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Abstract. In this work, we elaborate on two recently discovered invariance principles, according to which
transport coefficients are, to a large extent, independent of the microscopic definition of the densities and
currents of the conserved quantities being transported (energy, momentum, mass, charge). The first such
principle, gauge invariance, allows one to define a quantum adiabatic energy current from density-functional
theory, from which the heat conductivity can be uniquely defined and computed using equilibrium ab initio
molecular dynamics. When combined with a novel topological definition of atomic oxidation states, gauge
invariance also sheds new light onto the mechanisms of charge transport in ionic conductors. The second
principle, convective invariance, allows one to extend the analysis to multi-component systems. These
invariance principles can be combined with new spectral analysis methods for the current time series to
be fed into the Green–Kubo formula to obtain accurate estimates of transport coefficients from relatively
short molecular dynamics simulations.

1 Introduction

Transport coefficients are archetypal examples of off-
equilibrium properties, which describe in fact entropy
production and the approach to equilibrium in extended
systems, thus giving a quantitative meaning and a con-
ceptual framework to the very notion of irreversibility
and the arrow of time. While non-equilibrium statisti-
cal mechanics is still a very active and largely unsettled
field of research, the relaxation of small off-equilibrium
fluctuations and the response of systems to small per-
turbations have been given a rigorous theoretical foun-
dation back in the fifties by the Green–Kubo (GK) the-
ory of linear response [1–4]. Among other achievements,
this theory provides a rigorous and elegant way to cast
the computation of transport coefficients into the eval-
uation of equilibrium time correlation functions of suit-
ably defined fluxes, thus making it accessible to equi-
librium molecular dynamics (EMD) simulations. This
feat notwithstanding, the several conceptual subtleties
underlying the linear-response theory of transport coef-
ficients are often dodged or disguised with a clumsy
notation that makes it difficult to fully appreciate their
scope and impact on the design and use of computer
simulation methodologies. Also due to this predica-
ment, a number of misconceptions have affected the
otherwise mature and fecund field of computer simula-
tion of transport in condensed matter, thus unduly lim-
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iting its scope. Foremost among these misconceptions
is that the intrinsic indeterminacy of any local repre-
sentations of an extensive quantity, such as the density
or atomic break-up of the energy (or charge and mass,
for that matter), would undermine the uniqueness of
the transport coefficients that are derived from them.
While similar reservations should apply to classical and
quantum ab initio simulations alike, they have in fact
impacted mainly the latter, to the extent that until
recently it had been believed that the GK theory of heat
transport could not be combined with quantum simula-
tion methods based on electronic-structure theory. This
quandary has been recently overcome, mainly thanks to
the introduction of a so-called gauge invariance princi-
ple of transport coefficients [5,6], which basically states
that, under well-defined conditions, the value of a trans-
port coefficient is largely independent of the detailed
form of the conserved densities and fluxes from which
they are derived through the GK formulae. In full gener-
ality, gauge invariance implies that the value of a trans-
port coefficients is unchanged if the flux from which it
is calculated is modified by adding to it a vector process
whose power spectrum vanishes at ω = 0 (such a pro-
cess is conveniently dubbed non-diffusive). Further dif-
ficulties may arise in the case of multi-component sys-
tems, where the interaction among different fluxes make
the transport of one conserved quantity (such as, e.g.,
energy), depend on the dynamics of the other hydrody-
namical variables (such as, e.g., the number of different
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molecular species), thus muddling the definition of heat
conductivity in these systems. This difficulty is solved
by defining, e.g., the thermal conductivity as the ratio
between the energy flux and the temperature gradient,
when all the other conserved fluxes vanish. In this case,
a further invariance principle, dubbed convective invari-
ance [7], states that the thermal conductivity results
to be unchanged if the definition of the energy flux is
altered by adding to it an arbitrary linear combination
of the mass fluxes of the molecular species constituting
the system. While the value of the transport coefficients
enjoys the invariance properties mentioned above, the
statistical properties of the flux time series from which
they are derived do depend on the microscopic represen-
tation of the conserved densities and current densities,
thus substantially affecting the statistical error of the
transport coefficient being computed. This dependence
opens the way to optimizing this representation, so as
to minimize the resulting statistical errors. This free-
dom can be exploited in conjunction with the recently
introduced cepstral analysis of the current spectra [8]
to substantially reduce the length of the EMD simu-
lations needed to evaluate a transport coefficient to a
given target accuracy.

