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Abstract. In this paper, we study analytically the statistics of the number of equilibria in pairwise social
dilemma evolutionary games with mutation where a game’s payoff entries are random variables. Using
the replicator–mutator equations, we provide explicit formulas for the probability distributions of the
number of equilibria as well as other statistical quantities. This analysis is highly relevant assuming that
one might know the nature of a social dilemma game at hand (e.g., cooperation vs coordination vs anti-
coordination), but measuring the exact values of its payoff entries is difficult. Our delicate analysis shows
clearly the influence of the mutation probability on these probability distributions, providing insights into
how varying this important factor impacts the overall behavioural or biological diversity of the underlying
evolutionary systems.

1 Introduction

1.1 The replicator–mutator equation

The replicator–mutator equation is a set of differen-
tial equations describing the evolution of frequencies
of different strategies in a population that takes into
account both selection and mutation mechanisms. It
is a powerful and important tool given that in many
social and, more generally, biological settings muta-
tion is non-negligible [1,23,30,37,38,40]. It has been
employed in the study of, among other applications,
population genetics [12], autocatalytic reaction net-
works [34], language evolution [25], the evolution of
cooperation [17,24] and dynamics of behavior in social
networks [26].

Suppose that in an infinite population there are
n types/strategies S1, . . . , Sn whose frequencies are,
respectively, x1, . . . , xn. These types undergo selection;
that is, the reproduction rate of each type, Si, is deter-
mined by its fitness or average payoff, fi, which is
obtained from interacting with other individuals in
the population. The interaction of the individuals in
the population is carried out within randomly selected
groups of d participants (for some integer d). That is,
they play and obtain their payoffs from a d-player game,
defined by a payoff matrix. We consider here symmetric
games where the payoffs do not depend on the order-
ing of the players in a group. Mutation is included by
adding the possibility that individuals spontaneously
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change from one strategy to another, which is modeled
via a mutation matrix, Q = (qji), j, i ∈ {1, . . . , n}. The
entry qji denotes the probability that a player of type
Sj changes its type or strategy to Si. The mutation
matrix Q is a row-stochastic matrix, i.e.,

n∑

j=1

qji = 1, 1 ≤ i ≤ n.

The replicator–mutator is then given by, see e.g. [18–
20,28]

ẋi =
n∑

j=1

xjfj(x)qji − xif̄(x) =: gi(x),

i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) and f̄(x) =
∑n

i=1 xifi(x)
denotes the average fitness of the whole population. The
replicator dynamics is a special instance of (1) when the
mutation matrix is the identity matrix.

1.2 The replicator–mutator equation for two-player
two-strategy games

In particular, for two-player two-strategy games with a
payoff matrix

S1 S2( )
S1 a11 a12

S2 a21 a22
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where aij , i, j ∈ {1, 2} is the payoff that a player
using strategy Si obtains when interacting with another
player using strategy Sj , the replicator–mutator equa-
tion is given by

ẋ = q11a11x
2 + q11x(1 − x)a12

+q21x(1 − x)a21 + q21a22(1 − x)2

−x
(
a11x

2 + (a12

+a21)x(1 − x) + a22(1 − x)2
)
. (2)

Here x is the frequency of the first strategy and 1 − x
is the frequency of the second one. Using the identities
q11 = q22 = 1 − q, q12 = q21 = q, Eq. (2) becomes

ẋ =
(
a12 + a21 − a11 − a22

)
x3

+
(
a11 − a21 − 2(a12 − a22)

+ q(a22 + a12 − a11 − a21)
)
x2

+
(
a12 − a22 + q(a21 − a12 − 2a22)

)
x

+ qa22. (3)

Two-player social dilemma games. In this paper, we
focus on two-player (i.e. pairwise) social dilemma
games. They have provided a main framework to
study several important issues such as the evolution
of cooperative behavior and its supporting mechanisms
[13,24,29,31]. We adopt the following parameterized
payoff matrix to study the full space of two-player social
dilemma games where the first strategy is cooperator
and second is defector [31,36,39], a11 = 1; a22 = 0;
0 ≤ a21 = T ≤ 2 and −1 ≤ a12 = S ≤ 1, that covers
the following games

(i) the Prisoner’s Dilemma (PD): 2 ≥ T > 1 > 0 >
S ≥ −1,

(ii) the Snow-Drift (SD) game: 2 ≥ T > 1 > S > 0,
(iii) the Stag Hunt (SH) game: 1 > T > 0 > S ≥ −1,
(iv) the Harmony (H) game: 1 > T ≥ 0, 1 ≥ S > 0.

In this paper, we are interested in random social
dilemma games where T and S are uniform random
variables in the corresponding intervals, namely

– In PD games: T ∼ U(1, 2), S ∼ U(−1, 0),
– In SD games: T ∼ U(1, 2), S ∼ U(0, 1),
– In SH games: T ∼ U(0, 1), S ∼ U(−1, 0),
– In H games: T ∼ U(0, 1), S ∼ U(0, 1).

