions instead of finite basis functions, which allows
to implicitly use a large number or even infinite number
of basis functions. We will use the KRR as an illustra-
tive example. In KRR, a FES is approximated with

A(s) =
N∑

i=1

αiK(s, si), (32)

where i loops over N samples and K(·, ·) is a kernel
function. Trainable parameters α are determined by
α = (K + λI)−1A where A = (A(s1), ... , A(sN ))T and
Kij = K(si, sj). λ, as a hyperparameter, controls the
regularization strength. Intuitively, KRR attempts to
“interpolate” the free energy at a new location s by
measuring the similarity between s and each sample si

with the kernel function and by assigning an appropri-
ate weight αi to K(s, si).

It is also possible to establish a kernel method via
the Bayesian theory. One famous example is the Gaus-
sian process regression (GPR) method [54]. In GPR,
a Gaussian process is used as a function prior. Gaus-
sian process is a stochastic process y(t) such that the
joint distribution of {y(t1), ... , y(tn)} is a multivariate
normal distribution with any t1, ... , tn, i.e.

p(y) = N (y|0,K + λI), (33)

where Kij = K(ti, tj) with K(·, ·) as a kernel function
and I is an identity matrix. λ represents the precision of
data noise. Without loss of generality, we assume that
there is a data set of free energies A = (A1, ... , An)� at
s = (s1, ... , sn)�. If we want to estimate the free energy
A∗ at a new location s∗, the joint probability p(A∗,A)
follows Eq. (33) and the conditional probability p(s∗|s)
becomes another normal distribution with mean μ∗ and
covariance σ∗ given by

μ∗ = k�(K + λI)−1A (34a)

σ∗ = K(x∗, x∗) + λ − k�(K + λI)−1k, (34b)

where ki = K(s∗, si). The averaged prediction (Eq.
34a) is the same as a KRR prediction. Besides gen-
erating an averaged prediction, GPR also provides the
confidence of a prediction. The GPR method has been
used to train a FES [138] with free energies as well as
mean forces [138].

6 Challenges and perspective

6.1 Kinetics from biased enhanced sampling
simulation

Usually, exact kinetic information like transition prob-
abilities or correlation functions are calculated from
unbiased MD simulations with methods like Markov
state models [146,147] or trajectory-based enhanced
sampling methods like milestoning [25,50]. Evaluating
exact kinetics from biased enhanced sampling simula-
tions is attractive as it opens a door to introduce highly
efficient biased enhanced sampling approaches to build
kinetic models. Moreover, exact kinetics is needed for
some CV construction methods like TICA [113,114].
Since most biased enhanced sampling methods are only
designed to calculate thermodynamic properties, efforts
are needed to develop efficient and accurate algorithms
to unbias dynamical information. In WTM, unbiased
correlation functions can be evaluated by a change of
variable on time [76,118]. Time is “compressed” in
metadynamics since a biasing potential accelerates the
simulation. A Properly designed change of variable on
time can recover the unbiased timescale. This approach
has been applied to constructing TICA CVs from meta-
dynamics simulations [118]. However, the formula of the
change of variable is asymptotic and it is only valid in
the long time limit [76,118]. Another way to obtain cor-
rect kinetic information with metadynamics is to unbias
the dynamics of metadynamics with transition state
theory [35]. In this approach, Gaussians are deposited
less frequently to avoid biasing the transition state
ensemble during a simulation and unbiasing is achieved
by reweighing the partition function of reactant confor-
mations. The accuracy of this method depends on the
frequency of Gaussian deposition, which requires care-
ful tuning and testing [148]. A more general approach to
obtain accurate kinetic information is to unbias meta-
dynamics path probabilities with the Girsanov theorem
[149,150]. The Girsanov theorem evaluates a change of
path probability associated with one diffusion process,
while the path itself is generated by another diffusion
process. Although this approach does not require any
modifications of the metadynamics algorithm, it limits
the dynamical equation to be Brownian dynamics [149]
or Langevin equation [150], which rules out determinis-
tic thermostats. Also, the unbiasing formula depends on
the integrator used in a simulation [150], thus updating
the formula is needed if a different integrator is used.
Recently, evaluation of path probability with a path
integral formula has been integrated to metadynamics
with a polymer model [151]. This model requires simu-
lating multiple replicas of a system and it needs further
benchmarks on simulating more challenging systems
like biomolecules or materials. In summary, methods
introduced in this paragraph suggest that it is highly
non-trivial to evaluate kinetics from biased enhanced
sampling simulations and it requires further develop-
ments on both theory and numerical algorithms.
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Besides unbiasing kinetics with physical principles, it
is also interesting to explore machine learning related
theories and methods to learn kinetic properties from
biased enhanced sampling. There is a likelihood func-
tion to estimate transition matrix P from a counting
matrix C in Markov state model with unbiased MD
simulations, i.e.

