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Abstract. Imaginary-time path-integral or ‘ring-polymer’ methods have been used to simulate quantum
(Boltzmann) statistical properties since the 1980s. This article reviews the more recent extension of such
methods to simulate quantum dynamics, summarising the chain of approximations that links practical
path-integral methods, such as centroid molecular dynamics (CMD) and ring-polymer molecular dynam-
ics (RPMD), to the exact quantum Kubo time-correlation function. We focus on single-surface Born—
Oppenheimer dynamics, using the infrared spectrum of water as an illustrative example, but also survey
other recent applications and practical techniques, as well as the limitations of current methods and their

scope for future development.

1 Introduction

Since the 1980s, imaginary-time path-integrals [1] or
‘ring-polymers’ have been exploited as a practical tech-
nique for simulating quantum Boltzmann statistical
properties [2-5] (and in some cases Bosonic statisti-
cal properties [5-7]).! This review addresses the more
recent extension of such methods to calculate the
dynamical properties of atomic nuclei in systems which
are too large to treat by wave-function methods. The
aim is not to review all that has been done using path-
integral dynamics methods, since there are already sev-
eral excellent reviews in the literature [8-11], nor is it to
cover allied topics, such as real-time path-integral meth-
ods [12-17] or the application of static path-integral
methods to infer dynamical properties (e.g., tunnelling
splittings [18,19] or quantum instanton rates [20]).
Instead, I hope to convince a perhaps sceptical reader
that (imaginary-time) path-integral dynamics methods
are approximations to the exact quantum dynamics,
which are necessarily crude when compared with wave-
function methods, but are often good enough to cap-
ture at least the essential physics. I will concentrate
on single-surface Born-Oppenheimer (BO) dynamics,
focusing mainly on the infrared spectrum of water.

To set the scene, let us write out the static path-
integral formalism for a one-dimensional system with
hamiltonian H = p?/2m 4 V(). The thermal expecta-
tion value

! By ‘quantum Boltzmann statistics’ I mean the quantum
statistics of distinguishable particles.
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1 N
~ _ L —BH ~
(A@) = T [P a@)], (1)
can be calculated using

(A(@)) = lim (A@Q))y (2)

N—oo
where

1
(A@Q))y = iz /dp/quN(Q) 3

% e—B[HN(p,q)+sN(p,q)]’

(with the quantum partition function Zx similarly
defined) and

Hy(p,q) = %Z%Hﬁv(q) (4)
1 Nl:l
V(@) =+ >_Via) (5)
=1
Sn(q) = iiw = (6)
N q - N P Q(BNH)Q bl CIN+1 —(I1
1 N
Axla) = = 3 Aw), @
=1
where P = {p17"'7pN}a q = {qlv"'an}v and ﬂN =

B/N. In other words, the trace over the diagonal matrix

elements of the quantum Boltzmann operator e—BH
is equivalent to a canonical phase-space average of an
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extended ‘ring-polymer’ system, consisting of NV repli-
cas or ‘beads’ of the original system, joined by harmonic
springs. For a system such as liquid water at room tem-
perature, N ~ 30 is typically sufficient to give con-
verged results [4] Efficient numerical methods have been
devised to sample the Boltzmann ring-polymer distri-
bution using Monte Carlo [2,5,21], or path-integral MD
(PIMD) [3].

The early papers on PIMD warn the reader not to
equate the ring-polymer trajectories to the real-time
dynamics of the quantum system [3]. The exact quan-
tum dynamics is of course given by the Schriédinger
equation (or by real-time forward-backward Feynman
paths) and the PIMD dynamics is used merely as a
device for sampling the bead positions ¢;, with the bead
momenta p; playing the role of dummy integration vari-
ables, with arbitrary masses (which have been set to the
physical mass m in Eq. (4)). However, such was the des-
peration in the quantum dynamics community (where
the application of wave-function methods in, say, 10
dimensions is even today a major challenge) that two
heuristic methods were proposed for extracting real-
time dynamical information from ring-polymer classi-
cal trajectories: centroid molecular dynamics (CMD)
[23-27] and ring-polymer molecular dynamics (RPMD)
[28-32].

In CMD, one propagates classical trajectories in the
phase space of the centroid (ring-polymer centre of
mass)

POZ%ZPU QOZ%Z% (8)
I I

on the potential of mean force obtained by integrat-
ing over the quantum thermal fluctuations (g — Qo).
In RPMD, one propagates classical trajectories in the
full 2N-dimensional phase space of the bead coordi-
nates (py, q;), with the associated masses taken to be the
physical masses [as they are in Eq. (4)]. One can show
[23,28] that CMD and RPMD give the exact dynam-
ics of the centroid in the high temperature (5 — 0),
zero time (¢ — 0), and harmonic limits, which ensures
that they reproduce the exact quantum Kubo time-
correlation function (t.c.f.) of a pair of linear operators
(i.e., p or §) in these limits; RPMD is also exact at zero
time for pairs of non-linear operators.

A heuristic justification of CMD and RPMD is there-
fore that these methods interpolate the quantum Kubo
t.c.f. between the limits just mentioned, and (by con-
struction) they do so in a way that conserves the quan-
tum Boltzmann distribution, which ensures that they
correctly lock in zero-point energy and satisfy quantum
detailed balance. However, there is more to these meth-
ods than mere interpolation between easy limits.

For example, CMD gives near quantitative agree-
ment with experiment for the fundamental bands in
the infrared spectrum of liquid water at room tem-
perature [33,34]. Figure 1 shows (partially adiabatic)
CMD predictions of these bands, computed using the
accurate MB-pol potential energy [35,36] and dipole-
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Fig. 1 Experimental and simulated infrared spectrum of
liquid water at 298.15 K. The simulations applied the
partially adiabatic centroid molecular dynamics (PACMD)
method to the MB-pol potential energy surface [35]. Repro-
duced with permission from Ref. [33]. Copyright 2015 Amer-
ican Chemical Society

moment [33] surfaces. The agreement of the simulated
fundamental bands with experiment is the closest yet
achieved for a first-principles water simulation.

Another striking example is that RPMD is surpris-
ingly accurate at predicting the rates of tunnelling reac-
tions [29,30]. Viewed as an interpolation, one might
expect RPMD to work for shallow tunnelling, where
Wigner’s correction factor [37] is valid, because the
system penetrates only the parabolic tip of the reac-
tion barrier; and also of course, the correct treatment
by RPMD of zero-point energy is essential for quan-
tum reaction rates [38,39]. However, it was found that
RPMD works at far lower temperatures [29], where
deep tunnelling speeds up the rate by orders of mag-
nitude, even for the difficult case of highly asymmetric
reaction barriers (for which an earlier proposed centroid
transition-state theory [40] fails). In Ref. [41], it was
shown that RPMD works so well for deep tunnelling,
because the RPMD rate is controlled by a thermody-
namic bottleneck consisting of thermal fluctuations of
the ring-polymers around the instanton.?

