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Abstract. We demonstrate the application of the transition manifold framework to the late-stage fibrilla-
tion process of the NFGAILS peptide, a amyloidogenic fragment of the human islet amyloid polypeptide
(hIAPP). This framework formulates machine learning methods for the analysis of multi-scale stochas-
tic systems from short, massively parallel molecular dynamical simulations. We identify key intermediate
states and dominant pathways of the process. Furthermore, we identify the optimally timescale-preserving
reaction coordinate for the dock-lock process to a fixed pre-formed fibril and show that it exhibits strong
correlation with the mean native hydrogen-bond distance. These results pave the way for a comprehensive
model reduction and multi-scale analysis of amyloid fibrillation processes.

1 Introduction

Amyloid fibrils—long, well-ordered aggregates of short
monomeric peptides—are long known to be associ-
ated with many neurodegenerative diseases such as
Alzheimer’s or Parkinson’s [1,2]. More recent is the
suggestion that it is mostly the half-formed, soluble
oligomers that are pathogenic [3–5]. To develop new
therapies that specifically intervene in the formation of
amyloids, it is therefore vital to understand the process
of both the initial oligomer formation, as well as the
advanced fibril growth. Both have been studied exten-
sively, and for an exhaustive review of recent advances,
see [6].

The dock-lock model of fibril elongation

Due to its microscale nature (in both size and duration),
the initial formation of disordered and partially ordered
nuclei from soluted monomers has mostly been studied
by molecular dynamical simulations [7,8]. Mathemati-
cal models for the small-scale growth kinetics [9] as well
as the conformational transitions[10] could be built, and
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provided a decent understanding of the reaction path-
ways on an atomic level.

The later stages of fibril growth have been studied
by both in vitro [11–13] and in silico [14] experiments
(though the latter are limited due to the scale of the
problem). With their help, comprehensive models for
various aspects of the reaction could be built; see [15]
for an overview. The so-called dock-lock mechanism [16]
here is the prevalent model for the ordered elongation of
already-formed fibrils. It describes the primary growth
mechanism at realistic concentrations as the attach-
ment of single peptides to either end of a “template”
fibril [14]. Moreover, the monomer attachment is char-
acterized by the existence of two stages, the “docking”
stage in which the incoming monomer only loosely asso-
ciates with the fibril template, forming only few, weak
and thus reversible contacts, and the “locking” stage, in
which the monomer undergoes internal re-configuration
to form the native contacts across the whole length of
the monomer. The process is illustrated in Fig. 1.

The validity of this model has been demonstrated in
multiple computational experiments on various amyloid
species. For example, the two stages could clearly be
distinguished in long all-atom simulations of a Aβ16−22

fibril [17]. In the same work, it has also been found that
the locking stage is the rate-limiting step, with typi-
cal durations of around 200 ns. In [18], a Markov state
model of the combined dock-lock mechanism was con-
structed for the TRR105−115 amyloid. Based on mul-
tiple long all-atom simulations starting from multiple
unbound states, intermediate and trapping states were
identified, along with transition rates and dominant
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Fig. 1 Schematic illustration of the dock-lock mechanism.
Incoming monomers first bind lightly to a pre-formed fibril
template (the docking phase, D). Subsequently, more and
more native contacts in the form of H bonds are formed
in a process involving multiple intermediate steps, until the
binding becomes (nearly) irreversible (the locking phase, L)

pathways 1. However, the identified metastable inter-
mediates have not been investigated for the existence
of the characteristic native contacts that form with the
progression of the locking stage (see Sect. 2.1). Finally,
in [19], the locking stage of Aβ16−22 has been analyzed
in isolation. Based on short simulations from multiple
“milestones” along the progress of the locking stage,
the expected formation and breakage times of all native
contacts could be estimated.

Despite the successes in predicting kinetic aspects
of the overall aggregation, the microscale dynamical
aspects (e.g., the reaction pathways) of the locking
stage have not been investigated extensively thus far.
This represents a substantial deficiency, as it is the
inter-peptide bonds formed during that stage that give
many amyloids their extraordinary durability. However,
this stage is also particularly challenging to analyze
computationally due to its slowly equilibrating, rate-
limiting, and highly metastable nature.

