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Abstract. We review the materials science applications of the nested sampling (NS) method, which was
originally conceived for calculating the evidence in Bayesian inference. We describe how NS can be adapted
to sample the potential energy surface (PES) of atomistic systems, providing a straightforward approx-
imation for the partition function and allowing the evaluation of thermodynamic variables at arbitrary
temperatures. After an overview of the basic method, we describe a number of extensions, including using
variable cells for constant pressure sampling, the semi-grand-canonical approach for multicomponent sys-
tems, parallelizing the algorithm, and visualizing the results. We cover the range of materials applications
of NS from the past decade, from exploring the PES of Lennard–Jones clusters to that of multicomponent
condensed phase systems. We highlight examples how the information gained via NS promotes the under-
standing of materials properties through a novel way of visualizing the PES, identifying thermodynamically
relevant basins, and calculating the entire pressure–temperature(–composition) phase diagram.

1 Introduction

The potential energy surface (PES) describes the inter-
action energy of a system of particles as a function
of the spatial arrangement of atoms and, within the
Born–Oppenheimer approximation, contains all struc-
tural and mechanical information—both microscopic
and macroscopic—about the system. [1] Its global min-
imum corresponds to the ground-state structure, while
the usually numerous local minima are other stable or
metastable configurations linked to each other by tran-
sition states, which determine the pathways between
these different structures, along with the transforma-
tion mechanisms. An alternative, equilibrium statisti-
cal mechanics view of the PES is given by the free
energy of various phases, which quantifies the interplay
between energetic factors, which favor lower potential
energy, and entropic factors, which favor a large config-
uration space volume accessible to each phase. Those
specific regions of the PES where the number of avail-
able configurations dramatically decreases as tempera-
ture decreases correspond to phase transitions, such as
condensation and freezing. The description and under-
standing of these properties of the PES underpin a wide
range of research areas, from interpreting dynamic pro-
cesses in reaction chemistry, protein folding, and study-
ing supercooled liquids to understanding the micro-
scopic details of phase transitions.
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Computer simulations have become an essential tool
in exploring the PES, providing both thermodynamic
information and an atomic level insight into materi-
als properties. A plethora of computational methods
have been developed, but most such techniques target
only a particular part or aspect of the landscape, or
are optimised to map only certain properties of com-
plex landscapes. Global optimization methods focus
on building a database of minima to find the low-
est energy structure. These include basin hopping [2],
genetic algorithms [3,4], minima hopping [5] and sim-
ulated annealing [6] with adaptive cooling rates [7],
as well as dedicated crystal structure prediction tools,
such as AIRSS [8,9], USPEX [10,11], and CALYPSO
[12,13]. These techniques enable the exploration of
the hitherto unknown basins of the PES, and have
already lead to the discovery of novel phases of a
range of materials [8,9,14]. However, while the dimen-
sionality of the PES scales linearly with the num-
ber of atoms, the available configuration space vol-
ume scales exponentially with this number. It is also
commonly thought that the number of local minima
scales exponentially as well [15], which can dramat-
ically increases the computational cost, rendering it
impossible to perform an exhaustive search of all poten-
tial minima basins of even moderately complex sys-
tems.

The physical behaviour of materials is often domi-
nated by entropic effects, and the calculation of free
energies requires sampling over vast regions of the PES
instead of concentrating only on the minima struc-
tures. Temperature-accelerated dynamics [16], samples
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Fig. 1 Temperature–enthalpy curve (purple, enthalpy decreases from left to right) of lithium modelled by the embedded
atom model (EAM) of Nichol and Ackland [27] at 14 MPa showing both the vaporisation (2450 K, – 0.3 to – 0.9 eV) and
melting (700 K, – 1.40 to – 1.45 eV) transitions. Dashed lines illustrate the difference between the series of sampling levels
for parallel tempering (left panel), Wang–Landau sampling (middle panel), and nested sampling (right panel). In the case of
NS, these are equidistant in ln Γ (for clarity, only one out of every 20,000 iterations). The density of NS levels as a function
of enthalpy (blue, right y-axis, right panel only) shows the general increase in sampling density as enthalpy decreases,
superposed with small amplitude peaks localized in the two phase transition ranges. Red arrows illustrate the direction
of the sampling’s progress; purple dots are guide to the eye. The enthalpy curve was calculated with NS of 64 atoms and
K = 648

rare events and umbrella sampling [17], and meta-
dynamics [18] enable the evaluation of relative free
energies. A range of methods have been specifically
developed to study phase transitions: Gibbs-ensemble
Monte Carlo method to study the boiling curve [19],
two-phase coexistence methods and the multithermal-
multibaric approach [20] to determine the melting line,
or thermodynamic integration and lattice-switch Monte
Carlo [21] to pinpoint solid–solid transitions. Apart
from these often being highly specific, with most of
them optimal only for a single type of transition, if a
solid phase is involved, they also require an advance
knowledge of the corresponding crystalline structures,
limiting their predictive power to exploring known
phases.

Although all of the techniques mentioned above pro-
vide important information about different segments
of the landscape, we can see that gaining a broader
overview of the entire PES with these would be a chal-
lenging and highly laborious task. There are very few
techniques that allow the unbiased sampling of large
regions of the PES without prior knowledge of sta-
ble structures or estimated location of phase transi-
tions. The two most widely used are parallel temper-
ing [22,23] and Wang–Landau sampling [24,25]. How-
ever, these methods also face general challenges, illus-
trated in Fig. 1, demonstrating the location of sam-
pling levels around first-order phase transitions, where
the enthalpy of the system changes rapidly with tem-
perature. Parallel tempering samples the PES at fixed

temperatures (Fig. 1, left panel). The overlap between
the distributions of energies and their corresponding
atomic configurations at temperatures just above and
just below a phase transition is very small, vanish-
ing in the thermodynamic limit, due to the entropy
jump. It is well understood that this makes equili-
bration of samplers that are in two different phases
especially difficult [26]. Wang–Landau sampling (mid-
dle panel) is done on energy levels constructed to
be equispaced. Although this provides a much better
sampling of first-order phase transitions, the appropri-
ate sampling levels still have to be determined manu-
ally.

The nested sampling (NS) scheme, introduced by
Skilling [28–30], can overcome this challenge of equi-
libration by automatically creating, using a single top–
down pass, a series of energy levels equispaced in ln Γ,
where Γ is the configuration space volume accessi-
ble below each energy. As shown in the right-hand
panel of Fig. 1, this means that sampling levels are
much denser at lower energies or enthalpies, where
they precisely sample small energy differences relevant
for low temperatures, and also slightly denser as the
method goes through each phase transition. In this
work, we review how the nested sampling technique
can be adapted to sample the PES of atomic systems,
describe its advantages, and illustrate how thermody-
namic and structural information can be extracted from
the results, with examples from several different appli-
cations.
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2 The nested sampling method

Nested sampling was introduced by Skilling [28–30]
in the field of applied probability and inference, to
sample sharply peaked probability densities in high-
dimensional spaces. The algorithm can provide both
posterior samples and an estimate of the Bayesian evi-
dence (marginal likelihood), Z, of a model, as

Z =
∫

L(x) dx (L ≥ 0), (1)

where L is the likelihood function.
The NS technique has been quickly taken up in the

field of astrophysics [31–35] and gravitational wave data
analysis [36,37], and has gradually been adapted to
explore the parameter space in a wide range of disci-
plines, such as data analysis [38], signal processing [39],
phylogenetics [40], and systems biology [41,42].