However, despite such successes, CMD and RPMD
also fail to describe dynamics that one might expect
to be not much more difficult than the scenarios just

2 An instanton is a periodic orbit on the upside-down poten-
tial energy surface; it plays a major role in semi-classical
tunnelling theory. See Refs. [44-49].



Eur. Phys. J. B (2021) 94:155

mentioned. Although CMD works well for water at
room temperature, it suffers from a so-called ‘curva-
ture problem’ as the temperature is lowered further
[48,49], which artificially broadens and shifts to the
red the OH-stretch band, making CMD inaccurate for
ice [50]; RPMD avoids this problem but instead dec-
orates the infrared spectra with spurious resonances
[51,52] (caused by coupling of the polymer springs to
the dynamics of the centroid), even at high tempera-
tures.

This pattern of success and failure hinted that
CMD and RPMD are approximations to an underly-
ing theory that combines quantum (Boltzmann) statis-
tics consistently with classical dynamics. That there
should be such a ‘classical dynamics—quantum statis-
tics’ theory was also consistent with earlier findings
of more conventional semiclassical calculations [53],
especially those based on the classical Wigner or ‘lin-
earized semiclassical-initial value representation’ (LSC-
IVR) method [53-61]. Such calculations gave strong evi-
dence that most of the quantum effects in single-surface
condensed-phase dynamics originate in the statistics.
However, LSC-IVR can only be a short-time limit to
such a theory, because it does not conserve the quantum
Boltzmann distribution [52], and thus rapidly releases
zero-point energy into inter-molecular degrees of free-
dom (e.g., causing ice to melt in less than a picosecond
at 150 K) [62].

Reference [63] proposed a solution to this problem,
which is that real-time coherence arises from ‘jagged-
ness’ in the imaginary-time Feynman paths. It is well
known from simulations of static properties [5] that
imaginary-time Feynman paths come in two varieties:
jagged and smooth (Fig. 2). The jagged paths are the
‘ring polymers’ of Egs. (3)—(7); such paths are never
smooth, not even in the limit N — oo. The smooth
paths are obtained by Fourier-filtering the jagged paths.
It is well known [5,64] that an ensemble of smooth
paths converges to the same (exact) quantum ther-
mal expectation values as an ensemble of jagged paths
(albeit more slowly). However, Ref. [63] showed that
this is not true for dynamics, as the effective Planck’s
constant associated with the smooth degrees of free-
dom is zero. Dynamics restricted to the smooth space
is therefore classical. The statistics, however, is still
fully quantum Boltzmann (because the smooth degrees
freedom describe the quantum thermal fluctuations),
and the dynamics, although classical, satisfies quan-
tum detailed balance and thus correctly accounts for
zero-point energy. This dynamics is called ‘Matsubara
dynamics’ [63,65-70].

These theoretical findings are backed up by numerical
results, which show that, for simple models, Matsubara
dynamics gives time-correlation functions which are in
close agreement with the exact quantum results, indi-
cating that the effects of real-time coherence are indeed
small [66]. Moreover, it is easy to show that both CMD
and RPMD are approximations to Matsubara dynam-
ics, which result from taking respectively mean-field
[66] and short-time limits [65]. However, a big disap-
pointment with Matsubara dynamics is that it can-
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Fig. 2 Jagged ‘ring-polymer’ and smooth ‘Matsubara’
imaginary-time Feynman paths. The jaggedness is solely
responsible for real-time quantum coherence; the dynam-
ics of the smooth paths is therefore classical (and is known
as ‘Matsubara dynamics’) [63]

q(7),7=0— Bh

not be applied numerically to realistic systems, owing
to a highly oscillatory phase factor [63]. Nonetheless,
its relation with CMD and RPMD has turned out to
be useful for explaining when these methods are valid,
when and why they break down, and also for indicating
how they can be improved (which has resulted in the
recent QCMD method [71]).

The article is structured as follows. After review-
ing jagged and smooth imaginary-time Feynman paths
and their application to thermal expectation values
(Sect. 2), we describe the chain of theoretical approx-
imations that links the exact quantum dynamics of
imaginary-time Feynman paths (Sect. 3) through Mat-
subara dynamics (Sect. 4) to mean-field Matsubara
dynamics and CMD (Sect. 5) and (thermostatted) (T)
RPMD (Sect. 6). We then review some of the numerical
techniques used to make CMD and (T)RPMD practical
(Sect. 7), describe the newly developed QCMD method
(Sect. 8), and discuss some of the limitations of current
path-integral methods (Sect. 9). Section 10 concludes
the article.

Note Most equations will be written out for a one-
dimensional system, and the diagrams of Figs. 2, 3, and
4 are drawn for a two-dimensional system. However,
unless stated otherwise, the equations and diagrams
generalise immediately to any number of dimensions,
this being one of the advantages of the path-integral
formalism.

2 Properties of static path-integrals

2.1 Smoothed versus jagged paths

Imaginary-time Feynman paths are discontinuous or
‘jagged’ in appearance, because they are random-walk
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paths generated by the imaginary-time Schrodinger
equation. It has long been known [5,64] that this
jaggedness can be smoothed away using Fourier-filtering
and that the resulting ensemble of smoothed paths gives
the same static averages as the jagged paths. Starting
with the ‘jagged’ ring-polymers of Egs. (3)—(7), we can
Fourier-filter them by converting to normal mode coor-
dinates

N

1
Qn:N;nnqb n:(),:tl,...,ﬂ:N, (9)

with N = (N —1)/2 and?

1 n=>0
T = { V2sin(2nin/N) n=1,...,N (10)
V2cos(2min/N)n=—1,...,—N,
which diagonalise the spring term to
N
N
Sw(Q) == Y wiQl, (11)
n=—N
where
2
w = % sin (%) (12)

One can then smooth the paths by truncating |n| at
some finite value M = (M —1)/2, while taking N — oco.
Because |n| < M < N, it follows from the form of
T, that the paths become smooth and differentiable
functions of the imaginary time 7 = 0 — (A, which can
be written:

M
q(1) = Qo + \/52 Qn sin(w,7) + Q—p cos(wnT),
n=1

(13)
where the ‘Matsubara frequencies’ [72]
2nm
n — ", 14
o= 28 (14)

are obtained by letting [n| < N in Eq. (12). We will
often refer to the modes @y, |n| < M as the ‘Matsub-
ara modes’, the smooth space they inhabit as ‘Matsub-
ara space’, and the smooth paths ¢(7) as ‘Matsubara
paths’. The lowest frequency mode @ is the centroid of
Eq. (8), and the modes @,,,n # 0 therefore describe the
thermal quantum fluctuations around Qo (which vanish
in the high temperature limit).