Transition manifold system analysis

In this respect, the locking phase of amyloid aggrega-
tion resembles protein folding dynamics, another pro-
cess that is notoriously hard to simulate and analyze
due to its separation of scales. Recently, a novel machine
learning approach for the analysis of such systems was
developed by some of the authors, called the transi-
tion manifold framework (TMF) [20]. The goals of this
approach are threefold:

1. The identification of dynamically meaningful,
timescale-preserving reaction coordinates (RCs), i.e.,

1 Note that “pathway” here merely means a specific
sequence of discrete Markov states, and—unlike in TPT—
does not describe a continuous curve through state space.

low-dimensional observables of the full system that
are associated with slow phenomena.

2. The identification of dominant pathways associated
with the slow phenomena. By following these path-
ways, “artificial reactive trajectories” can be con-
structed without the need to simulate the full sys-
tem.

3. Gaining a visual impression of the essential dynam-
ical structure. This is achieved naturally by the
approach, as its algorithms are based on embed-
ding the abstract “backbone” of the dynamics into
Euclidean space.

Unlike other methods with similar goals, the algorithms
of the TMF require short, local simulation bursts, with-
out the need to ever simulate a full-binding event,
instead of long equilibrated trajectories.

Applied to the NTL9 protein folding process [21], the
TMF was able to identify chemically interpretable opti-
mal RCs, as well as key folding milestones with an accu-
racy comparable to neural network-based Markov state
modeling techniques [21]. Note however that, unlike
those kinetic model reduction methods, the main focus
of the TMF is less the accurate reproduction of sys-
tem statistics (although the transition manifold reac-
tion coordinate is specifically constructed to preserve
those), but to provide chemically intuitive and inter-
pretable insight into the system’s effective behavior.

This gives reason to hope that similar insights can be
gained for the locking phase of amyloid aggregation. In
this article, we therefore demonstrate the application
of the various transition manifold methods to such a
system, specifically to the NFGAILS heptameric amy-
loid. The individual steps will however be described as
universal as possible, so that this work should be seen
not so much as a quantitative analysis of this specific
molecular system, but more as general instructions for
the analysis of a wide range of amyloid species. We
motivate the framework and associated methods from
a general mathematical/dynamical point of view and
discuss the theoretical and numerical requirements on
the underlying system. We demonstrate the data col-
lection via MD simulation, apply the various machine
learning methods, and finally give an interpretation of
the results aimed toward a qualitative understanding of
the locking process.

2 Methods

2.1 Characteristics of NFGAILS amyloid fibrils

The NFGAILS heptapeptide is a highly amyloido-
genic fragment of the human islet amyloid polypeptide
(hIAPP), whose soluble oligomers play a role in type
II diabetes. It was experimentally confirmed to form
fibrils characterized as steric zippers [22]. That is, the
individual monomers are arranged in beta-sheets that
are internally stabilized by hydrogen bonds, and the
beta-sheets in turn are stacked face-to-face, stabilized
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Fig. 2 The NFGAILS amyloid system. Left: structural for-
mula of a monomer. Right: Small fibril consists of eight
monomers in a two-sheet configuration, as it occurs in the
crystal phase

(a) (b)

Fig. 3 The two native contact configurations that occur in
beta-sheets of NFGAILS in an alternating fashion

by hydrophobic forces. The smallest configuration that
can be called a fibril hence consists of two beta-sheets
of the same length. This configuration is illustrated in
Fig. 2.

Growth of the fibrils along the beta-sheet axis now
occurs by the addition of single peptides to either end
of the sheets. The full hIAPP peptide itself, as well as
many subfragments form in-register2 beta-sheets [23],
and hence, we consider an in-register configuration of
NFGAILS. However, latest research suggests that in-
register sheets may not be the primary packing motive
for NFGAILS fibrils [24].

In in-register beta-sheets, NFGAILS forms pairs of H
bonds to the next monomer in one of two alternating
configurations, as shown in Fig. 3. Each H-bond pair is
associated with a specific peptide residue, and thus are
also called native contacts [19,25].

The locking phase is now initiated when one of the
three native contacts between the fibril template and
the free-floating monomer forms (also see Fig. 1). It
ends when either all three native contacts are formed
(successful fibril elongation) or break (dissociation of
the monomer from the fibril). Note that, in general,
each initially formed contact is associated with an entire
ensemble of microscopic configurations; it does not cor-
respond to a compact subset of state space. However,
analogous to observations in protein folding dynamics,
one may conjecture that the locking dynamics will fol-
low certain dominant reactive pathways. The transition

2 In-register means that the residues of individual peptides
are aligned with the same residue of the neighboring pep-
tide.

manifold method will be able to identify these path-
ways, along with the “essential” degrees of freedom that
characterize them.