The above integral also naturally translates to mate-
rials science problems. Sampling the 3N -dimensional
configuration space of a system of N particles is the
high-dimensional space, and the likelihood is given by
the probability of microstates, which is proportional
to the Boltzmann factor. Thermodynamic quantities
depend on the PES through the canonical partition
function of the system

Z(β) =
∫

e−βE(x,p) dxdp, (2)

where β is the inverse thermodynamic temperature, E
is an energy, enthalpy, or related quantity, x and p are
the positions and momenta, respectively, and the inte-
gral is carried out over the microstates of the system.
To relate this expression to Eq. 1, it can be written in
terms of an integral over E weighted by the derivative
of the cumulative density of microstates Γ(E), as

Z(β) =
∫

Γ′(E)e−βEdE, (3)

up to an overall constant factor. If the energy can be
separated into a sum of a position-dependent potential
and a momentum-dependent kinetic contribution, the
momentum-dependent partition function Zp(β) can be
factored out, and the integrand remains unchanged if
Γ(E) and E are understood to mean only the position-
dependent parts. If samples from Γ(E) are available at
a set of energies Ei in decreasing order, this equation
can be approximated as

Z(β) ≈
∑

i

(Γ(Ei−1) − Γ(Ei)) e−βEi , (4)

where wi = Γ(Ei−1) − Γ(Ei) is the configuration space
weight associated with each sample. Many thermody-
namic properties can be related to simple functions of
the partition function, including the free energy (its log-
arithm), internal energy (its first derivative with respect

to the inverse thermodynamic temperature), and spe-
cific heat (its second derivative). Analogous approxi-
mations for these quantities can be derived by analyti-
cally applying the operations to each term in the sum.
If the configurations corresponding to each energy xi

are available, expectation values of arbitrary position-
dependent properties can also be evaluated from

〈A(β)〉 ≈ 1
Z(β)

∑
i

A(xi)wie
−βEi , (5)

where A(x) is the value of the property for the speci-
fied positions. The fundamental modelling assumption
underlying this approximation is that samples that are
well suited to estimating the cumulative density of
states Γ(E) are also well suited for estimating other
observables.

Nested sampling addresses the problem of finding a
suitable set of sample points and associated weights
for estimating the above integrals. There is a large
degree of efficiency to be gained by coarsely sampling
parts of phase space which contribute very little to
the overall sum, i.e., those with relatively high energy,
and conversely, by refining the sampling in those—
exponentially small—parts of phase space where the
energy is low.

2.1 The iterative algorithm

The basic NS algorithm applied to sampling the poten-
tial energy landscape of atomistic systems is illustrated
in Fig. 2. The sampling is initialised by generating
a pool of K uniformly distributed (in x space) ran-
dom configurations, often referred to as the ‘live set’
or ‘walkers’. These represent the “top” of the PES,
the high-energy gas-like configurations, since that phase
inevitably dominates a truly uniform sampling due to
its large configuration space volume. Then, the follow-
ing iteration is performed, starting the loop at i = 1:

1. Record the energy of the sample with the highest
energy as Ui, and use it as the new energy limit,
Ulimit ← Ui. The corresponding phase-space volume
for U < Ulimit is Γi = Γ0[K/(K + 1)]i.

2. Remove the sample with energy Ui from the pool of
the walkers and generate a new configuration uni-
formly random in the configuration space, subject
to the constraint that its energy is less than Ulimit.

3. Let i ← i + 1 and iterate from step 1.

This iteration generates a sequence of samples xi, cor-
responding energies Ui = U(xi), and weights wi given
by the differences between each sample’s volume and
the volume of the next sample Γ0

(
[K/(K + 1)]i −

[K/(K + 1)]i+1
)
, which together can be used to eval-

uated thermodynamic functions and other observables
using Eqs. 4 and 5.

The NS process ensures that at each iteration, the
pool of K samples is uniformly distributed in configu-
ration space with energy U < Ulimit. The finite sample
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Fig. 2 Illustration of the nested sampling algorithm, show-
ing several steps of the iteration. Panels on the left-hand
side represent the PES (the vertical axis being the poten-
tial energy, while the other two axes representing the
phase-space volume). Black dots on the landscape demon-
strate the members of the live set (in this illustration
K = 9) uniformly distributed in the allowed phase space—
corresponding atomic configurations (assuming constant
volume sampling) are shown in the right-hand side pan-
els. In the middle two panels, the samples with the highest
energy are shown by blue, with the corresponding energy
contour illustrated by a dotted line

size leads to a statistical error in ln Γi , and also in
the computed observables, that is asymptotically pro-
portional to 1/

√
K, so any desired accuracy can be

achieved by increasing K. Note that for any given K,
the sequence of energies and phase volumes converges
exponentially fast, and increasing K necessitates a new
simulation from scratch.

It is important to note the absence of the temperature
β from the actual sampling algorithm. Even without
explicit dependence on the temperature, the sequence

of configurations and weights generated by NS can be
used to efficiently calculate expectation values with the
Boltzmann weight. Within any one phase, the low-
energy regions, which are exponentially emphasized by
the Boltzmann factor, are well sampled by the NS algo-
rithm’s configurations, which are exponentially concen-
trated (as a function of iteration) into the shrinking
low-energy configuration space volume. Between ther-
modynamically stable phases, where the configuration
space volume decreases a lot. The high overlap between
successive samples eases equilibration, allowing the pro-
cess to smoothly go from the typical high-temperature
phase configuration distribution to the low-temperature
phase distribution. Thus, the expectation value of any
observable can be calculated at an arbitrary tempera-
ture during the postprocessing, simply by re-evaluating
the partition function and expectation value with a dif-
ferent β over the same sample set, obviating the need
to generate a new sample set specific to each desired
temperature. The range of accessible temperatures is,
however, limited by the range of energies sampled. As
the temperature goes down, so do the relevant energies,
and as a result, any given finite length run only includes
useful information above some minimum temperature,
which is proportional to the rate of change of Ulimit as
a function of iteration at the end of the run.

2.2 Generating new sample configurations

The initial live set consists of randomly generated con-
figurations, ensuring their uniform distribution in the
phase space. But how can we practically maintain this
requirement as the sampling progresses? As the con-
figuration space shrinks exponentially with decreas-
ing energy, naive rejection sampling—where uniformly
distributed random configurations are proposed, and
only accepted if their energy is below the current limit
Ui < Ulimit—quickly becomes impractical, because
essentially all proposals are rejected. Instead, we ran-
domly select and clone an existing configuration from
within the current live set, as a starting point for gener-
ating the new configuration. This cloned sample is then
moved in configuration space long enough that we can
treat it as an independent sample. A Monte Carlo pro-
cedure to reproduce the target distribution, namely uni-
form in configuration space below the limiting energy,
simply consists of proposing moves that obey detailed
balance (i.e., are reversible) and rejecting moves that
exceed the energy maximum.