Random evolutionary games, in which the payoff entries
are random variables, have been employed extensively
to model social and biological systems in which very
limited information is available, or where the environ-
ment changes so rapidly and frequently that one cannot
describe the payoffs of their inhabitants’ interactions

[4–7,9,11,15,22]. Equilibrium points of such evolution-
ary system are the compositions of strategy frequencies
where all the strategies have the same average fitness.
Biologically, they predict the co-existence of different
types in a population and the maintenance of polymor-
phism.

In this paper, we are interested in computing the
probability distributions of the number of equilibria,
which is a random variable, in the above random social
dilemmas. Answering this question is of great impor-
tance in the context of social dilemmas since one might
know the nature of the game, i.e. the payoff entries
ranking in the game, but it might be difficult to predict
or measure the exact values of these entries. When the
mutation is absent (q = 0), the answer is trivial because
there is always a fixed number of equilibria depend-
ing on the nature of the social dilemmas [8,24,32]. As
shown in our analysis below, this is however not the
case any longer when mutation is non-negligible, and
this number highly depends on the nature of the social
dilemma too.

The following result obtained in [8] provides explicit
formulas for the probabilities pG

i that a game G ∈
{SD, H, SH, PD} has i ∈ {1, 2, 3} equilibria.

Theorem 1 Suppose that S and T are uniformly dis-
tributed in the corresponding intervals as above. Then

– pSD1 = pSD3 = 0, pSD2 = 1.
– pH1 = pH3 = 0, pH2 = 1.
– pSH2 = q

2(1−q) .

– pPD
2 =

{
3q

2(1−q) if 0 < q ≤ 1/3,

3 − 1
2q(1−q) if 1/3 ≤ q ≤ 1/2.

According to the above theorem, SD games and H
games are simple and complete. However, the probabil-
ities of having 3 equilibria (or alternatively 1 equilib-
rium) in SH and PD games are left open in [8]. The key
challenge is that the conditions for these games to have
3 equilibria (or alternatively 1 equilibrium) are much
more complicated than those of 2 equilibria. The aim
of this paper is to complete the above theorem, provid-
ing explicit formulas for these probabilities. As such, it
will also allow us to derive other statistical quantities
(such as average and variance), which are important
to understand the overall distribution and complexity
of equilibrium points in pairwise social dilemmas (with
mutation). To this goal, we employ suitable changes of
variables, which transform the problem of computing
the probabilities to calculating areas, and perform del-
icate analysis.

1.3 Main results

The main result of this paper is the following.

Theorem 2 The probability that SH and PD games
have 3 equilibria is given by, respectively
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pSH3 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − q
2(1−q) − 1

1−2q

[
(3

√
q+2)2

√
q(5q3/2+3q2−9q−3

√
q+4)

12(
√

q+1)3

+ −27q3−18q2−32
√
1−2qq+48q+16

√
1−2q−16

12q

]
, 0 < q ≤ 4/9,

1 − q
2(1−q) − 8

√
q(1−2q)2

3(1−q)3 , 4/9 < q < 0.5;

pPD
3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q − 1
2

q3

(1−q)

]
, 0 ≤ q ≤ 3−√

5
2 ,

−16(√
1−2q−1)q3/2+2q5/2+15q3+(8√

1−2q−25)q2+q−8
√
1−2q+2

√
q(8√

1−2q−5)+5

6(√
q−1)3(q3/2+q)

, 3−√
5

2 < q ≤ 4/9,

1
2
(1−2q)2

q(1−q) , 4/9 < q < 0.5.

The above theorem combines Theorem 3 (for SH-
games) and Theorem 4 (for PD games), see Sect. 2. The-
orems 1 and 2 provides explicitly the probability distri-
butions of the number of equilibria for all the above-
mentioned pairwise social dilemmas. In SH-games and
PD-games, these distributions are much more com-
plicated and significantly depend on the mutation
strength. We summarize these results in the following
summary box.

Box 1: Probability of having k equilibria in a pairwise social dilemma (pk)

• Snow Drift (SD)

p1 = 0, p2 = 1, p3 = 0.

• Harmony game (H)

p1 = 0, p2 = 1, p3 = 0.

• Stag-Hunt game (SH)

p1 = 1 − p2 − p3.

p2 =
q

2(1 − q)
.

p3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − q
2(1−q) − 1

1−2q

[
(3

√
q+2)2

√
q(5q3/2+3q2−9q−3

√
q+4)

12(
√

q+1)3 ,

+ −27q3−18q2−32
√
1−2qq+48q+16

√
1−2q−16

12q

]
, 0 < q ≤ 4/9,

1 − q
2(1−q) − 8

√
q(1−2q)2

3(1−q)3 , 4/9 < q < 0.5.