In this paper, we review the concepts of gauge and
convective invariance in the classical theory of trans-
port in condensed matter, with emphasis on their appli-
cation to the computation of transport coefficients from
the GK theory of linear response and EMD, as well
as some concepts and tools for the spectral analysis of
the current time series, which can be used in conjunc-
tion with these invariance principles to substantially
reduce the statistical errors affecting the EMD estimate
of various conductivities. In Sect. 2, we briefly lay down
the GK linear-response theory of transport, aiming at
establishing some general terminology and notations. In
Sect. 3, we introduce the concept of gauge invariance,
whereas convective invariance is discussed in Sect. 4. In
Sect. 5, we discuss a newly introduced spectral method
(dubbed cepstral analysis) to evaluate and systemati-
cally reduce the statistical error affecting the estimate
of transport coefficients from EMD. In Sect. 6, we spe-
cialize our discussion to ab initio heat transport and
report a general expression for the microscopic heat
flux suitable to density functional theory. In Sect. 7,
we show how gauge invariance can be combined with
concepts from topology to reveal some unexpected fea-
tures of charge transport in ionic conductors. Section 8
finally contains our conclusions.

2 Theory

Transport theory is essentially a dynamical theory of
hydrodynamical variables, i.e. of the long-wavelength
components of the densities of conserved, extensive,
variables, which in short we refer to as conserved
charges and densities. In a simple fluid, for instance,
the conserved charges are the energy, the three com-
ponents of total momentum, and the total number of

molecules of each chemical species. The correspond-
ing transport coefficients are the thermal conductiv-
ity, the viscosity, and the various diffusivities. Let Q̂ be
one such conserved charge, and q̂(r) the corresponding
density: Q̂ =

∫
q̂(r)dr. Here and in the following we

adopt the convention that a hat, as in Â, indicates an
implicit dependence on the system’s phase-space vari-
ables, Γ: Â = A(Γ), where Γ = {x, p} is the set of
all the atomic coordinates and momenta. When nei-
ther a hat nor the phase-space argument are present,
A indicates the expectation of Â over some suitably
defined phase-space distribution, ρ(Γ) (most frequently
the canonical or micro-canonical equilibrium distribu-
tions): A = 〈Â〉 .=

∫
A(Γ)ρ(Γ)dΓ. When it will be neces-

sary to distinguish between the expectation of a quan-
tity, A, and its phase-space representation, A(Γ), the
latter will be referred to as a phase-space sample of the
former. Sometimes, we will need to indicate explicitly
the implicit time dependence of a phase-space variable
(no pun intended). When this is done, we will mean the
phase-space variable Â(t) = A(Γ, t) .= A(Γt), as a func-
tion of time and of the initial condition, Γ = Γ0, of a
phase-space trajectory, Γt, as determined by Hamilton’s
equations of motion.

Locality implies that for any conserved density, q(r),
a (conserved) current density, j(r), can be defined,
such that the two of them satisfy the continuity equa-
tion, q̇(r, t) + ∇ · j(r, t) = 0, where q̇ indicates the
time derivative of q. A current density, j(r, t), satis-
fying the continuity equation with a conserved den-
sity, q(r, t), will be said to be conjugate to q. Strictly
speaking, the continuity equation holds for the expec-
tations of conserved densities and current densities, as
well as for their phase-space samples, q̂(r, t) = q(r,Γt)
ĵ(r, t) = j(r,Γt). For the sake of unburdening the nota-
tion as much as possible, we will sometimes overlook
the distinction between phase-space samples and their
expectations.