2.2 The transition manifold framework

Understanding the technical details of the transition
manifold method requires a mathematical viewpoint
of molecular dynamics, which we briefly introduce
here. For an in-depth mathematical description of the
method, see [20]. For an algorithm-focused introduc-
tion, see [21].

Classical molecular dynamics describes the motion
of a molecule’s atoms in cartesian coordinates as deter-
mined by some thermostated force field. Mathemati-
cally, the molecular system can therefore be regarded
as a stochastic process in the high-dimensional state
space R

3N , where N is the number of atoms in the sys-
tem. Under the reasonable assumption of rapid momen-
tum decay, this process is essentially Markovian, i.e., at
any time, the future (stochastic) state of the system
depends only on the current state, and not on the his-
tory. The probability to find the system at time t in
some state y, provided that we started in state x at
time 0, is then given by the transition density function
pt(x, y) (in an infinitesimal sense).

In this setting, a reaction coordinate is a low-
dimensional observable of the full state space, i.e., a
smooth function ξ : R

3N → R
r, where r is much

smaller than 3N (typically 1–5-dimensional). The reac-
tion coordinate ξ can now be called good, if knowledge
of the value of ξ at some starting state x is sufficient to
adequately predict the long-term evolution of the sys-
tem, i.e., if

pt(x, ·) ≈ p̃t(ξ(x), ·) (1)

for certain longer times t and some function p̃t. Equa-
tion (1) hence is required to hold only for t that is larger
than the equilibration timescale of the fast, irrelevant
processes, which for the amyloid system are for exam-
ple elastic bond-, angle-, and side-chain vibrations. At
the same time, it must hold for t that is substantially
smaller than the equilibration timescales of the slow,
relevant processes, which for our system we can expect
to consist predominantly of motion of the backbone.

The TMF now builds upon this definition of good
reaction coordinates. Specifically, (1) implies that the
densities pt(x, ·) are not distributed uniformly in den-
sity space, but form a low-dimensional manifold, the
so-called transition manifold. Parameterizing this man-
ifold by manifold learning techniques such as diffu-
sion maps [26] then identifies the reaction coordinate ξ,
while embedding the manifold into a Euclidean space
by methods such as multi-dimensional scaling [27] lets
us visualize the transition manifold. Numerically, this is
realized by drawing a discrete sample from the transi-
tion manifold by approximating pt(xk, ·) for many ran-
domly chosen starting points xk, and then applying
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the various machine learning techniques to the samples.
The general workflow is as follows:

1. Sample starting points xk ∈ R
3N uniformly from

the admissible state space
2. Estimate the transition densities pt(xk, ·) by parallel

simulation (Monte Carlo sampling)
3. Compute pair-wise distances between densities

(based on the estimates)

Dij = d
(
pt(xi, ·), pt(xj , ·)

)

for a “meaningful” distance metric d (see below).
4. Apply embedding and manifold learning algorithms

to D.

The distance metric d needs to be meaningful in the
sense that it can reliably distinguish densities, but is
not overly sensitive to small deviations. Generic choices
include the maximum mean discrepancy, Wasserstein
metric, or Kullback–Leibler divergence. The reliance
on statistical distances as opposed to state space dis-
tances can therefore be seen as another advantage of
our approach, independent of the dynamical interpre-
tation. It is a well-known phenomenon that the pair-
wise distance between randomly drawn points becomes
constant—and hence meaningless—with growing state
space dimension [28].

Finally, empirical approximation of the densities
pt(xk, ·) requires the ability to simulate the system up
to time t. Unlike the generation of long MD trajecto-
ries, however, sampling the pt(xk, ·) is trivially paral-
lelizable, and thus well suited for distributed comput-
ing architectures. Moreover, as explained above, only
relatively short simulations are necessary.

3 Computational setup

The specific molecular system used in our experiments
consists of a pre-formed NFGAILS heptamer fibril and
an incoming monomer. One monomer consists of 53
heavy atoms, the overall system hence of 424 heavy
atoms. Simulation is performed in aqueous solution at
310K. For details on the MD parameters, see the sup-
plementary information (SI).