3 We will always make M and N odd in what follows, since
this simplifies the form of the transformation matrices.
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A similar smoothing of the (at present, fictitious)
momentum variables p; to

M
p(T) =R+ \/iz P, Sin(wnT) + P, COS(WnT)a

n=1

(15)

allows us to define the Matsubara thermal expectation
value of a function A(§) of the position operator as

R _ 1
(A} = Gz [ [1@an@ o

X B*ﬁ[HM(P,Q)JrSM(P’Q)] ,

where Z); is similarly defined, and

M 5o

Hy(P,Q) = Zﬁ% +Um(Q) (17)

n=—M

M
SM(PvQ) = % Ziwfz gu (18)

n=—M
with

1 [P

UM(Q):% ; dr Vig(7)], (19)

and P = {PO;Pila-”aPiﬁ} and Q = {QO’Qi17...7
Q,77}- Alternatively, we can write

Bh 7_2
Hu(P.Q) = 5o [ar 4 viam) (20)

Bhm 12
SM(P,Q):%/O dr = {a%(T)] .21

which regenerates Eqs. (17)—(18) on substituting for
(p(1), q(7)) using Eqgs. (13)—(15). The function A;;(Q)
is defined similarly to Ups(Q).

If we make M large, the non-smooth M < |n| < N
modes correspond to very high frequencies w/,, and can
therefore be integrated out analytically by steepest-
descent [5,63], giving system-independent pre-factors
which cancel in the numerator and denominator of
Eq. (3). As a result

(A(@)) = lim (A@q)),, (22)

M — o0

i.e., the exact quantum thermal expectation value can
be calculated using either smooth or jagged paths
(although, in practice, the jagged paths give faster
numerical convergence).
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(b) Standard

(d) Matsubara

Fig. 3 Schematic diagram of the Feynman paths used to compute (a) thermal expectation values, (b) the ‘standard’ quan-
tum time-correlation function (t.c.f.) of Eq. (34), (c) the Kubo-transformed quantum t.c.f. of Eq. (38), and (d) Matsubara
dynamics, which results from smoothing the paths in (c¢). The imaginary-time sections of the paths are shown in blue; the

forward-backward real-time sections in red

2.2 Momentum operators and phase-space
path-integrals

It is straightforward to generalise the above to ther-

mal expectation values of functions of the momentum
operator. Inserting a Fourier identity, we can write

(A(p)) = ﬁ/dp/dq /dAA(p)

x(q—AJ20e g+ AJ2)ePA0 (23)

which can then be evaluated using ‘open’ linear poly-
mers [5,73] with the ends held apart at ¢ £ A/2. To
obtain the equivalent expression for smooth paths, it is
better first to rewrite Eq. (23) more symmetrically as

<A@»::@;SWZQ/Hp/Hq/HAANm>
N

% H ePrAr/h
k=1
X qr_1—Dp—1/2le” g+ Ak /2), (24)

where

1 N
An(p) = 5 2 Alw),
=1

which is identical to Eq. (23) since all pg, k # [ can be
integrated out. To smooth this expression, we convert
to normal modes P,,, @, take N — oo and truncate at

|n| = M (as in Sect. 2.1), which gives

(A®) )y = m/dP/dQAM(P)

Xe—BHJVI(PvQ)e_iBGM(P:Q)7 (26)

where Hy (P, Q) is given in Eq. (17), Ay (P) is defined
analogously to A/ (Q), and

_q Bn -
@@ =21 [Carm ™D e
M
= > wiPaQ . (28)
n=—M
As with ( A(q) ), one can show that
(A@) = lm (A()),,. (29)

Equation (26) is a phase-space path-integral [74]
which treats p and ¢ on an equal footing; unlike in
Eq. (16), p(7) is no longer a dummy variable. Although
the paths are smooth, they are also ‘open’, because
there are no springs. Instead, there is a ‘Matsubara
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phase’ 03, (P, Q), which is what remains of the Fourier
transforms in Eq. (24) after smoothing. The phase plays
the equivalent role to the spring term Sy (P, Q) of
Eq. (16) in making the distribution quantum Boltz-
mann. To demonstrate this, we analytically continue
(65]

Pn - Hn =In— iman—n (30)

which converts Eq. (26) into*

. _ 1
(A6)) = Gz [ [a@anan)

x ¢ BlHM(P,Q)+5u(P,Q)]

This expression shows that one can evaluate an expec-
tation value over momentum operators using the iden-
tical smooth path-integral expression to that used for
position operators in Eq. (16), provided that one uses
Ap(II) in place of Ay (P). It is easy to confirm that
this expression is correct. For example, taking A(p) = p,
we obtain () = limp—.co ( Po >M = 0; taking A(p) to
be the kinetic energy operator 7' = p?/2m, we obtain

(P —mwnQ2,,) .

(32)

which is the familiar ‘primitive’ kinetic energy estima-
tor [22] expressed in terms of the Matsubara modes.

Thus, smooth paths give the exact thermal expecta-
tion value for functions of p as well as of §. One can also
show that the same is true for mixed functions of p and
q. However, major differences between the smooth and
jagged spaces will appear when we consider dynamics
in Sect. 4.

3 Exact ring-polymer quantum dynamics

Path-integral dynamics methods such as CMD and
RPMD follow the time evolution of an entire imaginary-
time Feynman path (or an ensemble of such paths); i.e.,
they follow the time evolution of a set of IV replicas of
the system. This way of describing dynamics seems at
first sight to be at odds with the usual exact quantum
description, which follows the time evolution of a single
replica of the system. However, it has been known since
a paper published by Shi and Geva [75] that one can
in fact formulate exact quantum dynamics also as the
dynamics of an entire imaginary-time Feynman path,
and (as we will show in Sects. 4-6) this is the represen-
tation of the dynamics that is approximated by practi-
cal path-integral methods such as CMD and RPMD.

4 This is true provided Aas(P) is an analytic function.
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Consider first the more commonly used ‘standard’
version of the quantum t.c.f.

1 PO R A
Ch(t) = Tr|e T A B /] | (33)
which we can expand as

ChL(t) = %/dq/dAl /dzl Alqr + A1 /2)B(z1)

x(q1— A1/2I€*ﬁNHIq2>
N-—-1

X H <Qi\€7ﬁNﬁ|qz‘+1>

=2
x{qnle Vg + Ay /2)
x(qu+ Ay/20e MMz )
x (21| P gy — A /2), (34)

where we assume for now that A and B are functions of
position ¢ (and we generalise to include p below). We

can regard C’fg(t) as a sum over Feynman loops; each
loop has an ‘open’ imaginary-time section, connecting
¢+ A/2, which can be represented as a polymer ‘string’
(shown in blue in Fig. 3), and which is joined to real-
time forward and backward sections (shown in red in
Fig. 3). The latter represent the time evolution of a sin-
gle replica of the system, which is located at g; at time
zero and has evolved to z; by time t. The remaining
replicas in the linear polymer (see Fig. 3) are therefore
static and do not evolve in time; their job is to give the
point ¢; a quantum Boltzmann weighting at time t = 0.

Now, consider the Kubo-transformed version of the
quantum t.c.f.