The Fourier transform of the continuity equation
reads:

˙̃q(k, t) + ik · j̃(k, t) = 0, (1)

where q̃(k) =
∫

q(r)eik·rdr is the Fourier transform
of q, and similarly for j(r) and any other function
of r. Equation (1) shows that the smaller the wave-
vector, |k|, i.e. the longer the wavelength, the slower
the dynamics of conserved densities and fluxes. This
means that, at sufficiently long wavelength, conserved
densities and current densities are adiabatically decou-
pled from the (zillions of) other atomically fast degrees
of freedom. Also, translational invariance implies that
conserved densities at different wavevectors do not
interact with each other. As a consequence, the dynam-
ics of hydrodynamic variables is determined by a hand-
ful of equations that couple them with each other at
fixed wavevector. When the intensive variables conju-
gate to the conserved quantities depend on position suf-
ficiently slowly, the system can be thought of as locally
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in thermal equilibrium and conserved currents can then
be connected to the thermodynamical affinities (i.e. to
the gradients of the intensive variables) through the so-
called constitutive equations [9]. By combining the con-
stitutive equations with the continuity equations of all
the conserved densities and currents, the Navier–Stokes
equation of classical hydrodynamics can be derived [9].

Let us consider a system described by a Hamiltonian
Ĥ◦ and subject to a time-dependent external perturba-
tion, V̂ (t) =

∑
i

∫
vi(r, t)q̂i(r)dr, where {q̂i} is a set of

conserved densities. The perturbed Hamiltonian reads:

Ĥ = Ĥ◦ +
∑

i

∫
vi(r, t)q̂i(r)dr. (2)

Here the vis are to be treated as strengths of the pertur-
bation in linear-response theory. As such, they are not
phase-space functions, and they dependence on time
only explicitly. To first order in the vs, the expected
value of the conserved current densities conjugate to
the qs, {ĵi}, can be obtained from the GK theory of
linear response [3,4] as [10]:

jiα(r, t) = − 1
kBT

×
∑

j

∫
dr′
∫ t

−∞
dt′
〈

ĵiα(r, t) ˙̂qj(r′, t′)
〉
vj(r′, t′),

(3)

where kB is the Boltzmann’s constant, T the system’s
temperature, and the correlation function, 〈·〉, is defined
for a pair of general phase-space variables, X̂ and Ŷ , as
the equilibrium expectation over the initial conditions
of a molecular trajectory, Γt, of the time-lagged product
of the values of the variables:

〈X̂(t)Ŷ (t′)〉 = 〈X̂(t − t′)Ŷ (0)〉

=
∫

X(Γt−t′)Y (Γ0)ρ(Γ0)dΓ0.
(4)

The dependence of the correlation function in Eq. (4) on
the time difference is due to time-translation invariance
ensuing from the equilibrium condition. By the same
token, space-translation invariance makes the correla-
tion function in Eq. (3) only depend on r − r′, turning
the integral in dr′ into a convolution. Using the continu-
ity equation to replace the time derivative of the density
with the divergence of the conjugate current density,
Eq. (3) can be cast into a linear relation between the
Fourier transforms of the longitudinal component of the
current density and the forces acting on the system:

j̃‖i(k, t) = −
∑

j

∫ t

−∞
χ‖ij(k, t − t′)f̃‖j(k, t′)dt′,

(5)

where g̃‖(k) = 1
kk · g̃(k) indicates the Fourier trans-

form of the longitudinal component of a generic vector
field g(r), χ‖ij(k, t) = 1

kBT

〈˜̂j‖i(k, t)˜̂j‖j(−k, 0)
〉

is the
longitudinal susceptibility of the current densities, and
f i(r) = −∇vi(r) is the force field associated with the
vi perturbing potential. For the sake of streamlining
the notation and without much loss of generality, we
will restrict ourselves to longitudinal perturbations and
response currents, and drop the “‖” suffix from cur-
rents and forces. If the external perturbation is inde-
pendent of time, in the long-wavelength limit Eq. (5)
results in the Onsager relation between particle fluxes
and applied forces [11,12]:

Jn =
∑

nm

ΛnmFm, (6)

where the index n = (i, α) denotes for short the combi-
nation of the indices i, for the conserved charge, and α,
for the Cartesian component; the fluxes Jn = 1

Ω j̃n(0)
and forces Fn = 1

Ω f̃n(0) are the macroscopic averages
of the current densities and force fields, respectively; Ω
is the system’s volume, and

Λnm =
Ω

kBT

∫ ∞

0

〈
Ĵn(t)Ĵm(0)

〉
dt (7)

is the matrix of Onsager’s transport coefficients [11,12].
In the case of a charged fluid, for instance, the steady
state charge flux, J , induced by a stationary electric
field, E, is given by J = σE, where the static electrical
conductivity is σ = Ω

kBT

∫∞
0

〈
Ĵ(t) ·Ĵ(0)

〉
dt.