Various types of moves are needed to efficiently
explore all of the relevant degrees of freedom, illus-
trated in Fig. 3. The most obvious is the motion of
the atoms, which can be carried out with single-atom
moves, but these are efficient only if the resulting energy
change can be calculated in O(1) time. This is in prin-
ciple true for all short-ranged interatomic potentials,
although implementations to actually carry out this cal-
culation efficiently are not necessarily available. Naive
multiatom moves with sufficiently large displacements
are hard to propose, since the associated energy change
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(a1)

(d)

(c)

(b)

(f)

(e)

(a2)

(a3) (g)

Fig. 3 Illustration of different move types employed to
decorrelate the cloned configuration. Changes of atomic
position use one of single-atom MC steps (a1) or all-
atom GMC moves (a2) or all-atom TE-HMC moves (a3).
Changes of simulation cell use volume change (b), cell shear
(c), and cell stretch (d) moves. Possible changes of atom
types in multicomponent systems use swapping identities of
different types (e), changing the type of a single atom in
semi-grand-canonical moves (f), and changing the number
of atoms by insertion or deletion in grand-canonical moves
(g)

increases as the square root of the number of atoms.
Instead, collective moves with reasonable displacements
and acceptance rates can be generated by Galilean
Monte Carlo (GMC) [43,44], where the entire configu-
ration is moved in straight line segments along a direc-
tion in the full 3N -dimensional space, reflecting spec-
ularly from the boundary of the allowed energy range,
and accepted or rejected based on the final energy after
a pre-determined number of steps nsteps. A qualita-
tively different option is to use total energy Hamilto-
nian Monte Carlo (TE-HMC), where a velocity and
corresponding kinetic energy is assigned to each atom
(not necessarily using the physical atomic masses), and
the total energy including both potential and kinetic
terms is subject to the NS limit. In this case short,
fixed-length, constant energy, constant cell, molecular
dynamics (MD) trajectories are used to propose collec-
tive moves, which are once again accepted or rejected
based on their final total energy [45]. This approach
can propose large-displacement collective moves with
very high probability of acceptance. However, the prob-
ability distribution of the spatial degrees of freedom of
the live set can become bimodal near phase transitions,
with one peak dominating above (in potential energy
and/or temperature) and another peak below, negat-
ing many of the advantages of NS which depend on a
high overlap of the distribution between sequential iter-
ations.

In single-component non-periodic systems, atomic
position moves are sufficient to explore configuration
space. In periodic systems under constant pressure,
however, additional moves associated with the period-

icity (represented by the periodic cell vectors) are also
required, and the quantity of interest is no longer the
potential energy but rather the enthalpy, U+PV , where
V is the simulated system volume and P is an applied
pressure. Note that this pressure has to be greater
than 0, since without the PV enthalpy contribution,
the increased configuration space volume available to
particles in an increasingly large cell would give infi-
nite entropy, overcoming any finite interaction energy
gained by condensation and the system would always
remain in the gas phase. The volume (and more gener-
ally the periodic cell shape) of the system becomes an
output of the NS simulation, and its expectation value
as a function of temperature must be evaluated in post-
processing. Monte Carlo moves associated with the cell
can be separated into two categories—those that change
the volume, and those that do not. The former consists
of uniform scaling moves, and must reproduce the cor-
rect probability distribution which is proportional to
V N . This is enforced by proposing isotropic rescaling
moves that take the cell volume from its current value
to a new value that is uniformly distributed within
some small range. These proposed moves are filtered
by a rejection sampling procedure to produce a proba-
bility proportional to V N before the final acceptance
or rejection by the deformed cell energy. Additional
volume-preserving simple shear (off-diagonal deforma-
tion gradient) and stretch (diagonal deformation gra-
dient) moves are also proposed with a uniform distri-
bution in strain. However, it can be shown that sim-
ulation cells that are anisotropic (long in some direc-
tions and short in the others) dominate the configura-
tion space [46,47]. At early iterations and high ener-
gies, where the system is disordered and interatomic
interactions are relatively unimportant, this does not
significantly affect the sampled energies. At later itera-
tions and lower energies, where the system mainly sam-
ples a crystalline lattice, such anisotropic cells prevent
positions fluctuations that vary along the short direc-
tions, equivalent to restricting the sampling of phonons
along those directions to only very short wavelengths.
Because in a crystal, the periodic cell directions must
be compatible with integer numbers of atomic layers
(Fig. 4), it is difficult for the system to vary the cell
shape, and the samples can become trapped in very
anisotropic cells that are favored in earlier iterations.
To prevent this, a minimum cell height criterion can be
added, with an optimal value that minimizes effects on
the free energy differences between the disordered and
ordered systems [46,47].

It is also possible to carry out the NS iteration with
a uniform probability density in cell volume, which
removes the need for the special volume move rejec-
tion sampling step. In this case, all expectation val-
ues computed by postprocessing of the NS trajectory
must take into account the factor of V N associated
with the configuration that led to each energy in the
sequence. We have found empirically that without the
bias to large cell volume caused by the V N probabil-
ity density during sampling, even with P = 0, the NS
trajectory samples a wide range of cell volumes. The
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(a) (b)

(c)

Fig. 4 Illustration of the effect of flexible simulation cell.
a Demonstrates the continuous change of the cell ratios
allowed in case of disordered system; b shows the discrete
set of possible cells that accommodate integer numbers of
layers, both on the 2D orthogonal example. c Shows the
convergence of heat capacity with respect of the minimum
height ratio of the simulation cell, demonstrated in case of
the periodic system of 64 atoms modelled by the Lennard–
Jones potential at p = 0.064 ε/σ3 [47,48]. Coloured rectan-
gles serve as the legend, illustrating the allowed distortion in
2D. The smaller the minimum height ratio, hmin, the more
flat the cell can become. The peaks at lower temperature
correspond to the melting transition, and this can be seen
converged for the minimum height ratio to be at least 0.65.
The higher temperature peak corresponds to the vaporisa-
tion and this requires 0.35 for convergence

resulting trajectories can be used to evaluate expecta-
tion values at a range of pressures by adding the PV
term to the enthalpy in the postprocessing expressions.
The expected distribution of volumes is Gaussian, and
deviations from this distribution in the postprocessing
weights indicate that the range of volumes is not com-
patible with the pressure.

For single-component systems, atomic position and
cell steps are sufficient, but this is not necessarily the
case for systems with multiple chemical species. Espe-
cially in solid phases and at low temperatures, it is
nearly impossible for atoms to move between lattice
sites, even if they can vibrate about their equilibrium
positions. To speed up the exploration of chemical order
(especially important for systems that undergo solid-
state order-disorder transitions), one can add atom
swap moves, switching the chemical species of a ran-
domly selected pair of atoms, and accepting or rejecting
based on the final energy. If inter-atom correlations are

important, it may be useful to propose moves jointly
swapping the species of compact clusters of atoms, but
this has not appeared to be necessary so far. While
atom swap moves are sufficient for constant composi-
tion simulations, it is also possible to vary the composi-
tion in a semi-grand-canonical (s-GC) ensemble, where
the total number of particles is fixed, but not the num-
ber of any particular chemical species [49,50]. In this
case, the energy or enthalpy is augmented by a chemi-
cal potential term

∑
i niμi, where i indicates chemical

species, ni is the number of atoms of species i, and
μi is its applied chemical potential. Since only relative
energies are meaningful, the absolute chemical poten-
tials are irrelevant, and only a set of Nspecies − 1 differ-
ences Δμ1j sufficient to fix all chemical potentials up
to an overall shift is needed. Similarly to the case of
volume for constant pressure NS, for s-GC simulations,
the composition is a quantity that evolves during the
NS iteration, and must be evaluated as a function of
temperature by postprocessing. An example of such a
phase diagram is given below in Sect. 3.2.

Note that conventional grand-canonical ensemble
sampling has not been tried, at least for bulk systems,
because it is unlikely to be efficient. If the particle
numbers of all species can vary, the cell volume would
have to be fixed to prevent a degeneracy with the total
particle number. However, this would require density
changes to be sampled entirely by changing the num-
ber of particles, which is difficult to do with apprecia-
ble acceptance probability in condensed systems. Since
the number of particles is typically small, it would
also discretize the possible densities in ways that may
be incompatible with the material’s low-energy crystal
periodicity. Varying the number of particles of only a
subset of the atom types during sampling would not
suffer from this issue, but has not yet been tested.