• Prisoner’s Dilemma (PD)

p1 = 1 − p2 − p3.

p2 =

⎧
⎨

⎩

3q
2(1−q) if 0 < q ≤ 1/3,

3 − 1
2q(1−q) if 1/3 ≤ q ≤ 1/2.

p3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q − 1
2

q3

(1−q)

]
, 0 ≤ q ≤ 3−√

5
2 ,

−16(√
1−2q−1)q3/2+2q5/2+15q3+(8√

1−2q−25)q2+q−8
√
1−2q+2

√
q(8√

1−2q−5)+5

6(√
q−1)3(q3/2+q)

, 3−√
5

2 < q ≤ 4/9,

1
2
(1−2q)2

q(1−q) , 4/9 < q < 0.5.

As a consequence, we can now derive other statisti-
cal quantities such as the mean value, ENoE, and the
variance, VarNoE of the number of equilibria using the
following formulas
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SH PD SD and H

k = 3
k = 2

k = 1

q q q

q

Probability of having k equilibria (pk) in a social dilemma

Average and variance of the number of  
equilibria in a social dilemma

SD&H - average

SD&H - variance
SH - average

PD - average
SH - variance

PD - variance

Fig. 1 Non-trivial effect of non-negligible mutations on the number of equilibria in a pairwise social dilemma. We show its
statistics as a function of the mutation probability q: probability of having k (k = 1, 2, 3) equilibria (top row), average
and variance (bottom row). We look at all the four pairwise games, from left to right: SH, PD, SH and H. The probability
of having the maximal possible number of equilibria, i.e. p3, is highest for SH. It is very small for PD and always equals 0
for SD and H games. The probability of having two equilibria, p2, is highest for SD and H. As a result, SH has the highest
average number of equilibria across all games, for all 0 < q < 0.5 (it is minimum when q = 0.285). For most q, PD has the
lowest number of equilibria (it is maximum when q = 0.438). All the figures are generated using analytical formulas derived
in Box 1 (for pk) and Eq. (4) for the average and variance. These analytical results are also in accordance with numerical
simulation results provided in [8], obtained through samplings of the random payoff entries T and S

ENoE =
3∑

i=1

i pi,

VarNoE =
3∑

i=1

pi(i − ENoE)2. (4)

We depict these quantities in Fig. 1 below. Our deli-
cate analysis clearly shows the influence of the muta-
tion on the probability distributions, thus on the com-
plexity and bio-diversity of the underlying evolutionary
systems. We believe that our analysis may be used as
exemplary material for teaching foundational courses in
evolutionary game theory, computational/quantitative
biology and applied probability.

The rest of the paper is organized as follows. In Sect.
2, after recalling some preliminary details, we present
the proof of the main theorem 2, which we split into
Theorem 3 for SH games in Sect. 2.3 and Theorem 4
for PD games in Sect. 2.4. Finally, in Sect. 3 we provide
further discussion.

2 Probability of having three equilibria in
SH and PD games

2.1 Joint probability density via change of variable

The following lemma is a well-known result to com-
pute the probability density of random variables using
change of variables. We state here for two random vari-
ables that are directly applicable to our analysis, but
the result is true in higher dimensional spaces.

Lemma 1 (Joint probability density via change of
variable, [10, Section 3.3]) Suppose (X1,X2) has joint
density f(x1, x2). Let (Y1, Y2) be defined by Y1 =
u1(X1,X2) and Y2 = u2(X1,X2). Suppose that the map
(X1,X2) → (Y1, Y2) is invertible with X1 = v1(Y1, Y2)
and X2 = v2(Y1, Y2). Then the joint probability distri-
bution of Y1 and Y2 is

g(y1, y2) = |J |f(v1(y1, y2), v2(y1, y2)),
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where the Jacobian J is given by

J =

∣∣∣∣∣

∂v1(y1,y2)
∂y1

∂v1(y1,y2)
∂y2

∂v2(y1,y2)
∂y1

∂v2(y1,y2)
∂y2

∣∣∣∣∣ .

2.2 Equilibria in social dilemmas

By simplifying the right hand side of (3), equilibria of
a social dilemma game are roots in the interval [0, 1] of
the following cubic equation

(
T + S − 1

)
x3 +

(
1 − T − 2S + q(S − 1 − T )

)
x2

+
(
S + q(T − S)

)
x = 0. (5)

It follows that x = 0 is always an equilibrium. If q = 0,
(5) reduces to

(T + S − 1)x3 + (1 − T − 2S)x2 + Sx = 0,

which has solutions

x = 0, x = 1, x∗ =
S

S + T − 1
.