The locking phase of each of the six possible ini-
tial docking contacts described in Sect. 2.1 (three for
each the “even” and “odd” configuration) essentially
corresponds to a separate molecular system, with its
own transition manifold. Hence, also for longer pep-
tides with more native contacts, each starting state of
interest needs to be investigated separately. “Interest-
ing” states would typically be those with the highest
probability to be formed during the docking phase, but
could also be selected based on specific chemical expert
knowledge. Hence, we limit our investigations to the
two outer, i.e., most exposed contacts LEU–PHE and
PHE–LEU of the “even” configuration. However, the

experimental setup is valid for the remaining contacts,
as well.

To facilitate the subsequent analysis, we impose two
artificial restrictions on the binding process:

1. The heavy atoms of the fibril core are restrained
to their crystal configuration. This way, only the
motion of the monomer atoms is relevant for the
subsequent analysis.

2. The initial native contact is prevented from break-
ing. This prevents the monomer from dissociating
from the fibril and thus ending the locking phase.
As such trajectories are not part of any successful
docking pathways, they represent wasted computa-
tional effort.

The restraints are realized by imposing a strong har-
monic potential on the respective atom positions.

As these restraints leave the heptamer fibril essen-
tially motionless (except of fast, low-amplitude vibra-
tions in the restraint potential), the system effectively
consists only of the 53 heavy atoms of the incoming
monomer. Hence, we will consider only the degrees of
freedom of the monomer in the transition manifold
analysis. We therefore have N = 53 atoms which we
consider in cartesian coordinates, leading to a 3 · 53 =
159-dimensional state space. Moreover, due to the fixed
position of the template fibril in space, no global trans-
lational or rotational movement can occur in the incom-
ing monor which normally would have to be removed
by alignment to some reference structure.

3.1 Sampling of the reaction space

The first step of the transition manifold algorithm now
consists of sampling starting points xk from configu-
ration space. The sampled states should roughly cover
the full range of the reaction, i.e., contain states that
are “freshly docked”, “almost locked”, and everything
in between, to obtain a dense covering of the transition
manifold. Note that for this, it is not necessary to sam-
ple the admissible state space densely, as one point on
the transition manifold corresponds to many points in
state space, and in theory, one of these points is suffi-
cient to mark the transition manifold in an embedding.
The number of required sample points hence scales
(linearly) with the size and complexity3 of the transi-
tion manifold, and not with the dimension of the state
space.

For creating the random samples, we use a heat sam-
pling approach: we consider a configuration with all
native contacts between the monomer and fibril intact,
i.e., the bound state. We then restrain the initial con-
tact (as well as the heptamer fibril), and simulate the
system at very high temperature at which the unre-
strained contacts break. The resulting trajectory will

3 By complexity of the transition manifold, we mean its
dimension (which can vary locally), the number of sections
or “arms”, the number of junctions etc.
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explore all of the admissible state space, but no bonds
will be formed due to the high temperature. The same
technique has previously been applied [19] to generate
the “milestone states” for a Markov model analysis of
the Aβ16−22 amyloid. Like in [19], we used a tempera-
ture of 1000 K for the heat sampling, but were able to
reduce the simulation length from 50 ns to 20 ns, due
to the smaller size of NFGAILS.

From the resulting trajectory, we then sample the
desired number n of starting points, separately for
each of the two docking contacts. As the subsampling
method, we apply the k-means clustering algorithm
with k = n to the high-temperature trajectory. Note,
however, that the purpose of this step is not to find
clusters in the trajectory, but instead to exploit the
fact that the centroids generated by k-means are evenly
spaced across the whole data range. This generates
starting points that more uniformly cover the admis-
sible state space compared to, for example, simple ran-
dom subsampling. This trick of using k-means as a sub-
sampling method is also commonly used in the con-
struction of Markov state models [29].

For the number of starting points, we found that
choosing n = 192 leads to a clear image of the tran-
sition manifold in the latter embeddings. For longer
peptides, with more complex transition pathways lined
with non-native intermediate states, this number will
grow accordingly.

3.2 Parallel simulation

In the next step, the transition densities pt(xk, ·) asso-
ciated with each test point xk need to be approxi-
mated by Monte Carlo sampling. The number of sam-
ples required to approximate the density up to a given
error tolerance hereby scales with the variance of the
density [30]. This variance will be small, as pt(xk, ·) is
non-zero only in a small portion of state space (recall
that the simulation time t is only long enough for the
system to equilibrate locally). This holds independently
of the system size, and hence, M is essentially indepen-
dent of the peptide length.

