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Abstract. The maximum caliber approach implements the maximum entropy principle for trajectories by
maximizing a path entropy under external constraints. The maximum caliber approach can be applied to a
diverse set of equilibrium and non-equilibrium problems concerning the properties of trajectories connecting
different states of a system. In this review, we recapitulate the basic concepts of the maximum entropy
principle and of its maximum caliber implementation for path ensembles, and review recent applications
of this approach. In particular, we describe how we recently used this approach to introduce a framework,
called here the continuum path ensemble maximum caliber (CoPE-MaxCal) method, to impose kinetic
constraints in molecular simulations, for instance to include experimental information about transition
rates. Such incorporation of dynamical information can ameliorate inaccuracies of empirical force fields,
and lead to improved mechanistic insights. We conclude by offering an outlook for future research.

1 Introduction

The maximum entropy principle is a general varia-
tional principle to maximize the entropy of a system
under given constraints [1,2]. This principle provides
an effective route to a statistical mechanical descrip-
tion of complex molecular systems. The maximum cal-
iber approach represents an implementation of the max-
imum entropy principle for path ensembles [3,4]. This
approach is becoming increasingly used to deal with the
equilibrium and non-equilibrium statistical mechanics
of trajectories [5–11].

The trajectories of a molecular system can be pro-
duced using computer simulation methods, as for
instance molecular dynamics. Such simulations have
become a standard tool for predicting equilibrium
properties of molecular systems in structural biology,
physics, chemistry, and material science, yielding sta-
ble and metastable structures and their populations,
as given by the free energy differences between states.
While the application of molecular dynamics provides
such information by sampling the Boltzmann distribu-
tion, the timescales that such simulations can access
are often insufficient to observe the reactive processes
of interest [12–15]. This is known as the sampling prob-
lem, and is a well-known source of statistical and sys-
tematic errors [16]. Therefore, enhanced sampling is
often needed to overcome the high free energy barri-
ers that are underlying the long timescales [13,17,18].
A second source of error arises from the approxima-
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tions used in the definition of the force field used in the
simulations. In the last decade, it has become there-
fore common to correct for force field inaccuracies in a
system-dependent manner by incorporating experimen-
tal data as restraints in the simulations. To implement
this strategy, powerful tools have been developed based
on the maximum entropy principle [19–30] leading to
numerous applications for example in protein folding
and assembly [31–36] as well as in cases where force
fields are less accurate [37], such as for intrinsically dis-
ordered proteins (IDPs) and nucleic acids [28,30,38–
44].

The maximum entropy (MaxEnt) principle can also
be applied to accurately determine dynamical processes
in complex systems undergoing rare transitions, such as
biomolecular isomerization, association, self-assembly
or nucleation phenomena. In these approaches, exper-
imental rate constants or time-dependent data are
incorporated in discrete time, biased molecular dynam-
ics simulations using the maximum caliber (MaxCal)
approach [9,45] (for an explanation of the terminology
see Table 1). We recently explored a new avenue by
developing a method based on the MaxCal approach,
which utilizes unbiased atomistic classical molecular
dynamics in combination with trajectory-based rare
event methods. This framework can be used to ame-
liorate the effects of force field errors on the kinetic
properties of complex molecular systems [46].

Dill and coworkers [5,9,11] have reviewed the broad
scope of applications of the MaxCal approach in the
area of non-equilibrium dynamics, including Green–
Kubo relations, and Onsager’s reciprocal relations, as
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Table 1 Terminology used in this work

MaxEnt principle Maximum entropy principle

Configuration space
MaxEnt approach MaxEnt principle applied to configuration space
MaxEnt method A method based on the MaxEnt approach
Trajectory space
MaxCal approach Application of the MaxEnt principle to discrete or continuous trajectory space
CoPE-MaxCal Application of the MaxCal approach to continuous path ensembles
CoPE-MaxCal for transition rates Application of the CoPE-MaxCal method for imposing transition rates

well as applications in equilibrium situations, including
the optimization of Markov state models [47]. The latter
approach aims to infer the interconversion rate matrix
between metastable states from limited information on
the population of the states themselves. Using MaxCal
optimization, a classical-mechanics connection between
trajectories and Langevin/Fokker–Planck parameters
was recently derived [8], Furthermore, a way to con-
struct such Markov state models for non-equilibrium
steady state processes was also reported [48,49].

These approaches concern discrete systems [9], in the
sense that continuous molecular dynamics trajectories
are discretized into matrices of transition probabilities
between metastable states, which can then be analyzed
with MaxCal approaches. In many cases, however, one
would like to keep the microscopic atomistic informa-
tion of the pathways, and use the concept of altering the
path probabilities, also known as trajectory reweight-
ing. This concept is well known in the literature, e.g.,
in large deviation theory [50,51] and path reweight-
ing [48,52,53]. However, the application of the MaxCal
approach to continuous space trajectories has proven
difficult.

We recently introduced the continuum path ensemble
maximum caliber (CoPE-MaxCal) method to reweight
existing ensembles of trajectories to match experimen-
tal rate constants [46]. Given an ensemble of path-
ways harvested by unbiased molecular dynamics or
enhanced trajectory sampling methods that do not bias
the dynamics, we introduced a consistent reweighting
scheme in which not only the reactive paths are assigned
altered weights, but also all other paths in the ensemble,
so that they match the corrected free energy landscape
obtained from a simultaneous MaxEnt-based reweight-
ing. Transition Path Sampling (TPS) [54–56] and the
related Transition Interface Sampling (TIS) [57–59]
techniques are rigorous enhanced trajectory sampling
methods that can provide the required path ensem-
bles. These methods elucidated the kinetics of a variety
of complex molecular systems, including biomolecular
conformational changes [60–75], ion dissociation [76–78]
and dissolution [79], water isomerization [80] and evap-
oration [81], polymer collapse [82,83], nucleation pro-
cesses [84–92], polymorph transitions [93–95], chemical
reactions [96,97], enzyme reaction kinetics [98–101], col-
loidal cluster assembly [85,102–104], and glassy systems
[51,105–110], leading in many cases to novel insights.
Other trajectory-based methods such as Forward Flux

Sampling [111,112] or Weighted Ensemble [113–115],
stochastic process rare event sampling [116], mileston-
ing [117,118], adaptive multilevel splitting [119], and
non-equilibrium umbrella sampling [120], can in princi-
ple also be used to collect a prior path ensembles.

An important feature of the CoPE-MaxCal method
is that it can be applied a posteriori, i.e., by post-
processing an existing prior path ensemble. Impor-
tantly, such an approach addresses simultaneously the
sampling and the force field problems. Thus, the CoPE-
MaxCal method enables a system-dependent character-
ization when experimental data are available, without
solving the extremely challenging problem of optimizing
the force field itself in a system-independent, transfer-
able manner, even though this might be preferred from
a fundamental point of view.

In this review, we provide a perspective of the CoPE-
MaxCal method by explaining the basic MaxEnt and
MaxCal concepts, and how they lead to the CoPE-
MaxCal reweighting scheme. Our aim is to recapit-
ulate, and partly recast, this method, put it in per-
spective, and to provide an outlook on future research
directions. The remainder of the paper is organized as
follows. In Sects. 2 and 3, we introduce the MaxEnt
principle and the MaxCal approach, and describe how
they apply to continuous time and coordinate spaces.
Section 4 reviews the specific application to the incor-
poration of rate constants. Section 5 discusses several
extensions, and connects some loose ends. We end with
a conclusion and an outlook.

2 Maximum entropy

2.1 The maximum entropy principle

According to the MaxEnt principle [1,2], the condition
of equilibrium for a system is achieved by a maximiza-
tion of the Shannon entropy

S = −
∑

i

pi ln pi, (1)

where pi is the probability distribution for state i. Note
that this entropy is related to the Gibbs entropy by a
factor kB . For a closed and isolated system with only
the constraint of an overall normalization, obtaining the
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probability distribution that optimizes the entropy can
efficiently be done by the method of Lagrange multipli-
ers. The Lagrange function is

L = −
∑

i

pi ln pi − ν

(
∑

i

pi − 1

)
, (2)

where ν is the Lagrange multiplier, which is used to
impose the normalization condition. The extremum of
this function follows from setting to zero the derivative
with respect to pi

δS

δpi
= − ln pi − 1 − ν = 0. (3)

Solving this for pi gives

pi = e−ν−1, (4)

which is a constant factor. Applying the normalization
condition leads to

∑

i

pi =
∑

i

e−ν−1 = We−ν−1 = 1, (5)

where W is the number of accessible states, so that the
Lagrange multiplier is given by eν+1 = W , leading to
the probability pi = 1/W . This condition corresponds
to the standard assumption in statistical mechanics
that in a closed and isolated system each microstate has
the same probability, which corresponds to the Boltz-
mann identity S = ln W , in units of the Boltzmann
constant kB .