Note that for SH-games and SH-games x∗ ∈ (0, 1), thus
it is always an equilibrium. On the other hand, for PD-
games and H-games, x∗ /∈ (0, 1), thus it is not an equi-
librium

If q = 1
2 then the above equation has two solutions

x1 = 1
2 and x2 = T+S

T+S−1 . In PD, SD and H games,
x2 /∈ (0, 1), thus they have two equilibria x0 = 0 and
x1 = 1

2 . In the SH game: if T + S < 0 then the game
has three equilibria x0 = 0, x1 = 1

2 and 0 < x2 < 1;
if T + S ≥ 0 then the game has only two equilibria
x0 = 0, x1 = 1

2 .
Now we consider the case 0 < q < 1

2 . For non-
zero equilibrium points we solve the following quadratic
equation

h(x) := (T + S − 1)x2 + (1 − T − 2S + q(S − 1 − T ))x
+S + q(T − S)

=: ax2 + bx + c = 0. (6)

Set t := x
1−x , then we have

h(x)
(1 − x)2

= (a + b + c)t2 + (b + 2c)t + c

= −qt2 + (−q − a + c)t + c

:= g(t)

Therefore, a social dilemma has three equilibria iff h
has two distinct roots in (0, 1), which is equivalent to
g having two distinct positive roots, or the following
conditions must hold

Δ = (q + a − c)2 + 4qc > 0,

D(0.1)

D(0.2)

D(0.3)

D(0.4)

x 

y

Fig. 2 Region D are shown for different values of q,
namely, q = 0.1, 0.2, 0.3 and 0.4, for illustration (see Sect.
2.2)

q + a − c < 0, c < 0. (7)

Let T̂ := T − 1 and

X(T̂ , S) := q + a − c = (1 − q)(T − 1) + qS

= (1 − q)T̂ + qS,

Y (T̂ , S) := c − q = q(T − 1) + (1 − q)

= qT̂ + (1 − q)S.

The inverse transformation (X,Y ) → (T̂ , S) is given
by

T̂ (X,Y ) =
(1 − q)X − qY

1 − 2q
,

S(X,Y ) =
(1 − q)Y − qX

1 − 2q
. (8)

Condition (7) is given by

D = {(X,Y ) : X2 + 4qY > −4q2, X < 0, Y < −q}
= {(X,Y ) : X < 0,−X2

4q
− q < Y < −q}.

The domain D is illustrated in Fig. 2.
We apply Lemma 1 to find the joint distribution of

X and Y . We compute the Jacobian of the transform
(X,Y ) → (T̂ , S), which is given by

J =

(
∂T̂ (X,Y )

∂X
∂S(X,Y )

∂Y
∂T̂ (X,Y )

∂X
∂S(X,Y )

∂Y

)

=

(
1−q
1−2q

−q
1−2q−q

1−2q
1−q
1−2q

)

=
1

1 − 2q
. (9)
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Hence if (T̂ , S) has a probability density f(t, s) then
(X,Y ) has a probability density

g(x, y) = |J |f(T̂ (x, y), S(x, y)). (10)

We now apply this approach to SH and PD games.

2.3 The Stag Hunt (SH)

Proposition 1 The probability that SH games have 3
equilibria is given by

pSH3 =
1

(1 − 2q)
Area(D ∩ D1), (11)

where D is the subset of R2 determined by

D =

{
(x, y) : −1 < x < 0,−x2

4q
− q < y < −q

}
,

and D1 is the quadrilateral ABOC with vertices

A = (−1,−1), B = (−(1 − q),−q),
C = (−q,−(1 − q)) O = (0, 0).

The domain D1 and the intersection D ∩ D1 is illus-
trated in Fig. 3.

Proof In the SH game: 1 > T > 0 > S > −1, T ∼
U(0, 1), S ∼ U(−1, 0). Let T̂ := T − 1 ∼ U(−1, 0). The
joint distribution of (T̂ , S) is

f(t, s) =
{

1 (t, s) ∈ (−1, 0) × (−1, 0),
0 otherwise.

According to (10), the joint probability distribution of
(X,Y ) is

g(x, y) = |J |f(T̂ (x, y), S(x, y))

=
1

(1 − 2q)
1(x,y)∈D1 ,

where

D1 = (T̂ (x, y), S(x, y) ∈ (−1, 0) × (−1, 0)

= ((x, y) ∈ (−1, 0)2 : (1 − q)x − qy, (1 − q)y − qx)
∈ (−(1 − 2q), 0) × (−(1 − 2q), 0)

= {(x, y) ∈ (−1, 0)2 : − (1 − 2q)
< (1 − q)x − qy < 0,

− (1 − 2q) < (1 − q)y − qx < 0}

=

{
(x, y) ∈ (−1, 0)2 :

(1 − q)x
q

< y <
(1 − q)x + (1 − 2q)

q
,

qx − (1 − 2q)
1 − q

< y <
qx

1 − q

}
.