B
K 1 d\
) = =

— Tr[e*’\ﬁfle*(ﬂ*)‘)H
ZJo B

% eth/ﬁBE—th/h]’ (35)

which contains equivalent physics to Cl[fé(t), via the
relation

in which Gf}g (w) and Gg‘%(u}) are the Fourier trans-
forms of CEL(t) and Cl{L(#). Following Shi and Geva
[75], we insert N — 1 identities e**/"e="Ht/" = 1 into
the quantum Boltzmann operator, then let N — oo, to
obtain

Chp() = lim CRH(), (37)
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where

C1AB

/dq/dA/dzAN )Bn(z)
N

H Qi1 — A1 /2]e” P g+ A /2)
=

<(Jz + Ay /2lem /R, )

th/h‘ql _ Al/2 >’ (38)

x( zle

and By (z) is defined analogously to Ax(q). This way
of writing CLKE]; (t) is equivalent to Eq. (35), but reveals
K s
(1) and C (1),

two major differences between C
First, Eq. (38) brings out the full symmetry of

Cﬁ% (t), showing that the integrand is invariant under
cyclic permutations P(I — [ 4+ 1) of the bead index .
This property leads to the well-known [28] result that

Cip(t) = Cpa(-), (39)
which is the same detailed balance relation satisfied by
the classical t.c.f. This permutational invariance plays
a key role in Matsubara dynamics (see Sect. 4).

Second, the dynamics is no longer that of a single
replica of the system, but instead that of N repli-
cas, each located at one of the bead positions ¢; at
t = 0, and evolving to z at time ¢ (see Fig. 3).
In the limit N — oo, each of the matrix elements
(@1 — Ay_1/2]e PvH|q + A;/2) can be replaced by a
single ring-polymer spring, connecting q—1 — A;_1/2
to ¢ + A;/2. The dynamics of the replicas therefore
corresponds to the exact quantum dynamics of a set
of beads ¢; distributed at t=0 around a ring-polymer
with NV openings of width A;; in other words, to the
exact quantum dynamics of an imaginary-time Feyn-
man path.

It is straightforward to generalise the form of c! n B( )

given in Eq. (38) to momentum-dependent A and B.
One inserts N Fourier identities into Eq. (35), and then
follows the same steps that led to Eq. (38), obtaining
(63]

chat) = m/dp/dq {e*ﬁﬁfl}N(p,Q)

st [B} L (p.a), (40)

where

N 3 .
X H <Ql—1 — Al71/2|6_ﬁNH‘ql + Al/2>61P1Az/h
=1

(41)

[B}N (p.q) :/dA/dz By (p,2)
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N
X H (a — A/2]20) g+ Al/2>eimAl/h7
=1
(42)

and

WV(g) 0
m Oq Oq Oy

[eS) A—=1 ax A
_ Z 1 E O Via) 0* (43)
A\ 2i g A

A=3,0dd Ip;

is the quantum Liouvillian [76]. Like Eq. (38), the inte-
grand of Eq. (40) is invariant under P(I — [ 4+ 1),
and the (exact quantum) dynamics propagated by e*!
is that of N replicas of the system, located initially
at the points (p;, ¢) distributed around a phase-space
Feynman path with IV openings. Nobody would suggest
using Eq. (40) to compute the quantum t.c.f., since it
has increased the dimensionality of the system by a fac-
tor of NV in the limit N — oco. However, we show in the
following sections that the exact quantum dynamics of
the phase-space points (p;, ¢;) is what lies behind path-
integral methods such as RPMD and CMD.

4 Matsubara dynamics

Matsubara dynamics emerges when the time-correlation
function of Eq. (40) is smoothed. As mentioned in
Sect. 2, smoothing has no effect on static properties
(in the limit M — oo0). However, it has a major effect
on the dynamics. Following similar steps to those of

Sect. 2, the smoothed version of CLKE];(t) can be shown
[63] to be

Chp(n) = lim Cif ), (44)
where

M 1
M) = T /dP/dQAM(P,Q)
e~ BHM(P.Q) —iB0r: (P,Q)
xe“1 By (P, Q), (45)

and Hy (P, Q) and 0, (P, Q) are the Matsubara hamil-
tonian and phase defined in Eqs. (17)-(27). At ¢=0,
C%a“] (t) is exact; for the same reason that smoothed
static expectation values are exact (Sect. 2). However,
for t > 0, the dynamics in the smooth space is dif-
ferent from the dynamics in the jagged space. This
is because, to avoid contaminating the dynamics with
jagged modes (P, Qy),|n| > M, one needs to approx-
imate the exact quantum Liouvillian £y of Eq. (43)
by the Matsubara Liouvillian £y, from which deriva-
tives with respect to the jagged variables have been
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()

T—=T+T9

Fig. 4 Imaginary-time translation (7 — 7 + 70) is equiv-
alent to an internal ‘caterpillar-track’ displacement (black
arrow) of each Matsubara loop ¢(7) (red line) around its
centroid (blue dot)

discarded [63]. When this is done, one notices that the
non-classical terms in Ly

i L ()T 0@
’I’L1:7M ’I’L/\:fM
a/\
* 0P, ...0P,,

vanish, because they involve powers of iy = ii/N, in
the limit N — oo. As result, the Matsubara Liouvillian
is simply

M

Ly = Z

P, 0 0Um(Q) 0
m 0Qy, 0Qy 8Pn7

(46)

n=—

and the dynamics is therefore classical in the space of
the smooth modes (P,,@,). This is the ‘Matsubara
dynamics’ referred to in the Introduction. We empha-
sise that the classicality has not been imposed a priori;
it has arisen naturally, because the effective Planck’s
constant associated with the smooth space is zero.” All
real-time coherence effects are therefore generated by
the jagged modes (P, @), |n| > M. Smoothing out
these modes to give Matsubara dynamics is thus equiv-
alent to neglecting the effects of real-time coherence.%
Since the dynamics in the smooth space is natu-
rally classical, one would expect that it conserves the
quantum Boltzmann distribution function e~ #Hm (P.Q)
e~ P9 (P.Q)  This is indeed the case, and is easily
shown to result from the invariance of the integrand
of the (non-smoothed) CXVB](t) under cyclic permuta-
tion P(I — I+ 1) of the bead indices (see Sect. 2).
After smoothing, this property survives as invariance
under imaginary-time translation 7 — 7 + 79, which is
equivalent to an internal displacement of the smooth
(p(7),q(7)) path around itself (see Fig. 4). No torque
can be exerted on this internal degree of freedom (since
Un(Q) is invariant under 7 — 7 + 7p—see Eq. (19)),

5 This is equivalent to saying that the smoothed density
matrix is diagonal in Q.

6 More generally, the smoothing has the effect of reducing
all commutators to Poisson brackets—see Ref. [69].
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and therefore, the momentum conjugate to it is con-
served. This momentum is (minus) the Matsubara
phase 0/ (P, Q) (as demonstrated in the Appendix).
Writing out the multi-dimensional generalisation of the
phase

_1 [Ph

QM(PaQ):ﬁ 0

oq(7)

drp(7) - 57

(47)

makes it clear that 6,/(P,Q) is indeed a generalised
internal angular momentum, with the components of
p(7) tangential to ¢(7) integrated around the inside of
the smooth loop. Since the hamiltonian Hy; (P, Q) is
also conserved, it follows that Matsubara dynamics con-
serves the smoothed quantum Boltzmann distribution.