p(C|P) =
∏

i

∏
j

P
Cij

ij , (35)

where Pij is the transition probability from the i’th
state to the j’th state and Cij is the number of tran-
sitions from the i’th state to j’th state [152]. This
formula can be extended to equilibrium multiensem-
ble simulations with different temperatures or differ-
ent biasing potentials [153]. Although this approach
has been applied to umbrella sampling, it is not clear
whether this approach can be extended to quasi-
equilibrium enhanced sampling like metadynamics, d-
AFED/TAMD or ABF. Therefore, developing machine
learning techniques to learn a kinetics model from
quasi-equilibrium enhanced sampling simulations is
another open problem.

Up to now we have discussed developments and chal-
lenges to obtain unbiased kinetics information from
biased enhanced sampling simulations. Due to difficul-
ties of unbiasing kinetics, methods have been proposed
to train CVs with approximate kinetics information.
Although various approximations of kinetics have been
used in different CV-training methods, [71,84,87,94],
the trained CVs work quite well in all of these meth-
ods. Actually, it is not clear whether a rigorous kinet-
ics model is necessary for training CVs, and the rela-
tionship between qualities of CVs and approximations
in kinetic models is not clear. It is possible that the
capability of trained CVs to represent minimum free
energy paths is an important factor to the effectiveness
of trained CVs [84]. However, systematic studies are
needed to answer this question.

6.2 Exploring a high-dimensional FES

Section 4 introduces various methods to construct CVs
as a low-dimensional representation of a system. One
key question is how to estimate the dimensionality of
the low-dimensional representation, i.e. what is an opti-
mal number of CVs. It has been believed that configura-
tions in R

3N sampled from MD simulations stay closely
to a d dimensional manifold where d, named as intrin-
sic dimensionality (ID), is much smaller than 3N [154–
156]. Recently an elegant algorithm has been developed
to estimate the intrinsic dimensionality d [156]. The
idea is to test a ratio α = r

(i)
2 /r

(i)
1 where r

(i)
1 is the

radius of i’th sample’s nearest neighbour and r
(i)
2 is the

radius of the i’th sample’s second nearest neighbour.
There exists a relationship between α, the cumulative
distribution Fc(α) of α, and d, i.e.

log(1 − Fc(α))
log(α)

= d . (36)

In practice the empirical cumulative distribution is
used to replace Fc(α) and d is recovered with linear
regression. This method has been applied to several
biomolecule systems. For example, the ID of RNA trin-
ucleotide AAA with 98 atoms is ∼ 10 [156]. The ID
of a mini protein, FiP35 WW domain, is around 14
[131]. A study on Villin headpiece folding free energy
landscape suggests the ID for this system is around 12
[157]. However, there is no guarantee that ID is always
around 10 for more complex systems. A recent study
on SARS-CoV-2 main protease which is a homodimer
with 306 residues in each monomer suggests that the ID
is about 27 for each monomer [158]. Therefore, apply-
ing enhanced sampling techniques to more challenging
problems like protein complexes requires large number
of CVs even if these CVs are optimal.

Difficulties to explore a high-dimensional FES may
show up in the sampling step or in the FES construc-
tion step. For example, d-AFED/TAMD simulations
are feasible with many CVs [16,27]. Calculating a free
energy difference between two points in the CV space is
also trivial. However, unbiasing samples from d-AFED/
TAMD simulation is extremely hard with a large num-
ber of CVs since it requires full knowledge of the FES
[78]. A common implementation of Metadynamics has
difficulties to construct biasing potential with ≥4 CVs
as the biasing potential is usually stored and evaluated
on grids [159]. Similar difficulties also exists with the
ABF method [160]. Progress has been achieved to push
biased enhanced sampling method working with a high-
dimensional FES. For example, machine learning-based
biasing potentials have been developed with the Gaus-
sian Mixture model [70], the artificial neural network
model [144], and the kernel density estimation method
[161]. Similarly, training a high-dimensional FES from
d-AFED/ TAMD with various machine learning models
has also been tested [142], as introduced in Sect. 5.

Either training an accurate high-dimensional FES or
learning an accurate high-dimensional probability is dif-
ficult. First, free energies and/or FES derivatives are
needed prior to FES training in a supervised learn-
ing approach. However, obtaining accurate free energies
and derivatives are non-trivial with large d. Samples
tends to be “sparse” in a high-dimensional space. For
example, assuming a quadratic FES A(s) = 1/2‖s‖2
where s ∈ R

d, the Boltzmann distribution is simply
a standard normal distribution. The distance between
two independent samples s1 and s2 increases with d
on average, i.e. E(‖s1 − s2‖2) = 2d. The sparsity sug-
gests that a large bin size or a large kernel bandwidth
is required. However, larger bin size or larger kernel
bandwidth leads to larger systematic errors in calculat-
ing free energies and FES derivatives.