Often the MaxEnt principle is concerned with the
relative entropy, which is

S = −
∑

i

pi ln
pi

p0
i

, (6)

where p0 denotes the prior distribution, e.g., the con-
stant probability of the microcanonical ensemble. The
relative entropy is the negative of the Kullback–Leibler
(KL) divergence, and reaches its maximum of zero only
when the prior and posterior distribution are identi-
cal. The MaxEnt principle can be applied subject to
additional constraints, for instance that an average of
a fluctuating observable si is fixed to a certain value

∑

i

pisi = s. (7)

The MaxEnt principle states that in equilibrium, the
entropy should be maximized subject to this constraint.
Using the method of Lagrange multipliers, the opti-
mization function becomes

L=−
∑

i

pi ln
pi

p0
i

−η

(
∑

i

pisi − s

)
−ν

(
∑

i

pi−1

)
,

(8)

which again can be optimized by setting the derivative
to zero

δS

δpi
= − ln

pi

p0
i

− 1 − ηsi − ν = 0. (9)

Rearranging leads to

pi ∝ p0e
−ηsi , (10)

where we ignored the normalization constant set by ν.
Assuming a constant prior probability p0, and normal-
izing, gives the distribution

pi =
e−ηsi

Z
, (11)

where the partition function is

Z =
∑

i

e−ηsi . (12)

As an example, we can take the energy Ei of the system
to be the observable s, and identify η as β. This leads
to

pi =
e−βEi

∑
i e−βEi

, (13)

which is the Boltzmann distribution, with β = 1/kBT
being the inverse temperature of the surrounding reser-
voir that the system can exchange heat with. In addi-
tion, the derivative of Z with respect to the variable η

∂ ln Z

∂η
= −〈si〉, (14)

gives the average of the observable.
In summary, the above outline illustrates how apply-

ing the MaxEnt principle to systems with a large num-
ber of degrees of freedom leads to standard statistical
mechanics. For further details, we refer to Refs. [1,2,9].

2.2 MaxEnt in configuration space

In this section, we discuss the application of the Max-
Ent principle in continuous space [28,29]. Consider a
continuous state space x, where x denotes the posi-
tions and velocities of all the particles in a system. The
maximum relative entropy principle states that, given a
prior probability distribution (density) ρ0(x), the opti-
mal distribution ρ(x) maximally compatible with a set
of given experimental constraints is the one that which
maximizes the entropy, or the negative of the KL diver-
gence

S[ρ||ρ0] = −
∫

dxρ(x) ln
ρ(x)
ρ0(x)

. (15)
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Constrained conformational average 
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Fig. 1 Schematic comparison of the MaxEnt and MaxCal approaches for reweighting continuous space conformational and
path ensembles, respectively. Left: The prior conformational ensemble (blue circles) changes its weights of conformations,
illustrated by the different size of the circles in the posterior ensemble (green circles). This change of weights also alters
the distribution along a conformational observable s(x) and shifts the prior conformational ensemble average 〈s(x)〉0 to the
posterior average 〈s(x)〉 = sexp (in green). Right: The same principle holds for path reweighting, where now instead of a
conformational ensemble, a prior path ensemble (blue paths) is reweighted (green paths) according to a constraint in an
experimental (dynamical) observable, such as a kinetic rate constant

The entropy should, thus, be maximized subject to
M experimental constraints

ρME(x)= argmax
P (x)

S[ρ||ρ0]

subject to:
{∫

dxρ(x)si(x)=〈si(x)〉=sexp
i∫

dxρ(x) = 1,
(16)

where the si denote the experimental observables (1 ≤
i ≤ M), and sexp

i is the value of the experimental con-
straint. The last line is the normalization condition.
Again, the relative entropy is always non-positive, and
zero only if the two distributions are identical. In Fig. 1
we illustrate the application of the MaxEnt principle
to the reweighting of the prior conformation distribu-
tion, thereby identifying a posterior distribution which
meets a given experimental constraints sexp

i . The max-
imization can be carried out using the method of the

Lagrangian multipliers, by looking for the stationary
point of the Lagrange function

L = S[ρ||ρ0] −
M∑

i=1

μi

(∫
dxsi(x)ρ(x) − sexp

i

)

− ν

(∫
dxρ(x) − 1

)
, (17)

where the μi and ν are the multipliers, which are related
to each of the M experimental constraints, and the nor-
malization condition, respectively. A functional deriva-
tive with respect to ρ(x) gives

δL
δρ(x)

= − ln
ρ(x)
ρ0(x)

− 1 −
M∑

i=1

μisi(x) − ν. (18)

Setting the derivative to zero and solving for ρ(x) leads
to

ρME(x) =
1
Z

e− ∑M
i=1 μisi(x)ρ0(x), (19)
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where Z is a normalization factor akin to the partition
function,

Z =
∫

dxρ0(x)e− ∑M
i=1 μisi(x). (20)

The posterior MaxEnt density is, thus, a reweighing of
the prior distribution with an exponential factor involv-
ing the experimental observable.

The unknown multipliers can be determined by not-
ing that the solution of the Lagrange function is equiv-
alent to minimizing the following function with respect
to μ, as shown by Cesari and coworkers [28]

Γ(μ) = − ln Z + μ · sexp, (21)

where bold symbols denote a vector of the M multi-
pliers and observables. This can be seen as a Legen-
dre transformation. Minimization of Γ(μ) with respect
to each multiplier yields a set of M equations for the
ensemble averages in the posterior ensemble

∫
dxρ0(x)e− ∑M

i=1 μisi(x)si(x)
∫

dxρ0(x)e− ∑M
i=1 μisi(x)

= sexp
i , (22)

which can be solved to give the sought multipliers μi.
For further details on the MaxEnt approach, we refer
the interested reader to Ref. [28].

2.3 MaxEnt approach for equilibrium constants

In this review, we are concerned with the application
of the MaxEnt principle to incorporate kinetic informa-
tion, for example rate constants, in the characteriza-
tion of a system. While the phase space distributions in
the MaxEnt approach preclude the description of time
dependent properties, one can use MaxEnt to impose
the ratio of rate constants, which is related to the equi-
librium constant.

In what follows, we focus on systems that exhibit two-
state kinetics between two well-defined stable states,
A and B, for which there is a separation between the
molecular timescale and the reaction time [12,13]. This
guarantees that well-defined rate constants, kAB and
kBA, exist for the interconversion from A to B, and vice
versa. Using the detailed balance condition kABπA =
kBAπB , with π being the equilibrium population of the
two states, it follows that

Keq =
πB

πA
=

kAB

kBA
.

This equilibrium constant is related to the equilibrium
fraction K = πB/(πA + πB) = 1/(1 + Keq), which
reduces to K = πB , for normalized populations. This
is an equilibrium quantity that can be treated with the
MaxEnt procedure described above by setting M = 1
and setting the sexp

1 = πB . Next, we should find a micro-
scopic function s1(x) that can measure the equilibrium

fraction K. In the following, we denote this microscopic
function g(x). Substituting these variables in Eq. 22
gives

∫
dxg(x)ρ(x)∫

dxρ(x)
= πB , (23)

which states that the ensemble average of 〈g(x)〉 should
be equal to πB , the fraction of configurations in state
B. Therefore, g(x) should be a function that deter-
mines whether or not a configuration is part of B or
not. A possible, quite natural, definition is the (config-
urational) committor function pB(x), which gives the
probability for ending in state B, when a trajectory is
initiated in x with random velocities [56,76,121] (see
Fig. 2). While this is not an easy function to compute,
it is well defined and extensively studied [56,122,123].
Note that the committor is also sometimes denoted
Onsager’s splitting probability [124], or p-fold [125] in
the context of protein folding. Here, following the tran-
sition path theory convention [126], we denote pB(x) as
the committor function. Using the committor function
pB(x), it is possible to compute the density in the basin
of attraction of state A, and that of state B, respec-
tively, as

ρA(x) = ρ(x)pA(x) (24)
ρB(x) = ρ(x)pB(x), (25)

where pA(x) = 1 − pB(x). Setting g(x) = pB(x), we
now can apply the MaxEnt principle to obtain the
reweighted posterior distributions

ρA(x) = ρ0
A(x)e−μApA(x) (26)

ρB(x) = ρ0
B(x)e−μBpB(x). (27)

The posterior densities will alter the committor func-
tion as [127]

pB(x) = ρB(x)/(ρA(x) + ρB(x)), (28)

with respect to the original prior committor

p0
B(x) = ρ0

B(x)/(ρ0
A(x) + ρ0

B(x)), (29)

or, by substituting the densities

pB(x) =
ρ0

B(x)
ρ0

A(x)e−μAe(μA+μB)pB(x) + ρ0
B(x)

. (30)

As we need the g(x) to be correct in the posterior
ensemble average, it is clear that g(x) ≡ pB(x) is not
equal to p0

B , but instead follows from numerically solv-
ing Eq. 30.