As there is no practical way for us to estimate this
variance prior to sampling, we will justify our choice a
posteriori: if a clear low-dimensional structure is visible
in the final embedding, the number of samples has been
sufficient; otherwise, more samples have to be created.
We will see that M = 32 samples produce a reasonably
clear embedding of the transition manifold.

As explained in Sect. 2.2, the parameter t must fall
between the fast and slow timescales. The estimation
of these time scales is the only step in our algorithm
that requires (limited) expert chemical knowledge. We
can expect the elastic bond- and valence-angle vibra-
tions to belong to the fast process and be irrelevant for
the locking dynamics. The equilibration of these vibra-
tions occurs on the picosecond time scale. Moreover,
the residual side-chains may contain quickly equilibrat-
ing torsion angle rotations, which fall on time scales of
a few hundred picoseconds.

The slow processes on the other hand will consist of
the backbone configurational changes that are associ-
ated with the formation of the remaining native con-
tacts. In [19], the longest formation time of a single
native contacts in the Aβ16−22 amyloid has been found
to be on the order of 6 ns. As NFGAILS and Aβ16−22

are of comparable size, we take 6 ns as an estimate for
the slow timescale. In conclusion, t should be chosen on
a timescale of several hundred picoseconds. To exactly
characterize the slow and fast degrees of freedom, we
will perform our experiments for t = 0.1 ns, t = 0.4 ns,
and t = 1 ns, and compare the results.

The sampling is now realized by performing M = 32
MD simulations for each of the n = 192 test points,
each simulation with different random momenta and a
different random seed on the heat bath. Hence, over-
all, n · M = 6144 simulations need to be performed
for each of the two initial contacts we consider. Simu-
lations were performed on a 1536 core compute cluster
(32 Intel Xeon 9242 CPUs) using the Gromacs molec-
ular dynamics package [31], which allows easy paral-
lelization of multiple runs of the same system via the
multidir option. The overall runtime for one contact
was 14 h. The resulting GROMACS structure files of
the simulation end points (for the three lag times men-
tioned above) are available in the SI.

3.3 Transition manifold analysis

In this section, we describe the various steps of the tran-
sition manifold analysis that are performed on the sim-
ulation data. The transition manifold data analysis was
performed using the special-purpose pyTMRC (Python
Transition Manifold Reaction Coordinate) package [32].
The completion time for all the steps described in this
section was less than 5 min on a 4-core laptop. Two
Jupyter notebooks, implementing the analysis for the
LEU–PHE and the PHE–LEU initial contact, respec-
tively, can be found in the SI. To reproduce our results,
download the pyTMRC package, download and extract
the end point data, and execute all cells in the note-
books.

Pair-wise distances

In a first step, the samples are used to estimate the rel-
ative position of the transition densities to each other
(in density space), i.e., computation of the distance
matrix D ∈ R

n×n
+ . For the statistical distance (called

d in Sect. 2.2), we use the maximum mean discrepancy
(MMD) [33], which, as the name suggests, measures
the discrepancy between two densities by computing
the mean of a class of test functions applied to the den-
sities, and choosing the maximum distance between the
means. More precisely, we define the distance d as

d(pt(xi, ·), pt(xj , ·)) := sup
f∈F

∣
∣Ex∼pt(xi,·)[f(x)]

−Ex∼pt(xj ,·)[f(x)]
∣
∣ ,
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where the class of test functions f is generated by the
so-called kernel function k : R3N × R

3N → R.

F = span
{
k(x, ·), x ∈ R

3d
}
.

For the kernel k, we use a Gaussian kernel of band-
width σ = 5000. The bandwidth was optimized man-
ually to produce the clearest image of the transition
manifold under the MDS embedding (see the next sec-
tion). The MMD has been shown to both analytically
and numerically preserve the distance structure of the
transition manifold [34]. Moreover, its estimation from
samples of the compared densities is straight-forward.

Euclidean embedding

To visualize the low-dimensional structure of the tran-
sition manifold that is encoded in D, we use the multi-
dimensional scaling (MDS) algorithm [27,35]. MDS
constructs a set of n points in Euclidean space of
selectable dimension (in our case, two-dimensional),
so that the pair-wise distances between those points
approximate D optimally. More precisely, MDS implic-
itly constructs an embedding of the densities, i.e., a
map E : L1(R3N ) → R

2

E : pt(xi, ·) �→ zi ∈ R
2, i = 1, . . . , n,

so that the Euclidean distances between the embedded
points, i.e., ‖zi − zj‖2, optimally approximate the dis-
tance Dij , for all pairs i, j = 1, . . . , n. Note that domain
of E is the infinite-dimensional space of absolutely inte-
grable functions L1(R3N ), which includes probability
densities. The points zi then serve as the Euclidean rep-
resentation of the densities pt(xi, ·).