Matsubara dynamics therefore gives a plausible expla-
nation of how classical dynamics can emerge from
a quantum Boltzmann distribution, without violating
quantum detailed balance: the dynamics in such cases is
dominated by the Matsubara modes (P, Qy ), |n| < M,
which, being smooth, have an effective Planck’s con-
stant of zero. A growing body of evidence (see below)
suggests that this picture is physically correct. However,
Matsubara dynamics cannot be used as a practical sim-
ulation method without further approximation, because
the phase 63/(P,Q) is usually too oscillatory to inte-
grate over numerically. It is necessary to make further
approximations to deal with 6y, (P, Q), and these turn
out to be the basis of CMD and RPMD [65].

5 Mean-field Matsubara dynamics and
CMD

One can reduce the phase 0p/(P,Q) by making M
small, and replacing Uy (Q) in Eq. (46) by the free
energy

1
]:M(Q) — _E In N/dqe—ﬁN[VN(Q)+SN(Q)—NSJVI(Q)]

M 1 N
X H 6<NZTZan_Qn> ,
n=—M =1
(48)

obtained by integrating over the |n| > M modes
(where AV is a normalisation constant). This approach is
referred to (perhaps confusingly)” as ‘mean-field Mat-
subara dynamics’ [66]. It is equivalent to approximat-
ing the exact quantum Liouvillian £y by its expecta-
tion value over the modes M < |n| < N, in the limit
N — oo.

One could make mean-field Matsubara dynamics for-
mally exact, using projection operators [77], but the

7 As used here, the term ‘mean field’ simply indicates that
the dynamics takes place on a potential of mean force.
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Fig. 5 Infrared spectrum for the damped two-dimensional
OH-bond model of Ref. [71], calculated using mean-field
Matsubara dynamics, QCMD, CMD, and TRPMD, and
compared with the exact quantum results (QM). The values
of M used in the mean-field Matsubara dynamics calcula-
tions were M =1 (800 K), M = 3 (600, 400 K), and M =5
(200 K).® Reproduced from Ref. [71], with the permission
of AIP Publishing

resulting generalised Langevin equation would be dif-
ficult to interpret or implement (because of a com-
plex friction kernel). Instead, we treat M as a conver-
gence parameter. It seems reasonable to expect that
the potential-of-mean-force dynamics will give a good
approximation to the exact Matsubara dynamics when
M is sufficiently large that the ring-polymer distribu-
tion around @, |n| < M in Eq. (48) is compact.
Using this approach, it is possible to compute the
linear-dipole infrared spectrum of a two-dimensional
‘Champagne bottle’ model of a rotating OH bond (with
the t.c.f. multiplied by a damping function to mimic the
decorrelation of liquid water) [66]. The results (shown
in Fig. 5) are, to date, one of the few pieces of numer-
ical evidence that directly confirm that Matsubara
dynamics correctly accounts for the classical part of the
dynamics in a quantum system at thermal equilibrium.

8 Note that the 200 K Matsubara spectrum dips below zero
at about 260 cm™'. This feature is an artifact of the trun-
cation of the Fourier modes at M =5 (see Ref. [73]).
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The differences between the mean-field Matsubara and
exact quantum results are small, namely a 20 cm~!
blue-shift and slight broadening of the stretch peak,
which presumably result from the real-time quantum
coherence associated with the neglected jagged modes
(although a long convergence tail in M cannot be ruled
out). Most importantly, the Matsubara OH-stretch fre-
quency is independent of temperature, showing that it
correctly accounts for zero-point energy.

Although the mean-field approach works for model
systems, it does not reduce 6;(P,Q) sufficiently to
treat realistic many-dimensional systems, unless one
sets M = 1, which restricts the dynamics to the space
of the centroid modes. In this case, the phase vanishes
(since 0y (P, Q) is the momentum conjugate to motion
around the centroid—see Fig. 4), and the dynamics
reduces to classical dynamics on the free energy sur-
face

1
Fo(Q) = 75 In {N/dqeﬁN[VN(Q)+SN(q)]

><5<;7I_ZIQI—QO>}7 (49)

which is CMD [65,66].

As mentioned in the Introduction, CMD was first
developed on the basis of heuristic arguments [23-27].
The above analysis tells us that, since CMD is mean-
field Matsubara dynamics with M = 1, it is expected
to work if the ring-polymer fluctuations around the
centroid are compact, but to break down otherwise,
when higher values of M will be required. For the two-
dimensional OH-stretch model, this compactness con-
dition is satisfied perfectly at 800 K, less well at 600
and 400 K (c.f. the mean-field Matsubara and CMD
results in Fig. 5), and breaks down badly at 200 K,
where the OH-stretch band has a large artificial red-
shift and is broadened. This is an example of the so-
called ‘curvature problem’ mentioned in the Introduc-
tion [48,49]. For the two-dimensional model, we were
able to cure this problem by increasing M to give a
compact ring-polymer distribution in Eq. (48) (which
gave the mean-field Matsubara results of Fig. 5). How-
ever, for realistic systems, one cannot increase M > 1,
and thus the CMD curvature problem can be a seri-
ous source of error at low temperatures (see Figs. 6
and 7). In Sect. 8, we explain how to use curvilinear
coordinates to correct this problem using the recently
developed QCMD method.

6 Ring-polymer molecular dynamics

Like CMD, RPMD was introduced on the basis of
heuristic arguments [28-32], but can now be under-
stood as an approximation to Matsubara dynamics [65].
Starting with the Matsubara t.c.f. of Eq. (45), we can
analytically continue P, as in Eq. (30). This removes
the phase, but analytically continues the Matsubara
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Fig. 6 The (damped) infrared spectrum of gas-phase
water at 150 K, calculated using the Partridge-Schwenke
potential surface and dipole moment [95,96]. The exact
quantum results are shown as grey shading. Figure adapted
from Ref. [62] with permission from The Royal Society of
Chemistry

Liouvillian £, to

Ly = Lrpmp + Ly, (50)
where
M )
Lrpyp =Ly —m Y wZQna?7 (51)
n=—M "
and
M
0 0
Ly = Z Wn |:Pnap - QnaQ} s (52)

n=—M

which propagates the dynamics into the complex plane,
making the approach unusable. However, if we wish
to compute only the short-time dynamics of the cen-
troid, we can neglect the imaginary Liouvillian iy,
since it does not act directly on the centroid modes. The
remaining real Liouvillian Lrpyp describes smoothed
RPMD, namely classical dynamics on the smoothed
ring-polymer potential energy surface Up (Q)+ S (Q).
Like static averages, the RPMD t.c.f. converges to the
same results in the smooth space ¢(7) as in the jagged
space ¢q;, so practical RPMD calculations are always
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Fig. 7 The infrared spectrum of the g-TIP4P/F model of
liquid water and ice, computed using QCMD, CMD, and

TRPMD. Reproduced from Ref. [71], with the permission
of AIP Publishing
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carried out in the jagged space (which yields faster
numerical convergence).