The multipliers μA and μB derive from the ensemble
average conditions, and are related to the ratio of the
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A(x) B(x)

x x

pB(x)

Fig. 2 Schematic illustration of how the configurational
density in state B (red area) is related to the committor
through Eq. 28

equilibrium constants as

eμA−μB = Kexp
eq /K0

eq =
πexp

B

πexp
A

π0
A

π0
B

. (31)

Using the definitions in terms of rates, this is equal to

eμA−μB =
kexp

AB

kexp
BA

/
k0

AB

k0
BA

. (32)

We can then identify the multipliers μA and μB as

eμA =
kexp

AB

k0
AB

eμB =
kexp

BA

k0
BA

. (33)

We will later see that this is correct by applying the
MaxCal approach.

3 Maximum caliber

3.1 The maximum caliber approach

In 1980, Jaynes proposed an extension of the maxi-
mum entropy principle for trajectories [3]. Following
the notation of Dill and collaborators [5,9,11], the path
entropy is defined as

S = −
∑

Γ

ln
pΓ

qΓ
, (34)

where Γ = {X0,X1, ...XL} denotes a sequence of dis-
crete state variables X, at different time indices, pΓ is
the probability of such sequence, and qΓ denotes a prior
or reference distribution. The summation is over all pos-
sible sequences of states, or trajectories.

Consider a dynamical feature s(Γ) in the system that
can be computed over the trajectory ensemble

〈s〉 =
∑

Γ

pΓs(Γ). (35)

According to the MaxCal approach, imposing this aver-
age as a constraint on a system can be carried out
according to the maximum entropy principle, by opti-
mizing the distribution pΓ such that it maximizes the

path entropy in Eq. 34. To do so, we again use the
method of Lagrange multipliers. The optimization func-
tion, or caliber is

L =−
∑

Γ

ln
pΓ

qΓ
−η

(
∑

Γ

pΓs(Γ)−si

)
−ν

(
∑

Γ

pΓ − 1

)
.

(36)

This constrained caliber can, in analogy with the Max-
Ent approach, be optimized by setting the derivative
with respect to pΓ to zero, and solving for pΓ,

pΓ =
e−ηs(Γ)

Z , (37)

with the partition function analog

Z =
∑

Γ

e−ηs(Γ). (38)

The path ensemble average of s is recovered by taking
the derivative of Z with respect to η

∂ ln Z
∂η

= −〈si〉. (39)

Solving for η gives the value of the Lagrange multiplier.
Dill and collaborators reviewed the MaxCal approach

extensively, and illustrated how it can be invoked
to obtain general principles for non-equilibrium sys-
tems, including the Onsager’s and Green–Kubo rela-
tions, Prigogine’s entropy production, and the diffusion
and Fokker–Planck equations. In addition, the Max-
Cal approach can be used for optimization of transition
rate matrices in Markov state models, for equilibrium
and non-equilibrium steady states [48,49]. The Max-
Cal approach also has been used for reaction coordinate
optimization [128,129].

These studies define the state space as a discrete
space, which makes the approach suitable for Markov
state models, but less so for molecular dynamics trajec-
tories in continuous space. However, as we are interested
in atomistic microscopic trajectories, our purpose is to
recast the MaxCal approach in continuous space.

3.2 Continuum path ensemble (CoPE) MaxCal

In this section, we discuss how the MaxCal approach
can be extended to the space of continuous trajectories.
Such space can be mapped using molecular dynamics
simulations, Langevin dynamics or Brownian dynamics.
A trajectory can be denoted as a ordered sequence of
frames x = {x0, x1, ...xL}, where x is a continuous space
configuration as in Sect. 2.2, and the subscripts denote
the time index. Each frame is separated from the next
by a short time interval Δt, so that the total duration of
a trajectory is T = LΔt. The probability distribution
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Table 2 Definitions of variables and functions used in this work

CV Description

ρ(x) A configurational probability distribution, with x denoting the configuration
ρ0(x) The prior configurational probability distribution
ρME(x) The maximum entropy posterior configurational probability distribution, after applying the constraints
si(x) Collective variable/observable i as a function of the microscopic configurations.
sexp

i The experimental observation/data i
kexp

AB Experimental observation/data of transition kAB

σi Level of confidence in the data i
σkAB Level of confidence in the rate constant data kAB

μi Lagrange multiplier associated with experimental data i
μA,B Lagrange multiplier associated with experimental rate constant data for A (kAB), or B (kBA)
p(xi → xi+1) Short time Markovian probability representing the evolution of the probability density
P[x] A full path distribution, with x denoting the trajectory
P0[x] The prior full path distribution
PMC [x] The maximum caliber posterior path distribution, after applying the constraints
hA,B(x) Indicator function identifying whether a configuration is in state (A,B)
PA,B [x] A partial path distribution of trajectories starting in A, or B
P0

A,B [x] The prior partial path distribution of trajectories starting in A, B
PMC

A [x] The MaxCal posterior partial path distribution of trajectories starting in
A, after applying the constraints related to state A, i.e kAB

PMC
B [x] The MaxCal posterior partial path distribution of trajectories starting in

B, after applying the constraints related to state B i.e kBA

λ Collective variable used to parameterize ordered set of interfaces between state A and B
λ(x) Value of collective variable λ evaluated at configuration x
λmax[x] Maximum value of λ along an individual path x
λmin[x] Minimum value of λ along an individual path x
PA(λn|λi) Probability that a trajectory originating from A and crossing interface i, reaches interface n (i.e., B)
PA(λi|λ0) Probability that a trajectory originating from A and crossing the first interface (λ0), reaches interface i
PA(λ|λ0) Probability that a trajectory originating from A and crossing the first interface, reaches a value λ.
φ0 Flux through innermost interface λ0 for trajectories starting in A
fA(λ[x]) MaxCal biasing/reweighting function for pathways starting in A
fB(λ[x]) MaxCal biasing/reweighting function for pathways starting in B
P 0

A(λ|λ0) Probability a trajectory of the prior path ensemble originating from A and
crossing the first interface, reaches a value λ

P MC
A (λ|λ0) Probability a trajectory of the MaxCal posterior path ensemble originating

from A and crossing the first interface, reaches a value λ
g(λ) MaxEnt biasing function of the configurational densities that reassures the

experimentally determined equilibrium constant
gexp Experimentally determined value of the configurational density observable, i.e. the equilibrium constant
ρ(λ) Configurational density projected onto λ
ρ0(λ) The prior configurational density projected onto λ
ρMC(λ) The MaxCal configurational density projected onto λ
ρA,B(λ) A configurational density projected onto λ for trajectories originating in A, B
ρ0

A,B(λ) The prior configurational density projected onto λ for trajectories originating in A, B
ρME

A,B(λ) The MaxEnt configurational density projected onto λ for trajectories originating in A, B
ρMC

A,B(λ) The MaxCal configurational density projected onto λ for pathways originating in A, B
ρ̂(λ|x) Instantaneous density operator projecting the path x on λ
R0

A(λ|λ0) The reaching histogram for pathways originating from state A, crossing the
innermost interface λ0 and just reach the value of λ

R0
B(λ|λn) The reaching histogram for pathways originating from state B, crossing the

innermost interface λn and just reach the value of λ
Keq The equilibrium constant
K The equilibrium fraction
Kexp

eq The experimental equilibrium constant
K0

eq The prior equilibrium constant
pB(x) The probability that a trajectory initiated at configuration x (with random

momenta) ends up in B, a.k.a. the committor
pB(λ) The probability to end up in B, a.k.a. the committor, projected onto the collective variable λ
S(P||P0) Relative path entropy, or Caliber, equivalent to negative KL divergence

between path distributions P and P0
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for a trajectory x is [17,55,56]

P0[x] = ρ(x0)
L−1∏

i=0

p(xi → xi+1), (40)

where ρ(x0) is the initial distribution, and p(xi → xi+1)
is the short time Markovian propagator that describes
the transition from state xi to the next xi+1 in the time
interval.