We can characterise D1 further by explicitly ordering
the lower and upper bounds in the above formula. We
have

(1 − q)x
q

− qx

1 − q
=

(1 − 2q)x
q(1 − q)

< 0

(1 − q)x
q

− qx − (1 − 2q)
1 − q

=
(1 − 2q)(x + q)

q(1 − q)
,

(1 − q)x + (1 − 2q)
q

− qx

1 − q
=

(1 − 2q)(x + 1 − q)
q(1 − q)

.

It follows that:

(i) for −1 < x < −(1 − q) < −q:

(1 − q)x
q

<
qx − (1 − 2q)

1 − q

<
(1 − q)x + (1 − 2q)

q

<
qx

1 − q

(ii) For −(1 − q) < x < −q

(1 − q)x
q

<
qx − (1 − 2q)

1 − q

<
qx

1 − q

<
(1 − q)x + (1 − 2q)

q
.

(iii) for −q < x < 0

qx − (1 − 2q)
1 − q

<
(1 − q)x

q

<
qx

1 − q

<
(1 − q)x + (1 − 2q)

q
.

Hence

D1 =

{
− 1 < x < −(1 − q),

qx − (1 − 2q)
1 − q

< y

<
(1 − q)x + (1 − 2q)

q

}

∪
{

− (1 − q) < x < −q,

qx − (1 − 2q)
1 − q

< y <
qx

1 − q

}
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x 

y
D1(0.1)

D1(0.2)

D1(0.3)

D1(0.4)

D D1(0.1)

D D1(0.2)

D D1(0.3)

D D1(0.4)

x 

Fig. 3 SH game: regions D1 and D∩D1 are shown for different values of q, namely, q = 0.1, 0.2, 0.3 and 0.4, for illustration
(see Proposition 1)

∪
{

− q < x < −0,

(1 − q)x
q

< y <
qx

1 − q

}
.

Thus, D1 is the quadrilateral ABOC with vertices

A = (−1,−1), B = (−(1 − q),−q),
C = (−q,−(1 − q)) O = (0, 0).

	

Theorem 3 The probability that SH games have 3
equilibria is given by

pSH3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − q
2(1−q) − 1

1−2q

[
(3

√
q+2)2

√
q(5q3/2+3q2−9q−3

√
q+4)

12(
√

q+1)3

+ −27q3−18q2−32
√
1−2qq+48q+16

√
1−2q−16

12q

]
, 0 < q ≤ 4/9,

1 − q
2(1−q) − 8

√
q(1−2q)2

3(1−q)3 , 4/9 < q < 0.5.

Proof According to Proposition 1, in order to compute
pSH3 we need to compute the area of D ∩ D1. To this
end we need to understand the intersections of the
parabola y = −x2

4q − q with the lines y = (1−q)x
q and

y = qx−(1−2q)
1−q . The parabola y = −x2

4q − q always inter-

sects with the line y = (1−q)x
q inside the domain (−1, 0)2

at the point

F =(2(q+
√

1−2q−1), 2(1−q)(q+
√

1−2q−1)/q).

By comparing 2(q +
√

1 − 2q − 1) with −q, it follows
that the point F is inside the edge OC if 0 ≤ q ≤ 4/9
and is outside OC whenever 4/9 < q < 0.5. On the

other hand, the parabola y = −x2

4q − q meets the line

y = qx−(1−2q)
1−q at two points G1 = (x1,−x2

1
4q − q) and

G2 = (x2,−x2
2

4q − q) with

x1 = 2q
(

− q

1 − q
− 2q − 1

(q − 1)
√

q

)
,

x2 = 2q
( 2q − 1

(q − 1)
√

q
− q

1 − q

)
.

By comparing x1 and x2 with −q we have G1 is always
in the edge AC, while G2 is outside AC if 0 < q ≤ 4/9
and is inside AC if 4/9 < q < 0.5.

In conclusion

1. for 0 < q ≤ 4/9: the intersection D ∩ D1 is the
domain formed by vertices A, B, E, F , and G1 where
E = (− q2

1−q ,−q) (which is the intersection of y = −q

with y = (1−q)x
q ) and

– A and B are connected by the line y =
(1−q)x+(1−2q)

q ,
– B and E are connected by the line y = −q,
– E and F are connected by the line y = (1−q)x

q ,
– F and G1 are connected by the parabola y =

−x2

4q − q,
– G1 and A are connected by the line y =

qx−(1−2q)
1−q .
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2. for 4/9 < q < 0.5: the intersection D ∩ D1 is
the domain formed by the vertices A,B,E,C,G1, G2

where

– A and B are connected by the line y =
(1−q)x+(1−2q)

q ,
– B and E are connected by the line y = −q,
– E and C are connected by the line y = (1−q)x

q ,
– C and G1 are connected by the line y =

qx−(1−2q)
1−q ,

– G1 and G2 are connected by the parabola y =
−x2

4q − q,
– G2 and A are connected by the line y =

qx−(1−2q)
1−q .