The MC trajectory that decorrelates a configuration
initially generated by cloning a random remaining live
point consists of a sequence of these types of moves.
Single-atom moves or single short GMC or MD trajec-
tories, individual cell volume, shear, and stretch moves,
and individual atom swap and s-GC moves (as appro-
priate for the type of simulation) at fixed relative fre-
quencies are randomly selected. Each step is accepted
if the final configuration is below the current energy
limit. These steps are performed until a desired MC
walk length, typically defined in terms of the number
of energy or force evaluations (nsteps for GMC or MD,
1 for all other step types), believed to be sufficient to
generate a new uniformly distributed configuration, is
reached. To ensure efficient exploration, the sizes of the
steps must be adjusted during the progress of the NS.
For every fixed number of iterations, a series of pilot
walks, each with only a single move type, is initiated
to determine the optimal step size. Each pilot walk is
repeated, adjusting the step size, until the acceptance
rate is in a desired range, typically around 0.25–0.5. The
quantity varied for single-atom steps is the step size, for
GMC, it is the size of each step in the trajectory, and for
MD, it is the integration time step (the number of steps
for the latter two is fixed). For cell steps, the quantity
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varied is the volume or strain range. Atom swap and
s-GC steps have no adjustable parameters. The result-
ing configurations are discarded, so these pilot walks do
not contribute to creating new uniformly sampled con-
figurations. This optimization is essential for efficient
simulation, and optimal values vary substantially for
different phases.

2.3 Parameters and performance

The computational cost of an NS run depends in a
systematic way on the parameters of the simulation.
For most chemically specific interatomic potentials (as
opposed to toy models), the cost is dominated by the
energy and force evaluations needed for the MC sam-
pling that produces new uncorrelated samples from
cloned samples that are initially identical. The total
cost of the NS process is therefore proportional to the
product of the cost for each evaluation, the number of
evaluations per NS iteration, and the total number of
iterations.

The choice of interatomic interaction model not only
controls the cost for each evaluation, but also the phys-
ical or chemical meaning of the results. Typically, rel-
atively fast potentials are used, but these often have
two issues. One is that they make incorrect predictions
for low-energy structures that have not been previously
noticed, because they have not been used in the context
of a method that thoroughly samples the PES to calcu-
late converged equilibrium properties. The other is that
parameter files made available for standard simulation
codes often fail in parts of configuration space that NS
samples, especially at early iterations and high ener-
gies, because such configurations were not considered
relevant to any real applications during development.
Nevertheless, these failures can produce artifacts in NS
trajectories (e.g., atoms that come too close together
and never dissociate), and must be corrected by, for
example, smoothing or increasing core repulsion.

The number of evaluations for each new uncorrelated
sample is proportional to an overall walk length param-
eter, L. This parameter needs to be large enough that
each cloned configuration becomes uncorrelated with
its source, and again samples the relevant configura-
tion space uniformly. If it is not, the set of configura-
tions may be stuck with only configurations relevant
for high energies, and take too many iterations, or per-
haps entirely fail, to find basins that are important at
low energy. Such an error can result in underestimat-
ing the transition temperature, or failing to detect the
transition at all.

The size of the live set K is another important factor
in the accuracy of the results, determining the reso-
lution with which the PES is mapped during the sam-
pling. If it is too low, there will be systematic discretiza-
tion errors, as well as noise, in the configuration space
volume estimates and any quantities derived from them.
A distinct problem caused by too small a live set is
the likelihood of missing basins that are important late
in the iteration process through a phenomenon called

extinction. Any basins that are separated by barriers
at some energy must be found, while the NS limit-
ing energy is higher than the barrier, because later the
cloning and MC walk process will not be able to reach
them. However, even if there are samples in such an iso-
lated basin when the limiting energy cuts it off from the
other samples, there is the possibility that the number
of samples will fluctuate to 0, in which case knowledge
of that basin will be lost and cannot be rediscovered.
If there are Kb samples in a basin, its fluctuations will
be of order

√
Kb, relative fluctuations will be of order

1/
√

Kb, and the chance to fluctuate to zero will increase
as K decreases. In the highly multimodal PES charac-
teristic of materials systems, this is an important limit
on the minimum necessary live set size. One approach
to address this issue in bulk systems, diffusive NS, is dis-
cussed at the end of this section, and others that have
been proposed for clusters, where the problem is even
more frequent, are mentioned in the following section
on applications to clusters.

The number of NS iterations is set by the minimum
temperature that needs to be described, since the range
of configurations relevant at each temperature is set by
the balance between the decreasing configuration space
volume and the increasing Boltzmann factor as itera-
tion number increases and energy decreases. For fixed
minimum temperature, the amount of compression in
configuration space is fixed, so the number of iterations
increases linearly with the number of walkers in the
live set K. There is some evidence, as illustrated in
Fig. 5, that with increasing K, the minimum sufficient
L decreases, and vice versa, if K is large enough to
allow sampling of all the relevant basins. This may be
understood if the distance that the cloned configura-
tion needs to diffuse in configuration space decreases
as K increases, for example, if it only needs to be lost
among the neighboring configurations, rather than fully
explore the entire available space.

The scaling of the cost with the number of atoms
N is more complicated. The first, trivial contribution
is due to the cost of each energy or force evaluation,
which scales at least linearly (for a localized interatomic
potential) in the number of atoms. In addition, the con-
figuration space volume ratio associated with a pair
of phases scales with N , so that the number of iter-
ations increases linearly. As a result, the overall scaling
of computational cost with the number of atoms is at
least O(N2). Note also that only the increase with walk
length L and the N -dependent cost for each evaluation
are amenable to parallelization—costs associated with
the number of iterations are inherently sequential, and
cannot be offset by adding more parallel tasks if other
limits apply (Sect. 2.4). In practice, we find that for
good convergence, periodic solids require systems sizes
of N = 32–256 atoms, walk lengths L of 100s to 1000s,
and K = 500–5000 walkers. These result in 105 to 107
iterations being needed to reach the global minimum at
temperatures below any structural phase transitions.

It also has to be noted that using system sizes men-
tioned above will inevitably cause a finite-size effect.
First-order phase transitions will be smeared out in
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Fig. 5 Constant pressure heat capacity around the melt-
ing transition, calculated for the periodic system of 64 LJ
particles. Black lines show the converged result; purple lines
illustrate the variation of independent NS runs of the same
system, showing an estimate for the uncertainty. The num-
ber of walkers, K, is increased left to right, the length of
the walk, L, is increased top to bottom. The total cost is
the total number of energy evaluations performed, and is
constant along diagonal panels—grey lines are guide to the
eye

temperature, rather than being truly discontinuous. In
addition, there is a systematic shift, usually underesti-
mating the temperature of the vaporisation transition,
and overestimating that of the melting transition. The
magnitude of this effect varies depending on the stud-
ied system and pressure, but is generally between 3 and
8% if using 64 atoms [51,52].

Since its introduction by Skilling, several modifica-
tions and improvements have been suggested to increase
the efficiency of the sampling algorithm. A multilevel
exploration of the original top–down algorithm, the dif-
fusive nested sampling [53], has shown improved effi-
ciency in exploring some high-dimensional functions.
Introducing varying number of live points in dynamic
nested sampling has shown improved efficiency in the
distribution of samples [54].