Second, samples on a high-dimensional FES are typ-
ically distributed with a “spider web” structure [73].
Clusters of samples are located at local minima on
the FES together with free energy paths to connect
different minima. However, biased enhanced sampling
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methods, including metadynamics, d-AFED/TAMD,
and ABF, attempt to uniformly or near-uniformly
sample the CV-space, which is very challenging on
a high-dimensional FES as the volume of the CV-
space increases exponentially with the dimensionality
d. Therefore, efficiently sampling on a high-dimensional
FES requires focusing on exploring minima and tran-
sition paths on the FES instead of uniformly con-
verging the FES [69]. For example, from our experi-
ences the d-AFED/TAMD method usually discourages
to use extremely high CV temperature with a large
number of CVs in order to avoid spending too much
time on exploring high-free-energy regions. The trade-
off between enhancing barrier crossing and avoiding
exploring high-free-energy regions requires fine tuning
on sampling methods.

Finally, the “spider web” type of configuration distri-
bution suggests that data for training CVs or biasing
potential only cover a small percentage of the CV-space.
An enhanced sampling simulation may lead the system
to explore regions on the FES that are not supported
by data. Applying the machine learning-based bias-
ing potential or machine learning-based CVs in these
regions means extrapolating the model which could per-
form poorly. Therefore, one difficulty of exploring a
high-dimensional FES with machine learning methods
is to appropriately deal with the extrapolation prob-
lem. For example, a biasing potential in the form of
kT log(ρ(s) + ε) with a shifting constant ε can be used
to avoid errors in the trained ρ(s) from damaging MD
simulations, especially in the places where ρ(s) is small
[71,133]. In another study, Ensemble learning has been
applied to avoid applying biasing potential to unex-
plored conformations [141]. In this approach a biasing
potential is switched off if the variance of trained bias-
ing potential is too large. The same extrapolation prob-
lem has been discussed in applying StKE CVs [71]. A
physically intuited CV was combined with StKE CVs
during the enhanced sampling simulation to maintain
high sampling efficiency when sampling new conforma-
tions. However, systematic studies are still needed to
improve the extrapolation capability or the generaliz-
ability of the machine learning-based enhanced sam-
pling approaches on a high-dimensional FES.

Besides developing enhanced sampling methods to
overcome challenges of exploring a high-dimensional
FES, developing theories and methods to unify enhanced
sampling and building a coarse-grained (CG) model is
another interesting direction. Training a high-dimensi-
onal FES is closely related to constructing a coarse-
grained (CG) model with some bottom-up approaches
[162–165]. In this scenario CG degrees of freedom
become CVs while the interaction potential of the CG
model is a FES. Since a CG model requires transfer-
ability, CG degrees of freedom are usually center of
atom groups. Some CG potential fitting method, like
force matching [162–164], is very similar to training
a FES via mean forces. Recently, machine learning-
based CG potentials have been developed with signifi-
cantly improvement on accuracies [166–169]. However,
limited studies have been proposed to unify enhanced

sampling and CG model building [169]. There are two
possibilities of integrating enhanced sampling and CG
model. (1) Use enhanced sampling to build a trans-
ferable CG model. In order to transfer the CG model
to other systems, a CG degree of freedom should be
a local CV that is a function of a group of neighbor-
hood atoms. Moreover, a few-body interaction poten-
tial is needed for the CG potential energy function.
In a recent study, machine learning-based CG poten-
tial energy functions with few-body (two-body to five-
body) interactions have been proposed [170]. Samples
from CG potential and samples from all-atom simula-
tions have been projected onto TICA CVs to generate
a CG FES and an all-atom FES. With the five-body
potential, the CG FES agreed with the all-atom FES
reasonably well. This study suggests that it is possible
to train a CG model with few-body interactions. (2)
Use all-atom MD simulations to train a system-specific
CG model and apply this model to enhance all-atom
MD simulations of the same system. In this case, trans-
ferability may not be required. For example, applying
the CG potential energy function as a biasing poten-
tial [169] can use a CG potential energy function with
full-body interactions. However, transferable CG model
is still needed if the CG model is designed to predict
conformations that have not been sampled.