In molecular dynamics, the initial condition is often
the Boltzmann distribution ρ(x) = exp(−βH(x)), with
H(x) the Hamiltonian of the system. The short-time
Markovian probability p(xi → xi+1) depends on the
dynamics used, for example for molecular dynam-
ics in the microcanonical ensemble this probability is
a δ function given by the molecular dynamics inte-
grator or propagator φ, p(xi → xi+1) = δ(xi+1 −
φ(xi)) [56]. For stochastic dynamics p(xi → xi+1) ∝
e−δx2

R/(2σ2), where δR denotes the random displacement
in the stochastic (Wiener) process, and σ2 is the vari-
ance of that displacement [54]. One can also define
a Metropolis–Hasting Monte Carlo-based dynamics
p(xi → xi+1) = min[1, e−β(H(x+1)−H(x))], where the
min function returns the lower of its arguments [54].
Besides enabling the estimate of equilibrium properties,
molecular dynamics trajectories can also offer infor-
mation on dynamical and non-equilibrium properties.
Since this type of study is affected by the approxima-
tions involved in the definition of the force field, here
we are concerned with improving such description by
incorporating in the simulations dynamical information
in the form of constraints on dynamical properties such
as the rate constants.

The path entropy is now defined as

S[P||P0] = −
∫

DxP[x] ln
P[x]
P0[x]

, (41)

where Dx indicates an integral over all trajectories or
paths x. Following MaxEnt for continuous space, the
MaxCal approach states that the optimal distribution
P[x] is given by the maximization

PMC [x] = argmax
P[x]

S[P||P0]

subject to:
{∫

DxP[x]si[x] = 〈si[x]〉 = sexp
i∫

DxP[x] = 1.
(42)

Again, the sexp
i are experimental constraints encoded

in the microscopic observable si[x]. The ensemble aver-
age 〈si[x]〉 refers to either static/thermodynamic or
dynamic/kinetic observables. Note that s[x] is now a
function of the entire path, which includes autocorrela-
tion functions.

Following the same procedure as for the MaxEnt
approach, we can perform this optimization by apply-
ing the method of Lagrange multipliers, and finding the

stationary point of the Lagrange function, or caliber

L = −
∫

DxP[x] ln
P[x]
P0[x]

− ν

(∫
DxP[x] − 1

)

−
∑

i

μi

(∫
DxP[x]si[x] − sexp

i

)
, (43)

by taking the functional derivative with respect to the
path distribution. This yields

δL
δP[x]

= − ln
P[x]
P0[x]

− 1 −
∑

i

μisi[x] − ν, (44)

which gives in turn the posterior distribution

PMC [x] ∝ e− ∑
i μisi[x]P0[x], (45)

as a reweighting of a given prior distribution P0[x].
In Fig. 1 we illustrate the effect of the CoPE-MaxCal
procedure in reweighting the prior path distribution,
thereby identifying a posterior distribution which meets
a given experimental constraints sexp

i , which can be for
instance a rate constant. It is important to realize that
the trajectories are not changing, but only the weights
with which they occur in the ensemble. This is analo-
gous to the fact that the configurations are not changing
in the MaxEnt procedure.

3.3 CoPE-MaxCal for dynamical constraints

In this section, we discuss the application of the CoPE-
MaxCal approach to incorporate dynamical informa-
tion as constraints in the description of a system. This
can be achieved for instance using a correlation function
c(t) defined as

c(t) = 〈si(0)sj(t)〉 =
∫

DxP[x]si(x0)sj(xτ ), (46)

where the observable si at time t = 0 is correlated with
observable sj a later time t. As i and j can be identical,
this definition includes autocorrelation functions. In the
second equation, we have used the explicit dependence
si,j(xτ ) as a function of the configuration xτ , with τ =
t/Δt corresponding to the frame index for time t.

Experimental information about the dynamics of a
system in the form of correlation data cexp(t) can be
imposed as a constraint on the path ensemble distribu-
tion, giving the Lagrange function

L = −
∫

DxP[x] ln
P[x]
P0[x]

− ν

(∫
DxP[x] − 1

)

−
∑

τ

μτ

(∫
DxP[x]si(x0)sj(xτ ) − cexp(t)

)
.

(47)
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Following the optimization procedure gives

δL
δP[x]

= − ln
P[x]
P0[x]

− 1 −
∑

τ

μτsi(x0)sj(xτ ) − ν,

(48)

yielding the posterior distribution

PMC [x] ∝ e− ∑
τ μτ si(x0)sj(xτ )P0[x]. (49)

As an example, consider the mobility Kτ [x], measur-
ing the mean square displacement at a particular time
τ with respect to time τ = 0. As this correlation only
has to be constrained at τ , the posterior is

PMC [x] ∝ e−μτ Kτ [x]P0[x]. (50)

Note that this is also the expression for the s-ensemble
(with μ = s, where s should not be confused with
the observable function s[x]). In the s-ensemble path
ensembles are biased according to a time correlation
function [51,105–110]. This s-ensemble is usually pre-
sented in the context of large deviation theory, but
clearly follows also from the MaxCal approach. The s-
ensemble biases all paths with a field s conjugate to
the function K. In the MaxCal approach, the Lagrange
multiplier μ follows from the constraint imposed. Thus,
the s-ensemble might also be interpreted as the field
that imposes a certain constraint.

3.4 MaxCal for thermodynamic constraints

Since equilibrium properties are not time dependent,
they can be computed as time averages over path
ensembles distributions

〈s〉 =
1

〈L〉

∫
DxP[x]

∑

t

s(xt), (51)

with 〈L〉 being the average path length, and xt the coor-
dinates at each time step of the path. Constraining an
equilibrium property sexp then leads to a posterior dis-
tribution

PMC [x] ∝ e−μ
∑

t s(xt)P0[x]. (52)

An alternative way of constraining equilibrium proper-
ties is to first reduce the path space back to a configu-
rational density ρ(x) ≡ P (x) by

ρ(x) ∝
∫

DxP[x]
∑

t

δ(xt − x). (53)

The average then becomes

〈s〉 =
∫

dxρ(x)s(x)∫
dxρ(x)

. (54)

Indeed, substitution of Eqs. 52 and 53 in Eq. 54 yields
the same result as Eq. 51.

4 Continuum path ensemble maximum
caliber for rate constants

4.1 Independence of partial path distributions

In the above sections, we did not specify the path
ensembles precisely. When considering systems that
show two-state kinetics between two stable states, A
and B, with forward and backward rate constants,
kAB and kBA respectively, we can think about partial
path ensembles PA[x] and PB [x], consisting, respec-
tively, of all paths that start in A and paths that
start in B. We can define these partial ensembles as
PA[x] ≡ P[x]hA(x0) and PB [x] ≡ P[x]hB(x0), where
hA,B(x) are the indicator functions, which are unity
when the configuration x is in state A(B), and zero oth-
erwise. Restricting all paths to start and end in one of
the stable states, the total path distribution is simply
the sum of the non-normalized partial path distribu-
tions P[x] = PA[x] + PB [x].

We apply different constraints sA and sB to both
partial ensembles we arrive at the Lagrange function

L = −
∫

DxP[x] ln
P[x]
P0[x]

− ν

(∫
DxP[x] − 1

)

− μA

(∫
DxP[x]hA(x0)sA[x] − sexp

A

)

− μB

(∫
DxP[x]hB(x0)sB [x] − sexp

B

)
, (55)

where we used the definition of the partial ensembles.
Maximization of the caliber yields the posterior

PMC [x] ∝ e−μAhA(x0)sA[x]−μBhB(x0)sB [x]P0[x], (56)

or, expressing it in partial ensembles

PMC
A [x] + PMC

B [x] ∝
∝ e−μAhA(x0)sA[x]−μBhB(x0)sB [x](P0

A[x] + P0
B [x]).

(57)

For paths belonging to partial ensemble A, hA(x0) = 1
and thus hB(x0) = 0, leading to

PMC
A [x] ∝ e−μAsA[x]P0

A[x], (58)

while for paths from partial ensemble B, hA(x0) = 0
and hB(x0) = 1 it holds

PMC
B [x] ∝ e−μBsB [x]P0

B [x]. (59)

Thus, both partial ensembles can be optimized and nor-
malized independently.
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4.2 CoPE-MaxCal for rate constants

One can apply a rate constant as a kinetic constraint
by setting sexp

A ≡ kexp
AB , and sexp

B ≡ kexp
BA . However, we

also need a microscopic dynamical correlation function
for this constraint

C(t) = 〈hA(x0)hB(xτ )〉/〈hA(x0)〉. (60)

The observed rate constant is the time derivative of this
function, measured at the plateau value [12]

kAB =
dC(t)

dt
=

〈hA(x0)ḣB(xτ )〉
〈hA(x0)〉

. (61)

The rate is, thus, the flux through the boundary of state
B, given that the trajectory started in state A.