We specifically use the implementation of MDS pro-
vided by the Python package Scikit-learn [36]. Besides
the distance matrix D, it does not require additional
input parameters.

Reaction coordinate computation

Next, we seek the “best” one-dimensional parametriza-
tion of the low-dimensional structure encoded in D.
Pulled back onto the starting points, this will then
become our final reaction coordinate. Again, we have
multiple options in choosing the error metric. For pre-
serving the distances in D directly, the one-dimensional
MDS embedding gives the optimal result. However, due
to its higher robustness to outliers and good perfor-
mance in previous computations [21], we here use the
diffusion maps method. Its parametrization optimally
preserves the so-called diffusion distance between the
points underlying the matrix D, which characterizes
closeness by a high transition probability in an arti-
ficially constructed Markov jump process between the
points (not to be confused with the original molecu-
lar dynamical process). This process, a discretized heat
diffusion, contains a scale parameter τ controlling the
velocity of the diffusion, which we choose as τ = 20

(optimized manually to achieve an even parametriza-
tion of the structure observed in the MDS embedding).

Shortest locking pathway

Finally, we discuss how the transition manifold embed-
ding can be used to identify transition pathways and
artificial trajectories between two states xA and xB

on the transition manifold. There is no single, univer-
sally accepted concept of an “optimal” transition path-
way between two states, and many proposed definitions
with differing objectives and physical interpretations
exist [37–39]. The TMF proposes another such path-
way, namely the geodesic between pt(xA, ·) and pt(xB , ·)
on the transition manifold M. This is the shortest dif-
ferentiable curve Γ in the metric space L1 that starts
in pt(xA, ·), ends in pt(xB , ·), and does not leave M.
As each point pt(x, ·) ∈ M corresponds to exactly one
starting point x ∈ R

3d, we can “pull back” Γ to a “tra-
ditional” transition pathway γ in state space by setting
γ(x) := Γ (pt(x, ·)). Note that, while γ has a clear inter-
pretation within the TMF, its interpretation in terms
of more intuitive dynamical concepts such as transi-
tion probabilities or minimum energy pathways is still
outstanding. For further discussion on the link between
the transition manifolds and transition path theory, see
[21].

As our data consist only of discrete samples close
to M, we take a heuristic approach for the numerical
computation of γ. We construct a weighted, complete
graph G = (V,E,W ) with nodes V = {x1, . . . xn} and
edges E = {(xi, xj) | i, j = 1, . . . , n}. For the weight
matrix W ∈ R

n×n, we take the squared maximum mean
discrepancy

Wij = D2
ij .

The squaring compresses small, local distances, and
further increases already long distances. The discrete
shortest path in G between the nodes xA, xB thus tends
to take small steps instead of large jumps, and thus
is encouraged to follow the transition manifold. Thus,
we can take this discrete shortest path as a heuristic
approximation of γ.

4 Results and discussion

4.1 Starting points

We first examine the distribution of the 192 (for each
initial contact) starting points xk in state space. This
does not utilize the information of the parallel simula-
tions, but only illustrates the result of the heat sampling
and k-means clustering strategy.

For this, we apply MDS to starting points xk ∈ R
159

themselves (not the densities pt(xk, ·)), i.e., seek points
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Fig. 4 Two-dimensional MDS embedding of the sampled
start points. The slightly denser region visible for the PHE–
ILE contact corresponds to configurations close to the final
locked state. Besides that, no structure that could indicate
the essential dynamics of the locking process can be recog-
nized

zk ∈ R
2, such that

‖xi − xj‖2 ≈ ‖zi − zj‖2, i, j = 1, . . . , n.

The points optimally fulfilling this requirement are
shown in Fig. 4. We see that the embedded points are
spaced quite evenly, and no clear low-dimensional struc-
ture is visible (with the exception of one slight cluster-
ing in the case of the PHE–ILE contact). This indicates
that

1. the starting points are spaced evenly in the admis-
sible state space (by Euclidean distance), and

2. the identification of transition pathways or other
dynamical features based purely on the location of
the embedded starting points is not possible.