The PES of atomistic systems is often very differ-
ent in its features from the parameter spaces explored
in other disciplines. Thus, these modifications to the
technique are not always applicable, or offer only lim-
ited improvement. While in typical data analysis appli-
cations, a 30-dimensional function is considered to be
high dimensional, the dimensionality of the atomistic
PES is at least an order of magnitude larger. A poten-
tially large number of local minima structures mean
that the PES is often highly multimodal; moreover, the
relative ratio of these modes is of the utmost signifi-
cance as they correspond to phase transitions in the
material. Finally, while calculating the partition func-
tion is the key advantage of NS, we are rarely interested
in its value directly. Practically useful thermodynamic

information is extracted from the sampling as its first
or second derivative, which is found to converge much
faster than the actual value of the partition function.

A conceptually very similar algorithm, the density
of states partitioning method used by Do and Wheat-
ley [55–57] can be regarded as an NS with using only
a single walker which is allowed to revisit previously
explored higher energy states, and reducing the phase-
space volume by a constant factor of two at every sam-
pling level. Their calculations also used known crys-
talline structures as starting configurations [58]. A fur-
ther similar techniques has since been proposed, the
Nonequilibrium Importance Sampling of Rotskoff and
Vanden-Eijnden to calculate the density of states and
Bayes factors, using nonequilibrium trajectories [59].

2.4 Parallelization

The fact that NS relies on a live set of many con-
figurations might appear to suggest that paralleliza-
tion would be straightforward, but, in fact, the naive
algorithm is entirely sequential. One configuration at a
time is eliminated and another is cloned, and all of the
computational cost is in the MC trajectory to decor-
relate the cloned configuration. Several modifications
have been proposed to provide for some level of paral-
lelism, including discarding and cloning multiple con-
figurations [60–62], moving many live points by a small
amount at each iteration [51], and combining multiple
independent NS runs [39].

One approach is to eliminate multiple configura-
tions with the highest energies at each NS iteration
[61,62]. In the same way that the highest energy con-
figuration provides an estimate of the boundary of the
K/(K + 1) fraction of configuration space volume, the
Np’th highest configuration provides an estimate of the
(K − (Np − 1))/(K + 1) fraction of configuration space
volume. Since eliminating several configurations must
be followed by creating the same number of new decor-
related configurations, the computational cost of the
MC walks required can be parallelized over the Np inde-
pendent configurations. Overall, the fraction of config-
uration space removed at each NS iteration increases
by a factor of Np, and the number of NS iterations
to achieve a certain compression decreases by a fac-
tor of Np. This reduced number of iterations is com-
pensated by the computational cost of each iteration
increasing by a factor of Np, but that cost can be paral-
lelized over Np tasks. Unfortunately, the variance in the
computed phase-space volume increases with the num-
ber of configurations eliminated at each NS iteration
(Appendix B.2.a of Ref. [48]), increasing the amount
of noise and limiting the extent of parallelization using
this method.

Another approach is to apply the MC walk not only
to the newly cloned configuration, but also to Np − 1
other randomly selected configurations, where Np is the
number of parallel tasks [51]. This leads to fluctua-
tions in the length of the MC walk each configuration
experiences between when it is cloned (and identical to
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another configuration) and when it is eliminated (which
is the only time its position or energy affect calculated
properties). If at each NS iteration, each of Np con-
figuration experiences an MC trajectory that is L/Np

steps, the mean number of steps for eliminated config-
urations remains equal to L, although the variance of
the walk length increases (Appendix B.2.b of Ref. [48]).
Each of these shorter MC trajectories can be simulated
by one of Np parallel tasks. While there are no quanti-
tative results for how much this variability affects com-
puted properties, it appears empirically that the effect
is small, and this parallelization method is most com-
monly used in NS for materials. The degree of paral-
lelization is limited by the need to keep L/Np > 1, so
that at least some MC steps are taken at each itera-
tion. For GMC or TE-HMC, the ratio must be larger
than the length of a single short trajectory, typically of
order 10 GMC segments or MD timesteps. Each short
trajectory must be performed in its entirety to main-
tain the coherence between steps that gives these meth-
ods the ability to propose large-amplitude moves with
non-negligible acceptance probability. In practice, the
ratio L/Np must be kept significantly larger to preserve
good load balance between the tasks and because in the
highly parallel regime (Np of order 100) parts of the pro-
cess other than the MC trajectory generation become
significant.

A final approach to parallelizing NS is to run mul-
tiple independent trajectories and combine them after
they are complete [39]. The combination of Np inde-
pendent runs with K ′ live points each is approximately
equivalent to a single NpK

′ live point run. While this
approach has been explored for other applications of
NS, it has not been widely used in materials. A possi-
ble reason is that the multiplicity of minima in typical
materials systems is extremely large, and as a result, a
serious problem is presented by extinction, as described
in the previous subsection. The scope for parallelism is
therefore limited by the need to keep K ′ = K/Np large
enough to prevent extinction in any important min-
ima. While it has not been carefully studied, it may
that the smallest K ′ that sufficiently avoids extinction
is already too computationally expensive to allow for
multiple runs.

2.5 Analyzing the results

The energies, configuration space volumes, and cell vol-
umes generated by NS are sufficient to carry out the
weighted sum in Eq. 4 numerically to evaluate the parti-
tion function. More importantly, physically meaningful
quantities such as the energy or enthalpy and its deriva-
tive, the specific heat, can be computed as a function
of temperature from Z(β). Rapid changes in the energy
as a function of temperature, corresponding to peaks
in the specific heat, are associated with abrupt changes
in structure. For bulk systems in the thermodynamic
limit, these become first-order transitions with singu-
lar specific heat, approximated by sharp peaks in the
finite-size simulated systems. These peaks provide dis-
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Fig. 6 Nested sampling of the periodic system of 64 LJ
particles. Top panel shows the enthalpy and the (estimated
instantaneous) temperature as a function of the NS itera-
tions. The bottom panel shows the enthalpy and the con-
stant pressure heat capacity as a function of temperature
for the same run. Shaded grey and green areas show the
iteration and enthalpy ranges, respectively, where the par-
tition function contribution is 10 times smaller than at the
peak for the same temperature

tinctive signatures of such transitions, and can be used
to identify transition temperatures for phase diagrams.

An example of the raw and processed output from a
single constant pressure NS simulation of the Lennard–
Jones system is shown in Fig. 6. As seen in the
top panel, the enthalpy as a function of NS iteration
decreases monotonically, by construction, but its slope
becomes more negative when the system goes through
phase transitions. At each temperature a narrow range
of iterations (and enthalpies) contributes significantly
to the weighted sum, shifting smoothly within each
phase, and jumping discontinuously between phases.
The derivative of the enthalpy with respect to iteration,
which is inversely proportional to ∂H

∂S = T and gives an
estimate of the temperature that the current NS iter-
ation will contribute to [48], decreases monotonically
except for a temporary rise as the NS iteration process
begins to go through the transition energy range. The
sharp peaks in cp(T ) shown in the bottom panel coin-
cide with the discontinuities in the ensemble average of
the enthalpy, as they must, since they are calculated as
analytical derivatives of the same weighted sum.

2.6 Implementations for materials problems

One software implementation of the nested sampling
and analysis algorithms discussed above is provided by
pymatnest [63]. It uses python and the atomic simu-
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lation environment (ASE) package [64] to implement
the Monte Carlo procedure and parallelization strate-
gies described in the previous sections in a way that
abstracts the material-dependent energy and force cal-
culations. The PES evaluations can use any ASE cal-
culator, including potentials implemented in the widely
used LAMMPS MD software [65], although the com-
putational cost is significant. Another python-based
implementation, designed for non-periodic systems, is
available [66], and forms the basis for the implementa-
tion [67] of the superposition enhanced nested sampling
variant [62], discussed in more detail below.