At this point, we are switching to the language
of transition path sampling [54–56], and in particular
transition interface sampling [57], as this allows us to
write the rate constant in terms of the path probability
P[x]. In the TIS method, the configuration space is foli-
ated by a set of non-intersecting interfaces parametrized
with a collective variable λ(x). This set of n + 1 inter-
faces is denoted {λ0, λ1...λn}. Taking λ0 and λn as the
boundary of A and B, respectively, the rate is expressed
as the effective positive flux φ through these interfaces

kAB = φn = φ0PA(λn|λ0), (62)

where φi denotes the effective positive flux through
interface i. In the second equation, we have defined the
crossing probability PA(λn|λ0) for a trajectory to reach
interface λn, under the condition that it has already
crossed λ0 = λA. Note that φ0 is usually large, and easy
to obtain from a molecular dynamics simulation in state
A, while PA(λn|λ0) is usually very small, and difficult to
compute. While it is in principle (and sometimes even in
practice) possible to obtain this also from a brute force
molecular dynamics simulation, it is much more efficient
to compute via TPS [17,54,56,130,131], TIS [57–59],
Forward Flux Sampling [111,112], or other trajectory-
based methods. In these sampling approaches, we can
construct a path ensemble by reweighting the paths,
yielding the so-called reweighted path ensemble [132],
which constitutes a collection of paths with an asso-
ciated weight, representing the probability to observe
that path in an unbiased simulation, i.e., PA[x]. This
reweighted path ensemble is related to the crossing
probability by

PA(λ|λ0) =
∫

DxPA[x]θ(λmax[x] − λ), (63)

where λmax[x] returns the maximum value of λ(x) along
the trajectory, and the Heaviside step function θ returns
unity for the paths that cross the λ interface, assuming
that λ monotonically increases when going from A to
B. This function can take the place of the microscopic

correlation function in the Lagrange function, giving

L = −
∫

DxPA[x] ln
PA[x]
P0

A[x]
− ν

(∫
DxPA[x] − 1

)

− μ′
A

(
φ0

∫
DxPA[x]θ(λmax[x] − λB) − kexp

AB

)
.

(64)

Optimizing this function as before leads to the poste-
rior

PMC
A [x] ∝ e−μ′

Aφ0θ(λmax[x]−λB)P0
A[x], (65)

We can now solve for the Lagrange multiplier by con-
structing a log partition function as in Eq. 21

ΓMC(μ′
A) = ln

[∫
DxPMC

A [x]
]

+ μ′
Akexp

AB , (66)

taking the derivative with respect to the μ′
A and setting

it to zero

−
∫

DxPMC
A [x]φ0θ(λmax[x] − λB)∫

DxPMC
A [x]

+ kexp
AB = 0. (67)

Since only the paths that reach the final interface are
contributing to the θ function, this changes into

∫
DxP0

A[x]e−μ′
Aφ0φ0θ(λmax[x] − λB)∫
DxP0

A[x]
= kexp

AB , (68)

where we replaced the P with P0 in the normalization,
which hardly affects it. The exponent on the left hand
side can be taken out of the integral, yielding

∫
DxP0

A[x]φ0θ(λmax[X] − λB)∫
DxP0

A[x]
e−μ′

Aφ0 = k0
AB .e−μ′

Aφ0

= kexp
AB .

(69)

The exponential factor needs to be larger than unity
for an increase in the rate, which is then associated
with a negative Lagrange multiplier μ′

A. As we prefer
to associate a positive variable with an increase in rate,
we define μA ≡ −μ′

Aφ0 yielding

k0
ABeμA = kexp

AB , (70)

Indeed, a positive μA now increases the rate.

4.3 Imposing a rate constraint for all λ

In the above procedure, only the reactive AB paths in
the prior ensemble are reweighted to yield a given rate
constant. However, while this imposes the experimental
rate constant, it does lead to an undesirable discontinu-
ity at the boundary of λB . Moreover, the rate cannot
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be strongly dependent on where precisely this bound-
ary is located. More precisely, the rate can be expressed
as the product of two crossing probabilities [57]

kAB = φ0PA(λB |λi)PA(λi|λ0). (71)

We can now interpret the λi as the interface that we put
the kinetic constraint on. Since this location is arbitrary
for 0 < i < n we impose constraints on all these λ values
simultaneously. This leads to the following Lagrange, or
caliber, function

L = −
∫

DxPA[x] ln
PA[x]

P0
A[x]

− ν

(∫
DxPA[x] − 1

)
−

n∑
i=0

μi

×
(∫

DxPA[x]θ(λmax[x] − λi)PA(λn|λi) − kexp
AB

)
,

(72)

where the sum runs over the n + 1 interfaces. In each of
the constraints in the summation the paths that cross λi

are counted, and PA(λn|λi) is the crossing probability
to reach B from the λi interface. Optimization leads to
the MaxCal posterior path distribution

PMC
A [x] ∝ exp

[
−

n∑
i=0

μiθ(λmax[x] − λi)PA(λn|λi)

]
P0

A[x].

(73)

Note that the PA(λn|λi) in this equation is dependent
on the posterior distribution itself, and hence this is
an implicit definition. The sum in the exponent is only
dependent on λmax[x] (and of course on PA(λn|λ)), but
for a given system PA(λn|λ) is a function of λ, so the
sum can be written as

−
n∑

i=0

μiθ(λmax[x] − λi)PA(λn|λi) ≡ fA(λmax[x]),

(74)

where the PA(λn|λ) dependence is implicit in the func-
tion fA. The interpretation is that the weight of each
trajectory in the posterior path ensemble is entirely
dependent on λmax[x].

The n+1 constraints imposed are given for k = 0...n,

∫
DxPMC

A [x]θ(λmax[x] − λk)PA(λn|λk) = kexp
AB ,

(75)

with

PMC
A [x] ∝ efA(λmax[x])P0

A[x], (76)

In Ref. [46] it is shown that these constraints can ful-
filled for any reasonably continuous function fA(λ), as
long as fA(λB) = μA, and fA(λ0) = 0.

We can simplify the function by considering all paths
that reach a maximum at λj . Due to the θ function in

Eq. 74 only interfaces 0 < i < j contribute to the sum,
leading to

fA(λj) = −
j∑

i=1

μiPA(λn|λi). (77)

The function fA(λ) will be determined in the next
section. Figure 3 shows schematically how the TIS,
reweighted path ensemble and CoPE-MaxCal
approaches are related in terms of interface ensembles
based on λ.

The prior path distributions can be projected on the
collective variable (CV) or order parameter λ. In par-
ticular, the crossing probability P 0

A(λ|λ0) and configu-
rational density ρ0

A(λ) are expressed as

P 0
A(λ|λ0) =

∫
DxP0

A[x]θ(λmax[x] − λ), (78)

ρ0
A(λ) ∝

∫
DxP0

A[x]ρ̂(λ|x), (79)

where we defined the instantaneous density projection
operator

ρ̂(λ|x) =
L[x]∑

k=0

δ(λ(xk) − λ), (80)

to project a single path x on the CV λ. These projec-
tions can also be done for the posterior distribution,
leading to the configurational density ρMC

A (λ)

ρMC
A (λ) ∝

∫
DxP0

A[x]efA(λmax[x])ρ̂(λ|x), (81)

and for the crossing probability

PMC
A (λ|λ0) =

∫ λ

λn

R0
A(λ|λ0)efA(λ)dλ, (82)

where we defined the prior probability R0
A(λ|λ0) for a

path to just reach the interface λ

R0
A(λ|λ0) =

∫
DxP0

A[x]δ(λmax[x] − λ). (83)

4.4 The MaxCal bias function fA(λ) follows from
MaxEnt for the density

The function fA(λ) above is not completely specified.
However, we can make use of the density obtained by a
MaxEnt reweighting of the same system. In particular,
we can set

ρMC
A (λ) = ρME

A (λ). (84)
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A B A B

TIS RPE CoPE MaxCal

A B

Fig. 3 Schematic illustration of the relationship between the TIS, reweighted path ensemble (RPE) and CoPE-MaxCal
approaches. (Left) TIS simulations samples paths that cross a certain interfaces. The single path shown for each interface
represents a whole ensemble. (Center) The RPE follows by reweighting the path ensembles sampled in TIS. Weights are
schematically indicated by the line thickness. (Right) After application of the CoPE-MaxCal to impose a rate constant
constraint the paths in the RPE are reweighted with the fA function, as indicated by color. Lighter colors indicate more
strongly affected weights

In the MaxEnt Sect. 2.3, we imposed the equilibrium
fraction by

ρME
A (λ) = e−μAg(λ)ρ0

A(λ), (85)

where we projected the configurational density on the λ
parameter. Like in Sect. 2.3, we can use the committor
to impose the constraint, g(λ) = pB(λ), where pB(λ) is
now the projected committor. This committor follows
from the implicit equation Eq. 30. This procedure leads
to the following condition for the densities

∫
DxP0

A[x]efA(λmax[x])ρ̂(λ|x) = e−μg(λ)
∫

DxP0
A[x]ρ̂(λ|x),

(86)

which should be solved numerically.
We can also use the full (configurational) committor

pB(x), which gives

∫
DxP0

A[x]efA(pmax
B [x])ρ̂(x|x) = e−μpB(x)

∫
DxP0

A[x]ρ̂(x|x),

(87)

where pmax
B [x] returns the maximum committor value

along the trajectory x. Clearly, this might be very dif-
ficult to obtain in practice.