An even distribution of the starting points is impor-
tant for the subsequent analysis, as clusters of starting
points would lead to artificial clusters on the embed-
ded transition manifold that do not contain dynam-
ical information, so this represents an optimal situ-
ation. Recall however that any statement about the
high-dimensional starting points based on their relative
Euclidean distance should be handled with care.

Gromacs structure files containing the starting points
are provided in the SI, so that the reader may inspect
them visually using molecular rendering software.

4.2 MDS-embedded transition manifold

Figure 5 shows the MDS embedding of the transition
densities pt(xk, ·), i = k, . . . , 192, i.e., the points zk
from the Euclidean embedding subsection of Sect. 3.3.
The embeddings are shown for both the two lock-
ing processes associated with the LEU–PHE and the
PHE–LEU initial contact, and for the three lag times

t = 0.1 ns, t = 0.4 ns and t = 1 ns. The relative mean
deviation of the pair-wise distances between the embed-
ded points from the distances in D ranges from 0.2% to
3.5%. The illustrations therefore gives a faithful impres-
sion of the true relative locations of the transition den-
sities.

In each of the six plots, we see structures consisting of
certain low-dimensional extensions as well as clusters of
points. These structures are Euclidean representations
of the respective transition manifold. Even though the
structures are clearly not “manifolds” in the strict topo-
logical sense, we will continue to refer to them as such.

We observe that for both contacts, the high-level
structure of the transition manifold is similar across all
lag times. From that we conclude that the least impor-
tant fast degrees of freedom are already equilibrated
after 100 picoseconds, and that all remaining degrees
of freedom are all relevant for the locking process.

We also observe that the transition manifold gets
more compact with increasing t, i.e., the distance
between the embedded points decreases. This is con-
sistent with the fact that for increasing t, the distances
between the transition densities also decrease, as they
equilibrate toward the system’s invariant density for
t → ∞. Importantly, the structures seem to loose some
fine detail at t = 1.0 ns, such as the branch-like exten-
sions perpendicular to the structure’s main axis. We
will see soon that these branches are associated with
important folding motion of the backbone, and hence,
a choice of t = 1.0 ns should be considered too long.
For the following detailed analysis, we therefore only
consider the embedding at lag time t = 0.4 ns.

Next, we investigate certain key points of the mani-
fold. We denote the end points of the branch-like exten-
sions by ALEU, BLEU for the LEU–ASN and APHE,
BPHE for the PHE–ILE initial contact. We denote by
CLEU and CPHE, a point in the center of the respec-
tive main cluster. Finally, we denote for LEU–PHE the
point at the far end of the main cluster by LLEU, and
for PHE–LEU the point at the far end of the small, sec-
ondary cluster by LPHE. Their molecular configurations
are shown in Fig. 5 beneath the embedding plots. The
exact choice of all these points is of minor importance,
as their neighbors all have very similar structure and
essentially differ only in their side-chain configuration.

LLEU and LPHE correspond to the respective locked
state, with all three native contacts intact. The points
ALEU BLEU and APHE BPHE are furthest away from
LLEU and LPHE, respectively, in the topology of the
transition manifold. Hence, they can be interpreted as
the points that are “dynamically maximally different”
from LLEU/LPHE. Indeed, as we see by looking at their
molecular configurations, the monomer is maximally
outstretched and pointing away from the fibril in differ-
ent directions. CLEU and CPHE correspond to configura-
tions where the second contact ALA–GLY already has
been formed. Their central position on the transition
manifold therefore indicates their role of “intermediate
points” of the locking process. Overall, the dynamical
role of individual points can be inferred very well from
their (relative) position in the embedding space.

123



195 Page 8 of 12 Eur. Phys. J. B (2021) 94 :195

Fig. 5 Scatter plots: Two-dimensional MDS embedding of the transition densities for the two initial contacts and the
three lag times. The coloring represents the one-dimensional reaction coordinate computed by diffusion maps. Molecular
structures: configurations of certain selected extremal points of the embedded structure

4.3 Shortest locking pathways

Figure 6 shows the shortest pathways (as defined
in Sect. 3.3) between selected extremal states and
the locked state for both initial contacts, specifically
between ALEU and LLEU as well as between BPHE and
LPHE. Pathways from the extremal points BLEU and
APHE are qualitatively similar, but have been omitted
due to space limitations. The corresponding Gromacs
files are however provided in the SI.