See Fig. 4 for illustrations of the two cases above, with
q = 0.3 and q = 0.45 respectively.

We are now ready to compute the probability that
the SH game has three equilibria.
For 0 < q ≤ 4/9: The probability that the SH game

has three equilibria is

pSH3 =
1

(1 − 2q)
Area(D ∩ D1)

=
1

(1 − 2q)

[
Area(D1)

− Area(BOE) − Area(CFG1)
]

(12)

We proceed by computing the areas in the expression
above. Area of D1 is

Area(D1)

=
∫ −(1−q)

−1

[ (1 − q)x + (1 − 2q)
q

− qx − (1 − 2q)
1 − q

]
dx

+
∫ −q

−(1−q)

[ qx

1 − q
− qx − (1 − 2q)

1 − q

]
dx

+
∫ 0

−q

[ qx

1 − q
− (1 − q)x

q

]
dx

=
q(1 − 2q)
2(1 − q)

+
(1 − 2q)2

1 − q

+
q(1 − 2q)
2(1 − q)

= 1 − 2q. (13)

Area of BOE is

Area(BOE) = Area(BOH) − Area(HOE)

=
1
2
q
[
(1 − q) − q2

1 − q

]

=
q(1 − 2q)
2(1 − q)

, (14)

where H = (0,−q). Area of CFG is

Area(CFG1)

=

∫ −q

a

[ qx − (1 − 2q)

1 − q
+

x2

4q
+ q

]
dx

+

∫ 2(q+
√
1−2q−1)

−q

[ (1 − q)x

q
+

x2

4q
+ q

]
dx

=
(3

√
q + 2)2

√
q(5q3/2 + 3q2 − 9q − 3

√
q + 4)

12(
√
q + 1)3

+
−27q3 − 18q2 − 32

√
1 − 2qq + 48q + 16

√
1 − 2q − 16

12q
.

(15)

Substituting (13), (14), and (15) back to (12) we obtain,
for 0 < q ≤ 4/9

pSH3 = 1 − q

2(1 − q)

− 1

1 − 2q

[
(3

√
q + 2)2

√
q(5q3/2 + 3q2 − 9q − 3

√
q + 4)

12(
√
q + 1)3

+
−27q3 − 18q2 − 32

√
1 − 2qq + 48q + 16

√
1 − 2q − 16

12q

]

Now we consider the remaining case 4/9 < q < 0.5. In
this case

pSH3 =
1

(1 − 2q)
Area(D ∩ D1)

=
1

(1 − 2q)

[
Area(D1)

− Area(BOE) − Area(♦G1G2)
]
, (16)

where ♦G1G2 is the domain with vertices G1 and G2

formed by the parabola y = −x2

4q − q and the line y =
qx−(1−2q)

1−q . Thus

Area(♦G1G2) =
∫ x2

x1

[
− x2

4q
− q − qx − (1 − 2q)

1 − q

]
dx

=
8
√

q(1 − 2q)3

3(1 − q)3
. (17)

Substituting (13), (14) and (17) back to (16) we obtain,
for 4/9 < q < 0.5,

pSH3 = 1 − q

2(1 − q)
− 8

√
q(1 − 2q)2

3(1 − q)3
.

This finishes the proof of this theorem 	


2.4 Prisoner’s Dilemma (PD)

Proposition 2 The probability that PD games have 3
equilibria is given by

pPD
3 =

1
(1 − 2q)

Area(D ∩ D2), (18)
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q = 0.3 q = 0.45

A

O

B

C

E

F

G1
A

B

O

C

E

G1

G2

Fig. 4 Details of D ∩ D1 for q = 0.3 and q = 0.45, for illustration of the proof and calculation in Theorem 3

where D is defined above (as in the case of the SH
games) and D2 is the triangle MNO with vertices

M = (−q,−(1 − q)), N = (0,−1 − 2q

1 − q
), O = (0, 0).

See Fig. 5 for illustration of D2 and its intersection with
D for several values of q.

Proof Recall that in PD games we have T ∼ U(1, 2),
S ∼ (−1, 0). Thus T̂ = T − 1 ∼ (0, 1). The joint distri-
bution of (T̂ , S) is

f(t, s) = 1(x,y)∈(0,1)×(−1,0)

=
{

1 (t, s) ∈ (0, 1) × (−1, 0),
0 otherwise.

.