4.5 Application of CoPE-MaxCal to protein folding

The CoPE-MaxCal approach enables the investigation
of mechanistic properties for instance the location of
the transition state, by imposing experimental transi-
tion rates. In this section we briefly highlight an appli-
cation of the MaxCal approach on the folding of a
small protein, which we presented in Ref. [46]. Taking
information from a long molecular dynamics simula-
tion [133], we constructed the prior path distributions
and predicted rates [46]. Since the force field did not
reproduce the folding rate correctly at the expected

melting temperature, we imposed the correct experi-
mental folding rate using the CoPE-MaxCal procedure
[46]. The reweighted path ensembles led to a reweighted
free energy and committor landscape. Importantly, the
imposed rate caused a shift in predicted transition state
(see Fig. 4), that provides a qualitative change in mech-
anistic insight. We refer to Ref. [46] for more details and
examples.

4.6 Interpretation of the CoPE-MaxCal method

The CoPE-MaxCal method takes as input an unbiased
ensemble of paths from molecular dynamics simula-
tions, or a reweighted path ensemble [132] from TIS [57]
or Virtual Interface Exchange TPS [134], and reweights
each trajectory in this ensemble according to how far
it progresses along a predefined collective variable (see
a rendering in Fig. 5). This includes the paths that
cross the barrier and reach the final state, so the rate
constants are automatically constrained to the correct
value via the functions fA,B(λ). The more involved part
of the framework is to ensure that the thermodynamic
properties are correct, in particular the equilibrium con-
stant. This requires a specific bias function g(λ) based
on the committor function, which produces the least
perturbed path ensemble, while still obeying the con-
straints (see Sect. 2.3). So, imposing g(λ) can be viewed
as responsible for constraining equilibrium conditions,
whereas fA,B(λ) takes care of the dynamical correc-
tions. The interpretation of the reweighting procedure
is that trajectories are artificially made more, or less,
probable in the path ensembles. This is analogous to
changing the weight of each conformation in the Boltz-
mann distribution, using the MaxEnt approach. Note
that the trajectories themselves do not change in the
reweighting procedure. Rather, the distribution of ini-
tial conditions is adjusted. This is analogous, but not
identical, to how microcanonical trajectories can be
reweighted to give a canonical distributed path ensem-
ble (see, e.g., Ref. [135]).
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Fig. 4 Illustration of the movement of the transition state
for protein folding when the folding rate constant is imposed
using the CoPE-MaxCal method

A

B

A

B

original paths kinetically reweighted paths

high
weight

normal

Fig. 5 Cartoon of how the method reweights paths in a
complex landscape

5 Extensions

5.1 Multiple state descriptions

The MaxCal method can be extended to multiple
states. For multiple states, the kinetics is described
by a rate matrix K with entries kij for each pair of
states i and j. Incorporating multiple rate constants
in the ensembles adds additional constraints to the cal-
iber function, which ensures that the fluxes through the
final interfaces are correct, and yields the following path
reweighting

PMC
i [x] ∝ efi(λ

max
i [x])P0

i [x], (88)

where the function fi is now defined for each state, as
function of the maximum value along an order param-
eter, that is possibly different for each state. Note that
by changing the weight of state i all rates out of i are
changed in the same way. Thus ki,j = cik

0
i,j , i.e., all

the rates from state i change proportionally by the same
factor. This leads to a consistent description.

The other ingredient, the MaxEnt part, is based on
the committor. Applying a correction to the imposed
equilibrium constant Kij = πj/πi = kij/kji. means
that the densities for each basin of attraction ρi(x) are
reweighted by

ρi(x) = ρ0
i (x)e−μipi(x), (89)

where pi is the committor to state i with
∑

i pi = 1
[136]. Using the definition

pi(x) =
ρi(x)∑
i ρi(x)

. (90)

This implicit equation for pi(x) can be solved numeri-
cally for a given ρ0

i (x). This gives rise to the MaxEnt
reweighting by setting gi(x) = pi(x)

ρME
i = ρ0

i (x)e−μipi(x), (91)

which in turn can be related to the MaxCal condition

ρMC
i (x) = e−μipi(x)ρ0

i (x), (92)

or
∫

DxP0
i [x]efi(pi,min[x])ρ̂(x|x)

= e−μipi(x)

∫
DxP0

i [x]ρ̂(x|x), (93)

where the minimum of the committor pi to state i is
searched for along the path. Note that we have to use
the minimum along the pathway now, since the com-
mittor starts high, being close to the initial state, and
then slowly decreases to zero as the reaction progresses.

It is also possible to project the committor to an
order parameter λi, connected to each state. A numer-
ical solution should then lead to a set of committor-
based bias functions pi(λi). We leave the specific details
for future work.

5.2 An alternative formulation of the MaxCal
approach

In this section, we discuss whether one could establish
a MaxCal approach by including the equilibrium den-
sity constraint directly in the MaxCal procedure. This
would give an additional constraint to fulfill

ζA

(∫
dx

∫
DxPA[x]ρ̂(x|x) − πexp

A

)

= ζA

(∫
DxPA[x]L[x] − πexp

A

)
. (94)

One could include this constraint in the MaxCal
approach, which would lead to an additional weighting
factor

P[x] = P0[x]efA(λmax[x])e−ζAL[x], (95)

where the ζ multiplier would be determined by solving

∫
Pi[x]L[x] = πi, (96)
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and where one should use the non-normalized distri-
butions to obtain the correct relative path ensemble
weights. This could in principle be done but has a seri-
ous downside, namely that the paths are weighted with
the instantaneous path length L[x], which is sensitive
to the A and B definition, and hence seems arbitrary.

Moreover, this is not what we do in the CoPE-
MaxCal approach. Instead, we state that the MaxCal
method should reproduce the MaxEnt density ρME

A (x)
at each configuration x. This means that, in fact, we
are introducing many constraints, one for each configu-
ration point x, yielding an additional set of constraints

∫
dxζA(x)

(∫
DxPA[x]ρ̂(x|x) − ρME

A (x)
)

=
∫

dxζA(x)
(∫

DxPA[x]ρ̂(x|x)

− e−μAg(x)

∫
DxP0

A[x]ρ̂(x|x)
)

, (97)

where g(x) is again the MaxEnt biasing function defined
in Sect. 2.3. This set of constraints ensures that the
densities match at all configurations x. The path weight
is then

P[x] ∝ P0[x]efA(λmax[x])e− ∫
dxζA(x)ρ̂(x|x), (98)

where the ζA(x) multiplier would be determined by
solving the root of the derivative of the log partition
function with respect to the ζA(x)

∫
DxPA[x]ρ̂(x|x) = ρME

A (x). (99)

Indeed, imposing this equation is at the heart of the
CoPE-MaxCal method. Note that this implies that the
equilibrium constant is also correctly reproduced. Note
also that the constraint is stronger than what is needed
from MaxCal alone. However, we stress for an equilib-
rium system the MaxEnt approach should give a distri-
bution that is consistent with the MaxCal one.

5.3 Effects of the errors in the measurements

The MaxEnt principle can be used to model uncertain-
ties in the experimental data [24,28–30]. This is done
by adding to the constraint average 〈si〉 the expected
error 〈ei〉 due to the perturbed distribution, leading to

〈si〉 = sexp
i + 〈ei〉. (100)

When the error is Gaussian distributed with a standard
deviation σi, this average expected error is given by

〈ei〉 = −μiσ
2
i , (101)

where σi can be interpreted as the level of confidence
in the experimental measurements or data. One can

include this into the Langrange function and obtain

Γ(μ) = ln
[∫

dxPME(x)
]

+ μ · sexp +
1
2

M∑

i=1

μ2
i σ

2
i .