We see that the pathways indeed follow the low-
dimensional structure identified by the MDS embed-
ding. Checkpoints chosen equidistantly along the path-
way show a continuous folding of the monomer onto the
fibril core. Specifically, we first observe for both initial
contacts first the straightening of the monomer, then
the formation of the second contact ALA–GLY , and

finally the formation of the third contact. We empha-
size that these “artificial locking trajectories” did not
require the simulation of a full locking trajectory, but
are “stitched together” from short, independent simu-
lations, most of which are far from the locked state. In
that, their construction is similar to replica exchange
MD [40], a well-known technique for accelerating bar-
rier crossing events in complex systems.

4.4 Reaction coordinates

The color gradient in Fig. 5 indicates the value of the
diffusion maps reaction coordinate ξ in the start points.
While the structure is clearly not one-dimensional,
ξ can be seen as the “best possible one-dimensional
embedding” of the transition manifold, i.e., the reac-
tion coordinate that preserves the long time scales best
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Fig. 6 Shortest pathways on the transition manifold from ALEU to LLEU (top) and from BPHE to LPHE (bottom). Ren-
derings of the molecular structure illustrate the locking progress along the pathway

out of all one-dimensional reaction coordinates. We see
that for both initial contacts, ξ takes its minimum in
the locked state L, and is close to its maximum in
both the branch end points A and B. Hence, this one-
dimensional reaction coordinate cannot distinguish the
two locking pathways identified in the previous subsec-
tion, but instead seems to indicate the (state space)
distance to L. Indeed, Fig. 7 indicates a strong corre-
lation of ξ to the mean hydrogen-bond distance, i.e.,
the mean distance of the heavy atoms involved in the
three native contacts between monomer and fibril. This
is a well-known heuristic reaction coordinate used in a
wide variety of biochemical reactions [41]. Our result
is therefore able to verify the mean hydrogen-bond dis-
tance as a dynamically optimal reaction coordinate for
the amyloid locking process.

5 Conclusions and future work

Application of the transition manifold system analy-
sis framework to NFGAILS locking phase has revealed
important microscopic details about the monomer–
fibril binding process. Using statistical sampling and
embedding techniques, we were able to learn the struc-
ture of the effective dynamics directly in transition

probability space, and could extract from that struc-
ture dominant reaction pathways and optimal reaction
coordinates. The different reaction pathways reveal a
common, chemically plausible binding mechanism that
specifies the order in which the native contacts are
formed. This is consistent with the observed strong cor-
relation of our optimal reaction coordinate to the mean
native hydrogen-bond distance.

While our results are mostly qualitative in nature,
they form the basis for further quantitative investiga-
tions. We are planning to compute the free energy pro-
file along the identified reaction pathways, and with
it the binding and unbinding rates. This will however
require longer MD simulations that are able to over-
come the energy barriers along the pathways. Also,
we will construct a comprehensive one-dimensional
reduced model of the locking process in the state space
of our reaction coordinate. Specifically, we will esti-
mate the parameters of a generalized Langevin equation
using a novel data-driven technique that has already
been applied successfully to various other biomolec-
ular systems [41–44]. Finally, we will investigate to
what extent the transition manifold framework can be
applied to the other stages of the amyloid fibrillation
process, such as the docking phase or the early conden-
sation phase.
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Fig. 7 Comparison of the computed transition manifold
reaction coordinate (ξ) to the mean hydrogen-bond dis-
tance. The almost linear dependency indicates a strong cor-
relation between the parameters (especially for the LEU–
PHE initial contact)
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ware package for estimation, validation, and analysis
of markov models. J. Chem. Theory Comput. 11(11),
5525–5542 (2015)

30. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods
(Wiley, Hoboken, 2009)

31. H.J.C. Berendsen, D. van der Spoel, R. van Drunen,
GROMACS: a message-passing parallel molecular
dynamics implementation. Comput. Phys. Commun.
91(1), 43–56 (1995)

32. A. Bittracher, M. Mollenhauer, PyTMRC. https://
github.com/abittracher/pytmrc, commit 5b0b52e
(2020)

33. A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A.
Smola, A kernel two-sample test. J Mach Learn Res 13,
723–773 (2012)

34. A. Bittracher, S. Klus, B. Hamzi, P. Koltai, C. Schütte,
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