3 Applications

3.1 Configuration space of clusters

The use of the nested sampling framework for sampling
the potential energy landscape of materials was first
demonstrated on small Lennard–Jones clusters [68].
Lennard–Jones clusters are popular test systems for
new phase-space exploration schemes, due to the low
computational cost of the interaction function and the
large amount of data on their properties available in
the literature [1,2,69,70]. Nielsen also used NS to study
LJ17 [71]. Apart from calculating thermodynamic prop-
erties, this also demonstrated that NS can provide a
broad-brush view of the landscape, giving a helpful
overview of the system. Visualizing the 3N -dimensional
PES is a challenging task and projecting the landscape
using ad-hoc order parameters can be very misleading.
An efficient way of overcoming this is to represent the
hierarchy of known minima and transition states using a
disconnectivity graph [72–74], capturing the topology of
the entire landscape. However, disconnectivity graphs
do not include any information on the entropic contri-
bution of different basins, and thus cannot provide guid-
ance in understanding the thermodynamic behaviour of
the system. NS naturally provides this missing informa-
tion which can be used for more informative visualiza-
tion. If distinct structures are identified and thus sam-
pled configurations are sorted according to the basin
they belong to using an appropriate metric to calculate
the distance of configurations, the relative phase-space
volume of these basins can be easily calculated: since
configurations in the live set are uniformly distributed
at every sampling level, the ratio of number of samples
in different basins tells us their relative volume. An
alternative that does not require explicit reference to
the live set is presented in the next section. We used this
information to construct the energy landscape chart
of several Lennard–Jones clusters [68], where basins
of minima explored by NS are shown as funnels with
appropriate widths representing their phase-space vol-
ume.

The example of LJ8 is shown in Fig. 7, showing the
global minimum structure along the seven known local
minima. While all of these were found, it is obvious from
this representation that their contribution to the phase-

Fig. 7 Energy landscape chart of 8 LJ atoms forming a
cluster. Grey shading and numbers in red show the uncer-
tainty in the phase-space volume. Reprinted with permission
from Fig. 7 of Ref. [68]. Copyright 2010 American Chemical
Society

space volume is negligible compared to the main funnel
leading to the global minimum, and thus, we can safely
assume them to be thermodynamically irrelevant in this
case. Similar energy landscape charts were also used by
Burkoff et al. [60] to provide a qualitative insights into
the folding process of a couple of poly-peptides, sampled
by NS.

As the size of the system and thus the number of local
minima increases, we cannot expect NS to explore all of
them: since the size of the live set, K, controls the res-
olution of the PES we can see, thus narrow basins will
inevitably be missed. However, since narrower basins
contribute the least to the partition function, this does
not hinder our ability to calculate thermodynamic prop-
erties and give an overview of the significant structures.
This has also been demonstrated studying the melt-
ing behaviour of a CuPt nano-alloy [75], and studying
the PES of small water clusters [76], using NS to find
the few thermodynamically relevant minima. This also
shed light on the connection between the thermody-
namic properties and the features of the energy land-
scape: if local minima gave an overall small contribu-
tion to the total partition function, a sharp “melting”
peak was observed on the heat capacity curve, while
the existence of competing structures at finite temper-
ature were associated with a more gradual transition.
Figure 8 illustrates the analysis of the NS results on the
cluster of 13 particles modelled by the mW potential of
water [77].
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Fig. 8 Nested sampling of 13 mW water particles. Upper
panel shows the heat capacity curve. In the middle panel,
each dot corresponds to a configuration generated dur-
ing nested sampling, showing their average Q4 bond order
parameter [78] as a function of temperature and is coloured
according to the average ring size within the cluster to help
distinguish different basins of the PES. The bottom panel
shows the relative phase-space volume ratio of global min-
imum basin (purple) and the local minimum basin (red),
while the grey area represents the contribution of any other
structure to the total partition function. Temperatures cor-
responding to the peaks on the heat capacity curve, indi-
cating phase transitions, are shown by vertical dotted lines.
Middle panel reprinted with permission from Fig. 2 of Ref.
[76]. Copyright 2019 by the Royal Society of Chemistry

While in the large majority of systems, the basins
with small phase-space volume can be disregarded with-
out affecting our overall understanding, there are excep-
tions, especially in case of clusters. Some systems dis-
play a highly frustrated PES, where high barriers divide
the landscape and the relative phase-space volumes
of basins are significantly different at different energy
levels. If a basin which is narrow at higher energies
becomes the most significant at a lower energy level, we
see a corresponding low-temperature (often solid–solid)

phase transition in the system. In such cases, the NS
live set has to be large enough to ensure a high resolu-
tion capable of capturing and sampling sufficiently the
narrow basin of interest. To evade the increased com-
putational cost and ensure that known minima are not
“lost” during the sampling, Martiniani et al. proposed a
method combining nested sampling with global optimi-
sation techniques, superposition enhanced nested sam-
pling [62]. In this case, sample configurations are not
only generated from existing members of the live set,
but are also drawn from a pre-existing database, pro-
portional to their statistical weights, calculated using
the harmonic superposition approximation (HSA). Its
speed-up and accuracy has been demonstrated for LJ31
and LJ38, but databases miss the astronomical num-
ber of high-energy local minima that would be neces-
sary to counteract the inaccuracy of HSA at high ener-
gies. For larger systems with broken ergodicity, such
as LJ75, even this method struggles. To overcome the
difficulty of sampling in these particular systems, the
funnel-hopping Monte Carlo [79] and nested basin sam-
pling [80] approaches have been recently proposed.

3.2 Phase diagram of materials

For bulk, rather than cluster, systems, our knowledge of
the PES is often distilled into the form of a phase dia-
gram, showing the stability regions of thermodynami-
cally distinct phases or structures under different con-
ditions, most typically temperature, pressure, or com-
position. This is crucial in both academic and indus-
trial materials science applications, to be able to predict
the state and the properties of a material. However, as
we have discussed, obtaining the entire phase diagram
under a wide range of conditions is a highly laborious
task, requiring the use of multiple, conceptually differ-
ent methods, and hence, it is rarely performed in an
exhaustive way.

The first application of the NS technique to a bulk
system, which used a periodic supercell approximation,
was done on the hard sphere solid [81], calculating the
compressibility from the partition function to locate the
fluid–solid-phase transition and discussing the phase-
space volume of jammed structures. The following year,
Nielsen et al. performed constant pressure NS simula-
tions of two Lennard–Jones clusters in a hard sphere
cavity, as well as a periodic LJ system in a fixed cubic
box [82].

These works were followed by an extension of NS to
constant pressure sampling in a fully flexible periodic
simulation cell, which allowed, for the first time, the cal-
culation of the entire pressure–temperature phase dia-
gram of a material. The first such simulations were per-
formed for the Lennard–Jones potential and four EAM
models of aluminium, as well as for the composition–
temperature–pressure phase diagram of an EAM model
of the NiTi shape memory alloy, calculating the marten-
sitic phase transition [51]. This work demonstrated how
the peaks in the heat capacity curve enable us to locate
not just the boiling and melting curves, but also the
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Fig. 9 Constant pressure heat capacity curves calculated
from sampling performed at a range of pressures, used to
locate phase transitions and draw the pressure–temperature
phase diagram. Application to the Ercolessi–Adams EAM
potential model for aluminium [51,84]

Widom line above the critical point, and the solid–
solid-phase transitions, as demonstrated in Fig. 9. To
locate the critical point in the nested sampling calcu-
lations, we drew on the results of Bruce and Wild-
ing [83]: for a finite system at and below the critical
point, the density distribution appears bimodal (at the
temperature corresponding to the maxima of the heat
capacity peak), while above the critical point, the den-
sity distribution transitions quickly becomes unimodal.
We used this argument to estimate the critical pres-
sure to be between the two adjacent sampling pressures
where the modality of the distribution changes, and
demonstrated that results provided by this approach
are in very good agreement with those calculated by
the Gibbs-ensemble Monte Carlo technique [51]. Simi-
lar simulations of phase transitions at a single pressure
were also calculated for the mW model of water and a
system of coarse-grained bead-spring polymers [48].