According to (10), the joint probability distribution of
(X,Y ) is

g(x, y) = |J |f(T̂ (x, y), S(x, y))

=
1

(1 − 2q)
1(x,y)∈D2 ,

where

D2 = (T̂ (x, y), S(x, y) ∈ (0, 1) × (−1, 0)

= {(x, y) ∈ (−1, 0)2 : (1 − q)x − qy, (1 − q)y − qx)
∈ (0, 1 − 2q) × (−(1 − 2q), 0)}

= {(x, y) ∈ (−1, 0)2 : 0 < (1 − q)x − qy < 1 − 2q,

− (1 − 2q) < (1 − q)y − qx < 0}

=

{
(x, y) ∈ (−1, 0)2 :

(1 − q)x − (1 − 2q)
q

< y <
(1 − q)x

q
,

qx − (1 − 2q)
1 − q

< y <
qx

1 − q

}
.

We now characterise D2 further. We have

(1) for −1 < x < −q then

(1 − q)x − (1 − 2q)
q

<
(1 − q)x

q

<
qx − (1 − 2q)

1 − q

<
qx

1 − q

(2) for −q < x < 0 then

(1 − q)x − (1 − 2q)
q

<
qx − (1 − 2q)

1 − q

<
(1 − q)x

q

<
qx

1 − q

It follows that

D2 =

{
(x, y) : − q < x < 0,

qx − (1 − 2q)
1 − q

< y <
(1 − q)x

q

}
.

Thus D2 is the triangle MNO with vertices

M = (−q,−(1 − q)),

N = (0,−1 − 2q

1 − q
), O = (0, 0).
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x x

y 
D2(0.1)

D2(0.2)

D2(0.3)

D2(0.4)

D D2(0.1)

D D2(0.2)

D D2(0.3)

D D2(0.4)

Fig. 5 PD game: regions D2 and D ∩ D2 are shown for different values of q, namely, q = 0.1, 0.2, 0.3 and 0.4, for
illustration of Proposition 2

The probability that the SH game has three equilibria
is thus

pSH3 =
∫

D

g(x, y) dxdy

=
1

(1 − 2q)

∫

D

1(x,y)∈D2 dxdy

=
1

(1 − 2q)
Area(D ∩ D2).

This finishes the proof of this proposition. 	

The following elementary lemma provides an upper
bound for pPD

3 , particularly implying that it tends to
0 as q goes to 0.

Lemma 2

pPD
3 ≤ q

2(1 − q)
. (19)

As a consequence, pPD
3 is always smaller or equal to 0.5

and tends to 0 as q tends to 0.

Proof Area of D

Area(D) =
∫ 0

−1

[
− q −

(
− x2

4q
− q

)]
dx

=
1

12q
.

Area of D2

Area(D2) =
∫ 0

−q

[ (1 − q)x
q

− qx − (1 − 2q)
1 − q

]
dx

=
q(1 − 2q)
2(1 − q)

.

Hence

pPD
3 ≤ 1

1 − 2q
min

{
Area(D),Area(D2)

}

=
1

1 − 2q
min

{ 1
12q

,
q(1 − 2q)
2(1 − q)

}

=
q

2(1 − q)
.

	

Theorem 4 The probability that PD games has three
equilibria is given by

pPD
3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q − 1
2

q3

(1−q)

]
, 0 ≤ q ≤ 3−√

5
2 ,

−16(√
1−2q−1)q3/2+2q5/2+15q3+(8√

1−2q−25)q2+q−8
√
1−2q+2

√
q(8√

1−2q−5)+5

6(√
q−1)3(q3/2+q)

, 3−√
5

2 < q ≤ 4/9,

1
2
(1−2q)2

q(1−q) , 4/9 < q < 0.5.
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q = 0.3

I
F

K

q = 0.4 q = 0.45

M

O

N

M

N

N

M

O O

I
F

P

G2
I

P

Fig. 6 Details of D ∩ D2 for q = 0.3, 0.4, 0.45, for illustration of the proof and calculation in Theorem 4

Proof According to Proposition 2, in order to compute
pPD
3 we need to compute the area of D ∩ D2. As in

proof of Theorem 3, the parabola y = −x2

4q − q always

intersects with the line y = (1−q)x
q inside the domain

(−1, 0)2 at the point

F = (2(q +
√

1 − 2q − 1), 2(1 − q)(q +
√

1 − 2q − 1)/q).

The point F is inside the edge DC if 0 ≤ q ≤ 4/9 and
is outside DC whenever 4/9 < q < 0.5.

On the other hand, the parabola y = −x2

4q − q meets

the line y = qx−(1−2q)
1−q at two points G1 = (x1,−x2

1
4q −q)

and G2 = (x2,−x2
2

4q − q) with

x1 = 2q
(

− q

1 − q
− 1 − 2q

(1 − q)
√

q

)
,

x2 = 2q
(

− q

1 − q
+

1 − 2q

(1 − q)
√

q

)
.

G1 is always outside edge AC. G2 is inside it if 3−√
5

2 <
q ≤ 4/9 and outside it otherwise. Therefore, we have
three cases (see Fig. 6 for illustration).