As an approximation to Matsubara dynamics, RPMD
is risky, because it is difficult to estimate how much
time can elapse before the neglect of i£; starts to intro-
duce noticeable errors into the dynamics of the cen-
troid. Well-known symptoms of this failing are the spu-
rious resonances which appear in RPMD simulations of
infrared spectra [51,52], and which arise because the
neglect of iL; causes the ring-polymer springs to shift
the vibrational frequencies of the fluctuation modes,
which in turn resonate with the dynamics of the cen-
troid.

There are two ways round this problem. One is sim-
ply to use RPMD in the limit ¢ — 0, where it is exact.
This is effectively what is done in RPMD rate theory
[29,30,41], where the ¢ > 0 RPMD dynamics serves
as an artificial, quantum-Boltzmann-conserving, classi-
cal dynamics, which gives a lower bound estimate of
the ¢ — 0% flux through the optimal dividing surface
[41,78-81].% For this reason, RPMD rate calculations
give good approximations to the quantum rate coeffi-
cients for direct reactions [10,29,30,38,39,82-88] and
also for ‘capture’ reactions [89-92] involving statisti-
cally decoupled direct (capture and release) steps.

The other approach, which works for longer times, is
thermostatted RPMD (TRPMD) [50,93,94]. Like plain
RPMD, TRPMD was introduced on the basis of heuris-
tic arguments [93]; it differs from RPMD only in attach-

9 This relation holds because i£; also does not act directly
on any permutationally invariant function of Q.
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ing thermostats to the fluctuation modes @,,n # 0
(leaving the centroid modes unthermostatted). The cen-
troid therefore evolves unimpeded for as long as its
dynamics is not affected by coupling to the fluctuation
modes. When the coupling starts to become noticeable,
the thermostat decorrelates the centroid dynamics, thus
damping the t.c.f. As a result, TRPMD automatically
follows the RPMD trajectory for as long as it gives a
good approximation to the Matsubara dynamics of the
centroid. This elegant ruse permits TRPMD to simu-
late infrared spectra, by eliminating the spurious res-
onances at the cost of artificially broadening the line-
shapes. Figure 5 shows that, for the 2-dimensional OH
model, TRPMD reproduces the position of the mean-
field Matsubara OH-stretch frequencies (including the
small ~ 20 em~! blue-shift) across the entire temper-
ature range, and that the artificial broadening grows
with decreasing temperature (as the amplitudes of the
fluctuation modes become larger); TRPMD behaves
similarly for gas-phase and condensed-phase water (see
Figs. 6 and 7 and Ref. [50]).

7 Practicalities of CMD and TRPMD
simulations

In practical terms, CMD and TRPMD simulations
are quite similar: classical trajectories are propagated
on the ring-polymer potential energy surface Vy(q) +
Sn(q), subject to a thermostat, which these days is
usually a white-noise Langevin thermostat [97].19

For CMD simulations, this type of approach was
developed as a method of computing the centroid
force —0Fp(Q)/0Q0 on-the-fly [26,98,99]. The dynam-
ics of the centroid are adiabatically separated from the
dynamics of the n # 0 fluctuation modes, by making
the masses of the latter much lighter than the (physical
mass) of the centroid, and by applying a strong ther-
mostat to the fluctuation modes (but not to the cen-
troid). This adiabatic CMD (ACMD) approach makes
it feasible to compute —9F,(Q)/9Qo on-the-fly, but the
calculations can become costly, because the propaga-
tion time-step needs to be reduced to keep up with the
rapidity of the fluctuation dynamics.

Accordingly, partially adiabatic (PA) CMD calcula-
tions are often performed to allow longer time-steps, in
which the masses are reduced by less than is required
to converge to the adiabatic limit [99]. The PACMD
approach thus involves a certain amount of param-
eter tuning (of the mass-scaling and the thermostat
strength), and can be thought of as an interpolation
between RPMD (no mass-scaling, no thermostat) and
CMD (adiabatic scaling, strong thermostat). In sys-
tems where the CMD curvature problem is mild, one
can expect PACMD to give good results, in shifting
the ring-polymer frequencies out of range of the spec-
trum (thus avoiding spurious resonances) [51], with-
out picking up too much of a red shift and broaden-

10 Nosé-Hoover thermostats were used in earlier work.
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ing. Such a regime is characterised by liquid water at
300 K [50,100,101]; PACMD calculations [33] were used
to give the excellent agreement between MB-pol simu-
lations and experiment shown in Fig. 1.

As mentioned above, TRPMD tends to give good
spectral line positions (because it does not suffer from
the curvature problem), but the thermostat (which
is made sufficiently strong to damp off the spurious
resonances) does significantly broaden the lineshapes
[50,93]. If one can live with this broadening, TRPMD is
definitely the path-integral method of choice for vibra-
tional dynamics; it is cheaper than (PA)CMD, because
the masses of the fluctuation modes are unscaled (per-
mitting longer time steps), and it does not require
parameter tuning (whereas in PACMD, both the adi-
abatic separation and the thermostat strength must
be carefully chosen). Recent applications of TRPMD
have included vibrational dynamics of aqueous pro-
ton defects [102], the solvated electron [103], and poly-
atomic organic molecules [104]. The TRPMD thermo-
stat can also be coloured to reduce the broadening; this
approach works well for the OH-stretch and bend bands
in liquid water, but artificially blue-shifts the libration
band [94].

Many of these TPRMD simulations (and also some
PACMD and static simulations) used techniques based
on ring-polymer contraction (RPC) [105-109] and mul-
tiple time-step (MTS) [109,110] propagation. The basis
of these techniques is that the system potential can be
decomposed into a cheap part, which needs to be eval-
uated at each polymer bead, and a costly part, which
varies slowly around the ring-polymer and thus can be
evaluated at fewer beads. A combination of RPC and
MTS can speed up calculations by up to two orders of
magnitude, thus allowing path-integral calculations to
be combined with on-the-fly DFT potentials [102,109].
Another potential efficiency saving is the use of Cayley
propagators [111,112], which also avoid possible non-
ergodicity artifacts. Closely related to TRPMD, the
PIGLET approach [113] uses a strong quantum ther-
mostat to reduce the number of polymer beads to just
a few; it was previously used to compute static proper-
ties, but a post-processing approach has recently been
developed which extracts dynamical properties from
PIGLET, using an iterative image-space reconstruction
algorithm [114]. The PIGLET vibrational density of
states for liquid water is in reasonable agreement with
the TRPMD result (see Fig. 8), although the stretch
band is red shifted. Many of the above techniques are
readily accessible to non-specialists via the i-PI path-
integral python interface [115].