Identifying different structures using suitably cho-
sen order parameters enables the separation of different
basins of the PES. As Fig. 10 shows, NS not only identi-
fies the most stable structure, but provides information
on the thermodynamically relevant metastable phases
as well. Similar extensive phase diagram comparison
studies have been performed for a range of EAM type
potentials of iron [85] and lithium [52].

It is also possible to characterize these basins with-
out the need to refer to the live set, as was done for the
Lennard–Jones clusters in Sect. 3.1. The entire trajec-
tory is converted into a graph, where each configuration
is a node, and the edges are connections to its k nearest
neighbors in feature space (i.e., k most similar config-
urations defined from a structurally relevant similar-
ity measure). The network is separated into connected
components, and each component defines a basin, iden-
tified by its minimum energy structure. The configu-
ration space volume associated with each basin is the
sum of weights associated with each sample in the con-
nected component. In order of decreasing energy, one
node (sample) and all of its edges are eliminated, and

Fig. 10 Nested sampling of the Mishin EAM for alu-
minium [86]. The upper panel shows a section of the
temperature–pressure phase diagram, featuring the melting
line and the phase boundaries of the three crystalline phases
identified by NS: fcc, hcp, and bcc. The bottom panels show
the average Q6 bond order parameter [78] as a function of
enthalpy for configuration generated during nested sampling
at three different pressures. Q6 order parameter for the per-
fect crystalline structures are shown by horizontal dotted
lines, and the phase transition temperature between hcp
and bcc is marked by a vertical dashed line in the middle
panel

the new network is analyzed for connected components.
If removing the highest energy node causes a basin to
decompose into two or more disconnected subgraphs,
those become new basins with their own volumes, and
the energy barrier between them is simply the energy
of the last node that connected them. This process is
repeated until all the samples have been eliminated. To
visualize the results, the left and right edges of each
basin at each iteration are plotted, so that the x-axis
distance between them is proportional to the basin’s
volume at the same iteration, at a y-axis position equal
to the energy of that iteration. Because the range of vol-
umes can be extremely large (e.g. 1096 for a 64-atom Li
cell), it must be scaled to be visible in a plot. Keep-
ing the relative volumes of the basins at each energy in
correct proportion, scaling the overall width to a func-
tion that decreases exponentially with energy leads to a
visually pleasing result that conveys the rapid decrease
in configuration space.

An example from an NS simulation of Li at an applied
pressure of 15 GPa with an embedded atom model
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Fig. 11 Visualization of the potential energy landscape of
lithium at P = 15 GPa described by an EAM [89]. At high
enthalpy, there is no separation into different basins, and all
configurations are associated with a single basin. The three
basins that become distinct at lower enthalpies (dashed lines
indicate the enthalpy of each barrier) correspond to the hcp
structure (orange, left), fcc structure (green, center), and
mixed ABAC stacking (right, blue). At each enthalpy value,
the relative widths of the basins correspond to their relative
configuration space volumes, and the overall width is scaled
to be exponential with enthalpy. The ground-state mixed
stacking basin is not closed at the bottom to indicate that
we have no data on its minimum enthalpy, although it is
likely to be close to the lowest sampled value

(EAM) [52] is shown in Fig. 11, using the similarity
defined by the configuration-averaged SOAP overlap
[87,88] with nmax = 8, lmax = 8, and a cut-off of three
times the nearest-neighbor distance of 2.55 Å(from the
NS trajectory’s minimum energy configuration). The
raw data are somewhat noisy, with many spurious but
tiny clusters, so the basins are merged if the barrier
between them is less than 2 eV or if they contain
fewer than 10 samples when they split off. The visu-
alization procedure identifies three remaining basins.
The first to split off is the hexagonal close-packed
structure (hcp, AB stacking of close-packed layers),
which persists until low enthalpy but always occupies a
very small fraction of the configuration space. At only
slightly lower enthalpy, the face centered cubic struc-
ture (fcc, ABC stacking) basin splits off, occupying
approximately half of the explored configuration space
volume. The remaining basin constitutes the ground
state, with mixed hcp and fcc-like ABAC stacking, but
this structure coexists with fcc for about 4 eV, only
dominating at enthalpies below about −15 eV. The
competition between these basins leads to variations
in the observed structure as a function of tempera-
ture.

An initial study of a multicomponent system des-
cribed an order–disorder transition in a solid solution
binary-LJ system [48]. The CuAu alloy has also been
repeatedly used as a model binary system: after cal-
culating the melting line [48], the entire composition–

temperature phase diagram of the CuAu binary system
was also calculated [90], and both NS and WL used
to study the order–disorder of the occupancy of lat-
tice sites, without the liquid phase being explored [91].
NS was also used to determine the mean number of
hydrogen atoms trapped in the vacancies of the α-Fe
phase [92]. An initial fixed composition NS simulation
was used to determine the chemical potential of a sin-
gle H atom within a relatively small supercell of perfect
crystal. Simulations at a range of different H concentra-
tions were carried out with NS, and then combined into
a single grand-canonical partition function (for variable
H atom number) using the calculated chemical poten-
tial.

The semi-grand-canonical ensemble was used to sim-
ulate the temperature–composition phase diagram for
a machine-learning potential of the AgPd alloy [50]. In
this case, the composition is an output observable of
the NS simulation, as plotted in Fig. 12 for a num-
ber of NS trajectories at different chemical potential
difference values. When the trajectory goes through
a phase transition with a two-phase region, in addi-
tion to the discontinuity in the equilibrium structure
and average energy above and below the transition, the
equilibrium composition changes as well. As a result,
the peak in the specific heat as a function of temper-
ature is correlated with an abrupt jump in the com-
position, from the value in the high-temperature phase
to that in the low-temperature phase. Finite system
size effects broaden the transition, as seen in the fig-
ure, where the change in composition as a function of T
across the two-phase region is rapid but far from discon-
tinuous. The change becomes more abrupt as the sys-
tem size increases, approaching a discontinuity, jump-
ing from the liquidus to the solidus, in the large system
limit.

An important conclusion of these calculations is that
the macroscopic behaviour of potential models can
be very different from what is expected by chemical
intuition, and thus suggested by previous calculations.
Using NS has lead to the identification of previously
unknown crystalline phases, new ground-state struc-
tures, and phase transitions not anticipated before,
for a significant proportion of tested potential mod-
els. Since using nested sampling, the calculation of
the phase diagram is no longer a bottleneck, the reli-
ability of the chosen model can be easily established
by performing the sampling, and thus, we can deter-
mine the conditions where the model is valid, before
it is used for a specific purpose or study. While in
some cases, the newly identified structure has little
influence on the practical use of the model (e.g., a
bcc structure transforming to body-centered-tetragonal
at very low temperatures [85]), in other cases, these
shed light on significant new behaviour of the model,
which affects computational findings in general. Most
notably, NS calculations on the Lennard–Jones model
led to the discovery of new global minima: depending
on the pressure and the applied cut-off distance, the LJ
ground-state structure can be different stacking vari-
ants of close packed layers [93]. Also, recent NS stud-
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Fig. 12 Temperature–composition phase diagram for
AgxPd1−x alloy using an ML interatomic potential, calcu-
lated by s-GC NS (solid lines representing n(T )), fixed com-
position NS (blue circles representing transition T and verti-
cal bars indicating peak width), and direct two-phase coex-
istence simulation for a larger system (red circle). Dotted
lines indicate boundaries of experimentally observed two-
phase region, and all simulation results are shifted up by
200 K to facilitate comparison with experimental shape and
extent of two-phase region. The s-GC NS constant Δμ n(T )
curves show a gradual shift in composition as temperature
changes, interrupted by an abrupt change in the (finite-size
broadened) phase transition region. The left and right edges
of the lower slope parts of each curve are the high- and low-
T boundaries of the two-phase coexistence region, respec-
tively. The composition-dependent phase transition between
1000 K and 1500 K is the solid–liquid transition, and the
low-temperature phase transition, only shown at one com-
position, is a solid-phase order–disorder transition. Taken
From Fig. 5 in Ref. [50]

ies of the hard-core double-ramp Jagla model revealed
a previously unknown thermodynamically stable crys-
talline phase, drawing surprising similarities to water
[94].