(1) For 0 ≤ q ≤ 3−√
5

2 : the intersection D ∩ D2 is
formed by I, F,K where I = (−q2/(1 − q),−q)
(which is the intersection of y = −q with y =
(1−q)x

q ), K = (0. − q) and

– I and F are connected by the line y = (1−q)x
q ,

– F and K are connected by the parabola y =
−x2

4q − q,
– K and I are connected by the line y = −q.

In this case

pPD
3 =

1

1 − 2q
Area(D ∩ D2)

=
1

1 − 2q

(
Area(OFK) − Area(OIK)

)

=
1

1 − 2q

( ∫ 0

2(q+
√
1−2q−1)

[ (1 − q)x

q

+
x2

4q
+ q

]
dx − 1

2

q3

(1 − q)

)

=
1

1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q

− 1

2

q3

(1 − q)

]
.

(2) For 3−√
5

2 < q ≤ 4/9: the intersection D ∩ D2 is
formed by F , I, P = ((q3 − 3q + 1)/q,−q) (which
is the intersection of y = −q with y = qx−(1−2q)

1−q )
and G2, where

– F and I are connected by the line y = (1−q)x
q ,

– I and P are connected by the line y = −q,
– P and G2 are connected by the line y =

qx−(1−2q)
1−q ,

– G2 and F are connected by the parabola y =
−x2

4q − q.

In this case

pPD
3 =

1

1 − 2q
Area(D ∩ D2)

=
1

1 − 2q

( ∫ − q2

1−q

2(q+
√

1−2q−1)

[ (1 − q)x

q

+
x2

4q
+ q

]
dx+

∫ x2

− q2

1−q

x2

4q
dx

+

∫ (q2−3q+1)/q

x2

[
− q − qx − (1 − 2q)

1 − q

]
dx

)

=
1

6 (
√
q − 1)3

(
q3/2 + q

)
(

− 16
(√

1 − 2q − 1
)
q3/2

+ 2q5/2 + 15q3 +
(
8
√

1 − 2q − 25
)
q2

+ q − 8
√

1 − 2q + 2
√
q
(
8
√

1 − 2q − 5
)
+ 5

)
.

(20)
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(3) For 4/9 < q < 0.5: the intersection D ∩ D2 is the
triangle MIP where M = (−q,−(1 − q))

– M and I are connected by the line y = (1−q)x
q ,

– I and P are connected by the line y = −q,
– P and M are connected by the line y =

qx−(1−2q)
1−q .

In this case

pPD
3 =

1
1 − 2q

Area(D ∩ D2)

=
1

1 − 2q
Area(MIP )

=
1

2(1 − 2q)

(q2 − 3q + 1
q

+
q2

1 − q

)(
1 − 2q

)

=
1
2

(1 − 2q)2

q(1 − q)
.

In conclusion

pPD
3 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
1−2q

[
− 2(q3+3q2+(4

√
1−2q−6)q−2

√
1−2q+2)

3q − 1
2

q3

(1−q)

]
, 0 ≤ q ≤ 3−√

5
2 ,

−16(√
1−2q−1)q3/2+2q5/2+15q3+(8√

1−2q−25)q2+q−8
√
1−2q+2

√
q(8√

1−2q−5)+5

6(√
q−1)3(q3/2+q)

, 3−√
5

2 < q ≤ 4/9,

1
2
(1−2q)2

q(1−q) , 4/9 < q < 0.5.

This completes the proof of this theorem. 	


3 Summary and outlook

It has been shown that in many social and, more
generally, biological settings mutation is non-negligible
[30,37,40]. How mutation affects the complexity and
bio-diversity of the evolutionary systems is a funda-
mental question in evolutionary dynamics [24,32]. In
this paper, we have addressed this question for random
social dilemmas by computing explicitly the probabil-
ity distributions of the number of equilibria in term of
the mutation probability. Our analysis based on ran-
dom games is highly relevant and practical, because it
is often the case that one might know the nature of
a game at hand (e.g., a coordination or cooperation
dilemma), but it is very difficult and/or costly to mea-
sure the exact values of the game’s payoff matrix. Our

results have clearly shown the influence of the muta-
tion on the number of equilibria in SH-games and PD-
games. The probability distributions in these games are
much more complicated than in SD-games and H-games
and significantly depend on the mutation strength. For
a summary of our results, see again Box 1 and Fig.
1. Our analysis has made use of suitable changes of
variables, which expressed the probability densities in
terms of area of certain domains. For future work, we
plan to generalise our method to other approaches to
studying random social dilemmas such as finite pop-
ulation dynamics and payoff disturbances [2,3,16,36],
as well as to multi-player [21,27,33] and more complex
social dilemma games such as the climate change and
technological race interactions [14,35].
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