6.3 Machine learning-based all-atom sampler for
CV-based enhanced sampling

The idea of CV-based enhanced sampling is analo-
gous to reinforcement learning [141,169]: a high CV
temperature or a biasing potential acts like a policy
to guide the exploration of the configurational space
while MD serves as an “explorer” to discover new con-
formations or to recurrently visiting conformations to
improve statistics. However, efficiency of a MD simu-
lation is limited. A typical time step of a MD simula-
tion for molecules is about 0.5–2 fs. A nearly indepen-
dent configuration can be sampled every ∼1 ps, which
requires ∼ 1000 times of force evaluations. Massive force
evaluations, especially non-bonded force calculations,
are the most time-consuming steps in a MD simulation
thus these calculations significantly reduce the sampling
efficiency. One way to enhance the efficiency of MD
simulations is to increase the time step. For example,
the time step to evaluate non-bonded interactions can
increase up to ∼100fs in a simulation with the isokinetic
ensemble [171,172]. However, further improvements on
all-atom sampling efficiencies are still needed.

Although there are very limited studies on sampling
all-atom configurations with machine learning methods,
these developments are changing the world of all-atom
sampling [95,111,173–176]. Here we will briefly discuss
some methods as interesting directions. We shall start
the discussion from the autoencoder method which has
been introduced in Sect. 4. While the encoder part is
used to construct CVs, the decoder part is able to gen-
erate atomic structures for given CV values. We want
to emphasize that fixed values of CVs correspond to
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an constrained ensemble of x. Therefore, the gener-
ated structures should be randomly sampled from the
ensemble. In one work, the trained variational autoen-
coder model can generate random structures of alanine
dipeptide [95]. However, nonphysical features such as
collapsed atoms can be found on generated structures.
In another work the decoder was trained by matching
a decoder output with the corresponding encoder input
[111]. In this case a structure from decoder is more like
an “interpolation” of simulated structures with similar
CV values. Nevertheless, the generated structures are
valuable as initial structures for further refinement.

Besides generating atomic structures from CVs, sam-
pling atomic structures directly is much more challeng-
ing. A groundbreaking method, named as “Boltzmann
generator”, has been proposed by using normalizing
flow [173]. Normalizing flow [134] learns a change of
variable function f(·) represented by a neural network,
i.e. x = f(z) for x ∈ R

3N and z ∈ R
3N . f(·) has to

be a bijection function with a Jacobian matrix ∂x/∂z.
If z is distributed as the probability ρz(z), the induced
probability distribution of x, ρx(x), is given by

ρx(x) = ρz(z)
∣∣∣∣det

(
∂z
∂x

)∣∣∣∣ , (37)

where x = f(z). With careful design, a normalizing flow
neural network is reversible and its Jacobian matrix is
a product of triangular matrices with a trivial determi-
nant. ρz(z) is usually a standard multivariate normal
distribution. Normalizing flow is a very powerful gener-
ative model since it can generate independent samples
of x just by sampling a normal distributed random vari-
able z followed by transforming z to x. However, there
are many unsolved problems of this model. For exam-
ple, applying this model with explicit solvent is still
a challenging problem. Also, sampling with normaliz-
ing flow still requires reweighting, which suggests that
improvement of accuracy is needed [177,178].

There are some general open questions for machine
learning-based all-atom samplers. The first one is how
to efficiently combine these samplers with enhanced
sampling algorithms. The answer for autoencoder is
relatively straightforward since the concept of CV is
already in the model. Also, the configuration probabil-
ity conditioned on given CV values is approximately
unbiased in many enhanced sampling methods, which
makes it easier to train an autoencoder model. The sec-
ond question is about the accuracy of extrapolating the
sampler to new conformations that are not in the train-
ing dataset, which requires further studies.

7 Conclusion

In this perspective we have reviewed recent develop-
ments on combining machine learning methods with
CV-based enhanced sampling, especially in CV con-
struction and FES training. Although introducing

machine leaning algorithms to sampling has achieved
great successes, many challenges still exist, which
include generating accurate kinetic information from
biased enhanced sampling simulations, exploring a
high-dimensional FES, and developing machine learning-
based all-atom samplers for CV-based enhanced sam-
pling. Integrating machine learning techniques with
enhanced sampling is often beyond applying generic
machine learning algorithms directly. Developing phys-
ical theories and enhanced sampling methods to collab-
orate with machine learning techniques is also needed.
Finally, building machine learning models tuned for
molecules and materials is also important for unifying
machine learning with CV-based enhanced sampling
methods [179].
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Pérez, M. Majewski, A. Krämer, Y. Chen, S. Olsson, G.
de Fabritiis et al., J. Chem. Phys. 153, 194101 (2020)

169. J. Zhang, Y.K. Lei, Y.I. Yang, Y.Q. Gao, J. Chem.
Phys. 153, 174115 (2020)

170. J. Wang, N. Charron, B. Husic, S. Olsson, F. Noé, C.
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