(102)

Optimizing this function, and solving for the Lagrange
multipliers μi thus takes the level of confidence into
account. Setting σ = 0, the level of confidence is so high
that it is actually a constraint, and leads to the original
Eq. 21. When σ is set large, the Lagrange multiplier μi

will become smaller, and the optimized distributor will
hardly differ from the original distribution. Thus, this
procedure changes the constraint into a restraint, tuned
by the level of confidence in the data.

The MaxCal equation can also be adjusted to incor-
porate the errors in the data, leading to the analog of
Eq. 102

k0
ABeμA = kexp

AB + μAσ2
kAB

, (103)

where σkAB
represents the level of confidence in the

rate constant data. Thus, one can turn the constraint
condition into a restraint condition.

5.4 CopE-MaxCal and machine learning

The MaxCal method aims at incorporating experimen-
tal data in molecular simulations by a path reweight-
ing function fA(λ). Since the computation of fA(λ)
from Eq. 86 might be not always trivial, one might
use advanced regression procedures, such as those pro-
vided by machine learning methods. In addition, when
considering the more general form of the function,
fA(pB,max[x]), machine learning methods might be
invoked to optimize both the fA function as well as the
committor description in terms of CVs. This direction
of research is left for future exploration.

5.5 Optimization of a collective variable with
CoPE-MaxCal

By inspecting the CoPE-MaxCal approach, one realizes
that the path reweighing depends on the choice of the
collective variable λ. For a different choice of λ, one
would get a different weight function, and hence caliber.
So, it should be possible to optimize the caliber function
over all possible CVs.

In principle, it is possible to vary the collective vari-
able and maximize the entropy and caliber as function
of this CV. The most optimal collective variable is then
the one that leads to the least perturbed path distribu-
tion. To do so, we can substitute the optimized MaxCal
distributions PMC

A [x] = C−1
A P0

A[x] exp[fA(λmax[x])]
and PMC

B [x] = C−1
B P0

B [x] exp[fB(λmin[x])], with CA, CB

normalization constants for these distributions, into
the path entropy expression. Here, we can make use
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of the reaching histograms approach R0
A(λ|λ0), and

R0
B(λ|λn). It follows that

S[PA||P0
A] = − 1

CA

∫
dλR0

A(λ|λ0)e
fA(λ)(fA(λ) − lnCA)

S[PB ||P0
B ] = − 1

CB

∫
dλR0

B(λ|λn)efB(λ)(fB(λ)−lnCB),

(104)

where the normalization CA =
∫

dλR0
A(λ|λ0)efA(λ),

is now in terms of the reaching histograms. While in
the above all sub-distributions P0

A,PA,PB ,P0
B are sup-

posed to be normalized, we require the normalized total
path distributions P and P0, when computing the total
entropy In terms of S[PA||P0

A] and S[PB ||P0
B ], defined

above, the total path entropy becomes

S[P||P0] = αS[PA||P0
A] + (1 − α)S[PB ||P0

B ]

+ α ln
α

α0
+ (1 − α) ln

1 − α

1 − α0
, (105)

with α = CA/(CA + CB), and α0 = C0
A/(C0

A + C0
B).

It is now possible to compare combinations of differ-
ent CVs with each other and select the best combina-
tion that optimizes the caliber, i.e disturbs the original
distribution as little as possible. This gives thus an addi-
tional variational principle. Going back to the original
caliber maximization over the distribution, we can add
a second level of optimization

PMC [x] = argmax
P[x],λ

S[P||P0]

subject to:

⎧
⎪⎨

⎪⎩

∫
DxPB[x]f (λi)

A [x] = kexp
AB∫

DxPB[x]f (λi)
B [x] = kexp

BA∫
DxP[x] = 1.

(106)

with f
(λi)
A [x] = θ((λmax[x]−λi)P (λB |λi)), and f

(λi)
B [x]

= θ((λmin[x] − λi)P (λA|λi)), the instantaneous mea-
sures for the rates. The additional maximization over
the CV space gives, thus, the best set of CVs. Such a
procedure is very similar to reaction coordinate opti-
mization [128,137–141].

5.6 CoPE-MaxCal as a variational principle?

In the previous section, we discussed how varying the
collective variables until the path entropy is maximized
yields the best set of CVs, i.e., the reaction coordinate.
It seems, therefore, natural to identify the committor
pB as the best collective variable, or reaction coordi-
nate, since it predicts for each configurations the prob-
ability to end in B. But why should the MaxCal proce-
dure give the same reaction coordinate? In other words,
why would the path entropy be optimal when the com-
mittor is chosen as a CV?

This question can be addressed by showing that when
deviating from the optimal CV, i.e., the committor
function, one always increases the KL divergence, i.e.,
lowers the path entropy. This would be the case even
for very small perturbations, i.e., in the limit μ → 0.
Such a finding would amount to establishing a varia-
tional principle.

To justify such a principle, we can take a closer look
at the path entropy and its behavior for a given path
distribution. We consider first an illustrative example
in Fig. 6.

For a path ensemble in 2D space of a 3 × 3 grid,
we consider two cases, a diagonal and a horizontal
CV. From the symmetry of the problem, the left panel
should represent the best CV, with the maximum path
entropy S or the lowest KL divergence, the negative of
S, which is always positive (or zero). To show that we
reconsider the expressions for the negative entropy, and
change from a integral expression to a discrete version
for the sake of this illustration. The KL divergence is
then written as

DKL = −S =
1

CA

∑

i

Rie
fi(fi − ln

CA

C0
A

), (107)

where we used Ri as the discrete version of the reach-
ing histogram R(λ|λ0), and fi as the discrete version
of f(λ). The normalization constant C0

A =
∑n

i Ri,
CA =

∑n
i Rie

fi . Substitution of these expressions into
the above equation gives

DKL =
∑

i=0 Rie
fifi∑

i=0 Riefi
− ln

∑
i=0 Rie

fi

∑
i=0 Ri

. (108)

We can simplify this expression by taking a factor f0 out
of the first and a factor ef0 out of the second fraction,

diagonal CV horizontal CV
Fig. 6 CoPe-MaxCal as a variational principle. We show a
path ensemble in 2D space of a 3×3 grid emanating from the
bottom left cell, which is part of state A. In both panels,
the same prior path ensemble is considered. The coloring
of the paths shows the prior weight of the trajectories. Blue
indicates a higher weight, while green and red lower weights.
The CV foliation is shown as shades of yellow cells (from
dark to light is bin 0, 1 and 2). Also shown is a indication
of the location of the barrier in the projection on the CV.
This is the best estimate of the location of the barrier in
each CV
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and canceling out several factors: where the f0 terms
cancel

DKL =
∑

i=1 Rie
fi(fi − f0)∑

i=0 Riefi

− ln
(

1 +
∑

i=1 Ri(efi−f0 − 1)∑
i=0 Ri

)
(109)

Up to now, we made no assumptions. Next, we con-
sider the small perturbation limit μ � 1. This means
that |f | � 1. The logarithm can then be replaced, yield-
ing

DKL =
∑

i=1 Rie
fi(fi − f0)∑

i=0 Riefi
−

∑
i=1 Ri(efi−f0 − 1)∑

i=0 Ri
.

(110)

Combining the two fractions gives

DKL =

∑
j=0

∑
i=1 RjRie

fi (fi − f0) − Rjefj Ri(e
fi−f0 − 1)

(
∑

i=0 Riefi )(
∑

i=0 Ri)

=

∑
j=0

∑
i=1 RjRi

(
efi (fi − f0) − efj (efi−f0 − 1)

)
(
∑

i=0 Riefi )(
∑

i=0 Ri)
.

(111)

The second assumption that we can make is that the
R0 is the largest contribution to the path ensemble.
This represents the paths that make small excursions
from the stable state. In fact, R0 can be made expo-
nentially larger than the next terms in the summation,
if the barrier is high enough. This means that we can
approximate DKL by only keeping the j = 0 term.

DKL ≈
∑

i=1 R0Ri

(
efi(fi − f0) − (efi − ef0)

)

R0R0
.

(112)

The next step is to realize that the bias f0 → 0, which
means that we obtain

DKL =
1

R0

∑

i=1

Ri

(
efi(fi) − (efi − 1)

)
. (113)

Finally, since all biases are small, due the fact that we
choose μ � 1, we can expand the exponential giving

DKL =
1

R0

∑

i=1

1
2
Rif

2
i . (114)

The above reasoning shows that in the limit of small
μ, the path entropy, i.e., the KL divergence, scales with
the square of the bias f -function (thus, being always
positive as expected), and is linear in the value of the
reaching histogram, the number of paths reaching a cer-
tain bin. This derivation shows that this KL divergence
should be minimal for the optimal CV.