3.3 Broader applications in materials science

While in the majority of materials applications, thermo-
dynamic properties derived from the partition function
are the target calculated quantities, its absolute value
can also be the focus of interest. For example, the par-
tition function is necessary to establish the correct tem-
perature dependence of spectral lines and their inten-
sity. NS, as a unique tool to give access directly to the
partition function, has been used to calculate the rovi-
brational quantum partition function of small molecules
of spectroscopic interest, using the path-integral for-
malism [95]. This has showed that NS can be effi-

ciently used, especially at elevated temperatures and in
case of larger molecules, where the direct-Boltzmann-
summation technique of variationally computed rovi-
brational energies becomes computationally unfeasible.

The NS algorithm has also been applied to sample
the same path through phase space as would be cov-
ered in traditional coupling-parameter-based methods
such as thermodynamic integration and perturbation
approaches, but without the need to define the coupling
parameter a priori. The combined method, Coupling
Parameter Path Nested Sampling [96], can be used to
estimate the free energy difference between two sys-
tems with different potential energy functions by con-
tinuously sampling favorable states from the reference
system potential energy function to the target potential
energy function. The case studies of a Lennard–Jones
system at various densities and a binary fluid mixture
showed very good agreement with previous results.

Nested Sampling has been used to sample transition
paths between different conformations of atomistic sys-
tems [97]. The space of paths is a much larger space
than that of the configurations themselves. To make
it finite-dimensional, the paths are discretised, and the
well-established statistical mechanics of transition path
sampling (TPS) is leveraged [98]. The top panel of
Fig. 13 shows a double-well toy model with just two
degrees of freedom. There are two pathways that con-
nect the two local minima, and the barrier via the
top path is slightly higher. The results of the Nested
Transition Path Sampling (NTPS) shows the expected
result: at high energies, the paths are random (black);
at medium energies, the short path dominates (grey),
but at low energies, the longer bottom path, which has
the lowest barrier energy, dominates (white).

The bottom panel of Fig. 13 shows the results of
NTPS applied to a Lennard–Jones cluster of 7 particles
in two dimensions. There are four transition states that
facilitate permutational rearrangements of the ground-
state structure. Depending on the temperature (1/β),
the fractions of the different mechanisms that lead to
successful rearrangements change, as shown. The esti-
mate of the same fractions just from the transition state
barrier energies is shown by dashed lines. The difference
becomes large at high temperatures, where anharmonic
effects neglected by transition state theory but included
in NS become significant.

Nested sampling has also been used for more tra-
ditional Bayesian inference problems in the context of
materials modelling [99]. There, the task was to recon-
struct the distribution of spatially varying material
properties (Young’s modulus and Poisson ratio) from
the observation of the displacement at a few selected
points of a specimen under load. Under assumption
of linear elasticity, the displacement is a linear func-
tion of the stress, given fixed material properties. Since
the stresses cannot be observed, and the displacements
as a function of the unknown material properties are
highly nonlinear, determining the material parameters
is a difficult inverse problem. The use of nested sam-
pling allowed rigorous model comparison by calculat-
ing the Bayesian evidence. Furthermore, under realis-
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Fig. 13 Nested transition path sampling for a model
double-well potential (top) and two-dimensional LJ7 (bot-
tom). The inset shows the heatmap of the double-well poten-
tial, with three example transition paths: a high-energy path
(black), a medium-energy short path through the slightly
higher top barrier (grey), and a low-energy longer path
through the slightly lower bottom barrier. In the main plot,
the greyscale of the paths correspond to the NS iteration
(and thus also path energy). For LJ7, the graph shows the
fraction of various rearrangement mechanisms as a function
of temperature (top x axis, with inverse temperature shown
on the bottom x axis). The dashed lines correspond to the
expected fraction based on the barrier heights and assum-
ing harmonic transition state theory. Reprinted figure with
permission from Ref. [97]. Copyright 2018 by the American
Physical Society

tic regimes including boundary conditions, number of
observations, and level of noise, the likelihood surface
turned out to be highly multimodal. The best recon-
structions were obtained by considering the mean of
the posterior, sampling over a very diverse parameter
range, and significantly outperformed the naive esti-
mate that takes the parameters corresponding to the
maximum likelihood.

4 Conclusions and future directions

The nested sampling method is a powerful way of nav-
igating exponentially peaked and multimodal probabil-
ity distributions, when one is interested in integrals
rather than just finding the highest peak. NS uses
an iterative mapping and sorting algorithm to convert
the multidimensional phase-space integral into a one-
dimensional integral, enabling the direct calculation of
the partition function for materials given a potential
energy function. In its materials science application, NS
is a top–down approach, sampling the potential energy
surface of the atomic system in a continuous fashion
from high to low energy, where the sampling levels
are automatically determined in a way that naturally
adapts to changes of the phase-space volume. Its out-
put can be postprocessed to compute arbitrary prop-
erties at any temperature without repeating the com-
putationally demanding step of generating the relevant
configuration samples.

The practical benefit and implications of the NS
results are inherently connected to the quality of the
interaction model employed to calculate the energy
of atomic configuration. Since NS thoroughly explores
the configuration space and finds equilibrium configu-
rations, it cannot be restricted to specific experimen-
tally known structures if they are not also equilibrium
phases of the computational potential energy model.
While on one hand, this can be turned to our advantage,
and used to determine the reliability and accuracy of
existing and widely used models in reproducing desired
macroscopic behaviour, for many materials, in partic-
ular with multiple chemical species, sufficiently accu-
rate and fast potential energy models are not yet avail-
able. The increasing accuracy and efficiency of machine-
learning interatomic potentials is a promising avenue to
fulfill this need, complementing NS to make an emerg-
ing and powerful tool for predicting material properties.

The unique advantage of NS has been demonstrated
for a range of atomistic systems, gaining a broad overall
view of the entire PES and providing both thermody-
namic and corresponding structural information, with-
out any prior knowledge of potential phases or tran-
sitions. This capability inspires materials calculations
from a new perspective, both in terms of allowing high-
throughput and automated calculation of these ther-
modynamic properties, and also in enabling sampling
those parts of the configuration space that are consid-
ered challenging. Its success in the systems studied so
far provides motivation to explore the application of NS
for a wider range of materials problems; studying glass
transition and behaviour of disordered phases, phase
transitions of systems exhibiting medium-range order;
molecular systems, from simple particles to polymers
and proteins; or sampling regions around the critical
point where fluctuations are typically large.
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51. R.J.N. Baldock, L.B. Pártay, A.P. Bartók, M.C. Payne,
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