We have focused mostly on vibrational spectra, but
should point out that many of the above techniques can
be used to improve the efficiency of RPMD calculations
of thermal reaction rates [10,29,30,38,39,82-88], and
diffusion constants [31,32,116-122] (for which which
both CMD and TRPMD appear to work well, probably
because any diffusive dynamics that satisfies quantum
detailed balance and has the centroid as the diffusion
coordinate is sufficient). Particularly noteworthy path-
integral simulations of diffusion constants include simu-
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Fig. 8 The vibrational density of states of liquid water at
300 K, recovered from a PIGLET [113] simulation. Adapted
from Ref. [114], with the permission of AIP Publishing

lations of diffusion in quantum glasses [118], and in flex-
ible q-TIP4P/F liquid water [117] (which revealed the
importance of cancellation between competing intra-
and inter-molecular quantum effects). Recently, CMD
has also been used to compute the thermal heat con-
ductivity of liquid hydrogen and helium [123], using a
reformulation of this observable that avoids non-linear
Gibbs-Kubo relations [124].

8 Quasi-centroid molecular dynamics

As mentioned in Sect. 5, CMD gives a poor approxima-
tion to Matsubara dynamics at low temperatures, since
the distribution of ring-polymers around the centroid
becomes non-compact, spreading around the curve of
the potential. When first identifying this problem, Marx
and co-workers [48,49] suggested that it could be solved
in principle by propagating the dynamics of curvilin-
ear centroids, but the difficulty of formulating path-
integrals in curved spaces seems to have discouraged
the development of such a method. Recently, how-
ever, Trenins et al. [71] have developed the quasi-
centroid molecular dynamics (QCMD) method, which
uses curvilinear centroids to construct the potential of
mean force, but propagates the dynamics in cartesians.

To illustrate QCMD, consider the two-dimensional
OH-bond model discussed in Sect. 5. Figure 9 shows
the ring-polymer distribution around the centroid dur-
ing a CMD trajectory that suffers from the curvature
problem. The distribution spreads around the curve of
the potential, because the minimum of the centroid-
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constrained ring-polymer distribution has a delocalised
‘string’ geometry (shown in blue in Fig. 9) which
describes an instantonic tunnelling path. Deep tun-
nelling is not expected to play a significant role in OH-
bond dynamics at 200 K, and instantonic paths clearly
have a much lower Boltzmann weighting than compact
paths at the same radial distance from the origin. The
difficulty is that the centroid constraint has assigned
these paths to the wrong radial distance, because the
cartesian centroid lies at the ‘focal point’ of the curved
instantonic paths, placing it at a smaller radial dis-
tance than any of the individual beads. As a result, the
instantonic paths dominate and artificially lower the
free energy at the inner turning point. To assign such
paths to the correct radial distance (where they make a
negligible contribution), one can constrain instead the
polar centroids

=
M=
=

Ry = (53)
=1
1 N

@O :N Z 9l7 (54)

l

Il
—

where r; = /27 + y7 and 0, = arctan(y;/x;), and prop-
agate the dynamics on the potential of mean force

Fo(Ro) = —% In {N/dx/dy

= BNV (6.3)+Sn () 4+ (7))

1 N
><6<N;17R0>}. (55)

The ring-polymer distributions around the curvilinear
centroids are then compact, as shown in Fig. 9.

This compactness ensures that the dynamics on
Fo(Ro) gives a good approximation to the Matsub-
ara dynamics of the polar centroid, and also that the
polar centroid is close to the cartesian centroid (and
is thus referred to as the ‘quasi-centroid’), allowing
it to be used in place of the cartesian centroid when
computing time-correlation functions. This is the basis
of the QCMD method. The compactness also ensures
that rotation-vibration coupling between the fluctua-
tion modes and the quasi-centroid is small, which in
turn permits one to propagate the quasi-centroid tra-
jectories in cartesian coordinates, invoking the polar
coordinates only when generating Fy(Rg). Figure 5
shows that the QCMD method yields excellent agree-
ment with the mean-field Matsubara results for the
vibrational spectrum of the two-dimensional OH-bond
model. Using an adaptation of the adiabatic CMD
approach (see Sect. 7), it has been possible recently to
generalise QCMD to treat gas-phase water (which gives
close agreement with the damped quantum results—see
Fig. 6), and the g-TIP4P/F model of liquid water and
ice (Fig. 7). The QCMD method thus has the poten-
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Fig. 9 Snapshots of CMD and QCMD ring-polymer bead
distributions (red) taken from a simulation of the two-
dimensional OH-bond model at 200 K. At the inner turning
point, the CMD distribution fluctuates around an instan-
tonic geometry (thick blue curve), whereas the QCMD
distribution fluctuates around a geometry at which all
beads are collapsed to a point (blue dot). Reproduced from
Ref. [71], with the permission of AIP Publishing

tial to give accurate predictions of infrared spectra at
lower temperatures than TRPMD and CMD. However,
the QCMD method will need to be made more efficient
before it can be applied to potential energy surfaces
that are more expensive than the simple g-TTP4P/F
model (as the adiabatic separation necessitates very
small time-steps [71]), and the curvilinear centroid coor-
dinates have to date not been generalised beyond water.

9 On the neglect of fluctuation dynamics

The CMD, TRPMD, and QCMD methods are alike in
that they attempt to describe the dynamics of the cen-
troid, but not that of the fluctuation modes [23,71,93].
So far, we have (tacitly) assumed that knowledge of
the centroid dynamics is sufficient to determine the
observables of interest. However, this is true only for
time-correlation functions that involve pairs of linear
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operators. Non-linear operators also depend explicitly
on the dynamics of the n # 0 fluctuation modes. For
example, when A = ¢2, Ay(Q) = 3, Q2. This does
not necessarily mean that methods such as CMD and
TRPMD break down for non-linear operators. However,
it does mean that they can only be used to describe
the centroid component of the operator. If the physical
degrees of freedom in which the operator is non-linear
involve, say, low-frequency librations, or long-range
order parameters, then the centroid component is likely
to be sufficient. This is probably the case for at least
part of the non-linearity in the dipole-moment func-
tion of liquid water [33,125], which describes inhomo-
geneous variations in the local dipole moment between
different hydrogen-bonded environments. However, for
high-frequency, intramolecular, degrees of freedom, we
can expect that the amplitudes of the fluctuation modes
will be significant, such that their omission from the
operator will introduce sizeable errrors.

It will be very difficult to overcome this limitation
(except in the limit ¢ — 0, where RPMD gives the
exact quantum dynamics of any permutationally invari-
ant function of the @, [1206]), since to propagate the
fluctuation modes, one would need to sample the Mat-
subara phase. In Refs. [127-129], a planetary model was
developed, which does capture the fluctuation dynamics
to within a local harmonic approximation. This model
gave good results for the dynamic structure factor of
liquid hydrogen [128], and good overall predictions of
the spectrum of liquid water [129], but it is too approx-
imate to be used, for example, to investigate how non-
linearity in the dipole-moment surface of water affects
the lineshapes.