The f -function is changing with the choice of the CV,
but not strongly, as we assume |f | � 1. This means

that the most important factor is the Ri. This then
establishes a variational principle. Either f goes to zero
(i.e., no perturbation), which is a trivial solution, or the
CV is chosen such that the path reaching histogram Ri

becomes minimal.
This path density is minimal for a CV that is aligned

with the committor, for the following reason. Reactive
paths have to go through a bottleneck where the path
density Ri is low. When the CV is the committor, this
Ri is the density of reaching paths that is measured.
Any deviation from this optimal CV will include paths
that are not part of the bottleneck, with a higher path
density. This will then increase the KL divergence, or
lower the path entropy. This is illustrated in the fig-
ure 6, where only 3 bins are considered: R0, R1 and R2

(indicated by the yellow shades in the cells). The diag-
onal CV has only 3 paths in R1 (the green paths), but
the horizontal CV also picks up the blue paths in the
lower middle cells, which have a much higher weight (as
they do not reach the barrier). This increase in Ri is
much more influential than the marginal change in fi

due to the change in variable. In fact, for this example
the function f only changes by 1% between the CVs.

While this is just an example, it is possible that this
variational principle holds more generally. In fact, the
concept of lowest path density Ri for the best CV is
reminiscent of the variational transition state theory
[142], which states that the best CV is the one that has
the highest barrier, or lowest rate. In our treatment, the
rate constant does not change since the reactive path-
ways do not change. Still, the configurational density
for both the A and B ensembles projected on the CV,
directly gives the free energy as we have seen above.
Thus, optimizing the CV using MaxCal is consistent
with optimizing the free energy barrier in the sense of
the variational transition state theory.

6 Conclusions and outlook

6.1 Summary

In this review, we have described the MaxEnt and
MaxCal approaches and their extensions to continuum
path ensembles through the CoPE-MaxCal method.
This strategy enables the definition of the least per-
turbed path ensemble consistent with given external
information, i.e., the trajectory ensemble of maximum
relative path entropy under given constraints. We have
focused in particular on imposing kinetic rate constants
on the continuous path ensembles obtained by molecu-
lar dynamics simulations of rare events. We have shown
how this can be done by a reweighting function depend-
ing on the maximum value of a collective variable along
the trajectory. To obtain this function, we made use of
the MaxEnt approach to impose the equilibrium con-
stant.

The CoPE-MaxCal optimized trajectory ensemble
can yield new information for other observables. One
example is a shift in transition state, which we dis-
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cussed in the previous section. Other kinetic proper-
ties might include residual dipolar couplings in NMR
spectroscopy.

Besides reviewing the CoPE-MaxCal method, we
have discussed several further additional directions of
investigations of this method, including an extension to
multiple states, and the relationship of the MaxCal col-
lective variable optimization with reaction coordinate
optimization methods.

To provide an outlook, we present here some open
questions and future directions.

6.2 Incorporation of time-resolved experimental
measurements

An potential extension and application of the CoPE-
MaxCal framework involves the addition of constraints
on the evolution of time-dependent variables. In this
way, one goes beyond adding a constraint on the final
reactive flux into a certain state (the rate constant)
for trajectories starting in a different initial state. This
extension can be obtained for example by starting from
the correlation function in Eq. 46. This would result
in a reweighting of the existing trajectories based on
constraints added at each time, as derived in Eq. 49.
Such time-dependent experimental data could be pro-
vided for example by time-dependent small angle X-ray
scattering (SAXS) [33,41,42,143] and time-dependent
solution cryo-electron microscopy [144].

6.3 Rational design of mutations and lead
compounds in drug discovery

We envision that a combination of our CoPE-MaxCal
framework (providing more accurate path ensembles)
with perturbative interaction models can result in
kinetics-mutation landscapes and/or kinetics-lead-
compound-optimization landscapes. This will, thus,
constitute a relatively inexpensive way to non-random
design of biomolecular mutation and lead compound
derivatives that modify the barrier in the desired direc-
tion, as opposed to random design of mutations that
have to be tested experimentally, or in expensive addi-
tional simulations.

6.4 Biased molecular dynamics simulations

In its initial implementation, the CoPE-MaxCal method
utilizes unbiased molecular dynamics simulations, pos-
sibly with the help of enhanced path sampling such as
TPS, thereby preserving the correct kinetics up to the
accuracy of the force field. Yet, advances in compu-
tational structural biology methods enable incorporat-
ing experimental data in the form of restraints or con-
straints [28–32,34–36,38,39,43] by biasing the Hamilto-
nian, while providing free energies that maximally meet
the experimental restraints or constraints. These obser-
vations raise the question whether the CoPE-MaxCal
approach can be combined with such biasing methods,
even if they cannot reproduce the natural kinetics.

Obtaining a free energy landscape using enhanced
sampling, and then performing unbiased molecular
dynamics, might be a viable way to reconstruct unbi-
ased kinetics. For instance, trajectories from infrequent
metadynamics or frequency adaptive metadynamics
[145–148] can subsequently be reweighted to meet given
kinetic constraints.

Finally, the Filizola and Keller groups recently
explored the use of biased molecular dynamics simula-
tions and subsequent application of constraints on con-
figurational ensemble averages that result in the alter-
ation of an transition-probability matrix to reconstruct
the unbiased kinetics [149,150].

6.5 Force field optimization for molecular kinetics

Molecular dynamics is in principle capable to pro-
vide quantitative predictions about the thermodynam-
ics and kinetics of a system at the atomistic level.
However, the accuracy of the calculations is limited
by the quality of the force fields, which are typically
parameterized using quantum mechanical calculations
and experimental measurements of equilibrium prop-
erties [14]. There are several methods using MaxEnt,
Bayesian inference and force-matching techniques that
pursuit the development of such force fields [28,151–
155]. However, there is still a need of further method-
ological advances in this area for the accurate repro-
duction of time-dependent properties, such as the rate
constants. These advances would have a large impact
in the growing field of integrative structural biology,
since for example they would potentially better predict
populations of conformations that lie in the transition
states [46]. Such a force field optimization for molec-
ular kinetics is currently not possible within CoPE-
Maxcal approach, as the prior dynamical trajecto-
ries, and hence the force field, are not affected in the
reweighting procedure. Yet, it might be made possi-
ble by introducing novel forward models for the rate
as a function of the force field parameters. By comput-
ing the derivative of the rate constant with respect to
these parameters, one could minimize an error function
to meet target kinetics. This is an avenue that are we
currently actively pursuing.

6.6 Open questions in statistical mechanics

The extension of the MaxEnt principle to path ensem-
bles that we have discussed in this review prompts a
series of questions of general nature, some of which are
listed in the following.

(1) We have presented the CoPE-MaxCal method as a
reweighting scheme. This method affects only the
initial conditions (see Sect. 4.6), but not the trajec-
tories themselves. It would be interesting to inves-
tigate the analogy between this type of reweighting
and the coupling to a heat bath, such as done in
the derivation of the canonical ensemble from the
microcanonical ensemble. One can also ask whether
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the MaxCal approach can be used to modify the
trajectories themselves. This might be used in an
on-the-fly optimization such as proposed in [156].

(2) In the CoPE-MaxCal application to rate constants
we have used the Transition Path Sampling and
Transition Interface Sampling framework. While
these methods are efficient tools to obtain and
manipulate path ensembles, one should be able to
formulate the methodology independently.

(3) The investigation of the relationship between the
CoPE-MaxCal approach and other path reweight-
ing methodologies, such as the s-ensemble or other
path reweighting methods, could provide further
insight for establishing more general methods.

(4) The CoPE-MaxCal framework may be extended to
non-equilibrium steady states, e.g., for the driven
dynamics observed in active systems. For that sit-
uation the MaxEnt approach cannot describe the
correct steady state density, and one has to use
the MaxCal approach in order to construct the
reweighting function.

6.7 Final thoughts

We anticipate that the application of the MaxCal
approach to ensembles of continuum trajectories, as for
example provided by molecular dynamics simulations,
will offer new opportunities to address equilibrium and
non-equilibrium problems that involve the trajectory
space. We undoubtedly will see more research in this
area in the coming years.
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5. S. Pressé, K.Ghosh, J. Lee, K. A. Dill. Rev. Mod. Phys.
85 1115 (2013)

6. A. A. Filyukov, V. Y. Karpov (1967) J. Eng. Phys. 13
416

7. C. Monthus, J. Stat. Mech. 2011 P03008 (2011)
8. S. Davis, D. Gonzalez, J. Phys. A: Math. Theor. 48,

425003 (2015)
9. P.D. Dixit, J. Wagoner, C. Weistuch, S. Pressé, K.
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