A related problem is that the Matsubara dynamics
of the fluctuation modes can also couple to the dynam-
ics of the centroid. As mentioned in Sects. 5-8, practi-
cal path-integral methods neglect this coupling, under
the assumption that the fluctuation dynamics can be
either averaged out (CMD and QCMD) or damped
(TRPMD). This assumption evidently works well for
the fundamental bands of water (see Figs. 6, and 7),
where the physical degrees of freedom are either highly
anharmonic and classical (librations) or weakly anhar-
monic and quantum (vibrations). However, recent per-
turbation theory (PT) analyses [130,131] have shown
that coupling of the fluctuation and centroid dynam-
ics magnifies the amplitudes of the centroid overtone
and combination vibrations by about an order of mag-
nitude. Methods such as CMD, QCMD, and TRPMD
therefore greatly underestimate overtone and combina-
tion band intensities. Again, the only way to correct
rigorously for these deficiencies would be to include
the dynamics of the fluctuation modes, which runs
into the problem of the Matsubara phase. However, if
one can assign the overtone and combination bands,
one can at least correct the intensities approximately,
using correction factors derived from PT [131]. The
neglect of centroid-fluctuation coupling is also the most
likely reason that CMD and TRPMD calculations of
highly anharmonic vibrational frequencies give large
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blue-shifts [132] (although real-time coherence may also
contribute to these errors).

10 Conclusions and recent developments

Path-integral dynamics methods have a rigorous basis
in the exact quantum Kubo time-correlation function,
which, upon smoothing of the imaginary-time Feynman
paths, gives rise to a classical yet quantum-Boltzmann-
conserving dynamics called Matsubara dynamics [63].
Practical path-integral methods, such as CMD,
(T)RPMD, and the recently developed QCMD, all
make rather drastic approximations to Matsubara
dynamics, but nevertheless manage to describe the
dynamics of the centroid reasonably well, provided that
it does not involve degrees of freedom which are simul-
taneously quantum and highly anharmonic. As a result,
path-integral methods give a good approximation to,
say, the fundamental bands in the spectrum of liquid
water or ice, subject to the caveats mentioned above
(namely, that CMD needs to be applied at sufficiently
high temperatures to avoid the curvature problem, that
TRPMD broadens the lineshapes, and that QCMD suf-
fers from neither of these problems, but is currently
10-100 times more expensive than TRPMD).

In addition, RPMD gives an excellent approximation
to the quantum rates of direct reactions (or indirect
reactions that split into statistically decoupled direct
steps), even when the rate is dominated by deep tun-
nelling, where it reproduces the instantaneous quan-
tum flux through a bottleneck ensemble consisting of
thermal fluctuations around the instanton. The CMD
method also works in this way for the important special
case of symmetric barriers. Both CMD and RPMD also
give good results for diffusion coefficients.

Path-integral methods are expected to be costly,
because they require the force to be evaluated along
chains of replicas of the system. However, techniques
such as RPC [105-109], MTS [109,110], and PIGLET
[113,114] increasingly allow path-integral dynamics
methods to be applied at not much more expense than
a classical MD calculation, and the i-PI package [115]
makes such techniques available to non-specialists.

As discussed throughout, path-integral calculations
have some major limitations. It is very difficult to see
how they can be generalised to treat non-linear opera-
tors when the non-linearity involves quantum degrees
of freedom (except for the special case of instanta-
neous quantum fluxes in RPMD rate calculations), or
to see how they can be made to accurately predict
vibrational overtone intensities. For such properties, it
might be better to use the LSC-IVR method [53-61],
which, although failing to conserve the quantum Boltz-
mann distribution, does at least treat all the Matsubara
modes on an equal footing (by following the dynamics
of what is essentially a single polymer bead); another
possible method might be the recently developed adap-
tive quantum thermal bath method of P1é et al. [130].
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We finish by mentioning some areas of path-integral
dynamics where progress has been made recently and
which promises to extend the range of possible applica-
tions of path-integral methods.

Recent work has extended path-integral methods to
non-equilibrium dynamics. The discussion of this arti-
cle was restricted to dynamics at thermal equilibrium.
However, there appears to be no requirement when
deriving Matsubara dynamics that the system be in
thermal equilibrium: it is quite feasible to equilibrate,
say, a system on one Born-Oppenheimer surface, before
propagating it on another, or to equilibrate, say, parts
of a system separately before combining them. All that
is required is that the initial condition be describable
in terms of smooth imaginary-time loops. This has
been exploited recently with the development of non-
equilibrium RPMD [133] (following earlier explorations
of non-equilibrium CMD [134,135]), which has had
interesting recent applications to hydrogen—graphene
scattering [136,137], gas-surface reactions [138], and
to excited-state dynamics [139]. Closely related to this
are the recent developments of microcanonical RPMD
[140-142].

Another promising development is the extension to
multi-time correlation functions of Matsubara dynam-
ics [67,68], RPMD [68,143] and CMD [68], with the aim
of simulating multi-dimensional spectroscopy [144,145]
non-perturbatively.

Finally, much of the recent work on path-integral
dynamics has looked at ways to extend these methods
to treat non-adiabatic, multi-surface, dynamics [139,
146-167], building in part on earlier work [170-172].
The main challenge for non-adiabatic path-integral
dynamics is the old problem of combining quantum
(electronic) with classical (nuclear) degrees of freedom.
Some calculations have used the surface-hopping tech-
nique to do this [139,146]. Another approach [147-156]
is the use of mapping-variables [168,169] which has the
advantage of making both the electronic and the nuclear
degrees of freedom classical (at the price of requiring
the use of projection operators). Recently, Chowdhury
and Huo [70] have developed ‘non-adiabatic Matsubara
dynamics’, which treats the mapping variables quantum
mechanically and the nuclear coordinates by Matsubara
dynamics. Progress has also been made in the treatment
of charge-transfer reactions, with the development of
Golden-rule ring-polymer transition-state approaches
[157-160] and analytic continuations of instanton [161]
and Wolynes theory [162,163,172], capable of treat-
ing the Marcus-inverted regime. However, it would be
premature to say more at present about these rapidly
developing areas: we leave this task to future review
articles.

It is a pleasure to thank the group members, co-workers,
and colleagues who have helped me to understand path-
integral dynamics over the last decade or so, many of whose
works are referenced below. I owe additional thanks to
George Trenins for reading through and commenting on the
manuscript.
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Appendix: Equivalence of the Matsubara
phase to a conserved internal angular momen-
tum

To show that 6/ (P, Q) is equal to (minus) the momentum
conjugate to 19, we transform from the set of M Fourier
modes @), to a new set of coordinates, M — 1 of which
(denoted &) are invariant under imaginary-time translation
7o, and one of which is 7o itself [126]. The momentum con-
jugate to 1o is then

M 00,
L= Zﬁ( 87’0 >£ Pn~ (A]_)
n=—M

To obtain (9Qn/970),, we substitute 7+7o for 7 in Eq. (13),
differentiate with respect to 7o and set 79 = 0, which gives

d (7-) M
(qiTO =Qo+v2 ;wn [Qn cos(wnT) (A2)
— Q_psin(w,T)],
and thus
dQ,
dro Qo e

Noting that dQn/dro = (0Qn/070), (since the & are by
definition independent of 7¢), we obtain

M
L=— Z WnQ-nPn =—00(P,Q). (A4)

n=—M

For a further discussion of these points, see Refs. [126,173].
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