We can reformulate the GK expression of Onsager’s
coefficients in another equivalent representation, the so-
called Helfand–Einstein (HE) formula, which will be
expedient in the following and is also better behaved
statistically, based on the identity:

∫ T

0

dt

∫ T

0

dt′ f(t′ − t) = 2T
∫ T

0

dt

(

1 − t

T

)

f(t),

(8)
valid for any even function, f(−t) = f(t). Let Ĵ(t) be a
stationary stochastic process representing a conserved
flux, so that f(t, t′) = 〈Ĵ(t) · Ĵ(t′)〉 only depends upon
|t − t′|. By applying the identity above, we obtain

∫ ∞

0

〈
Ĵ(t) ·Ĵ(0)

〉
dt = lim

T →∞

1
2T

〈∣
∣
∣
∣
∣

∫ T

0

Ĵ(t)dt

∣
∣
∣
∣
∣

2〉

.

(9)
This is called the HE formula, which gives a transport
coefficient of some conserved charge, as the ratio of
the mean-square dipole, D(T ) =

∫ T
0

J(t)dt, displaced
by the conserved flux, J , in a time t and time itself.
This argument was first exploited by Einstein in his
celebrated paper on Brownian motion [13] to estab-
lish the relation between diffusivity and velocity auto-
correlation functions, and later extended by Helfand
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Fig. 1 Comparison between the Green–Kubo and the
Helfand–Einstein integrals, see Eq. (9), of the autocorre-
lation function of the charge flux for an ab initio MD simu-
lation of molten KCl. The shaded area represents the confi-
dence interval estimated via standard block analysis

to general transport phenomena [14]. A comparison
between the numerical performance of the GK and the
HE formulas is displayed in Fig. 1 in the case of charge
transport in a molten salt. The better stability of the
HE integral is evident: not only does the HE integral
converge faster than the GK one, but the variance on
the first, even though growing linearly with time, is
much smaller than the one on the second.

To understand the better statistical behaviour of the
HE representation of transport coefficients with respect
to the GK one, we leverage the relation between con-
ductivities and the spectral properties of the conserved
fluxes, which will also be instrumental in our subse-
quent considerations on data analysis in Sect. 5. Let us
define

λ = lim
T →∞

λGK(T )

= lim
T →∞

λHE(T )

=
1
2
S(0),

(10)

where

λGK(T ) =
∫ T

0

〈
Ĵ(t) ·Ĵ(0)

〉
dt,

λHE(T ) =
∫ T

0

〈
Ĵ(t) ·Ĵ(0)

〉(

1 − t

T

)

dt,

S(ω) =
∫ ∞

−∞

〈
Ĵ(t) ·Ĵ(0)

〉
eiωtdt.

(11)

One has

λGK(T ) =
1
2

∫ ∞

−∞
ΘT

GK(t)
〈
Ĵ(t) ·Ĵ(0)

〉
dt

λHE(T ) =
1
2

∫ ∞

−∞
ΘT

HE(t)
〈
Ĵ(t) ·Ĵ(0)

〉
dt,

(12)

Fig. 2 Fourier transforms of the cutoff functions entering
the finite-time GK and HE expressions for the transport
coefficients as integrals over the entire real axis, see Eq. (13)

where

ΘT
GK(t) =

{
1 for |t| ≤ T
0 otherwise

,

ΘT
HE(t) =

{
1 − |t|

T for |t| ≤ T
0 otherwise

.

(13)

Using the Parseval–Plancherel identity [15], one gets

λX(T ) =
1
4π

∫ ∞

−∞
Θ̃T

X(ω)S(ω)dω, (14)

where X = GK or HE and Θ̃T
X(ω) =

∫∞
−∞ ΘT

X(t)eiωtdt.
The two functions

Θ̃T
GK(ω) = 2T sinc(ωT )

Θ̃T
HE(ω) = T sinc2(ωT

2 ),
(15)

where sinc(x) .= sin(x)/x is the cardinal sine function,
are displayed in Fig. 2: as T → ∞, they both tend to
2πδ(ω), where δ indicates the Dirac delta function. One
sees that the statistical accuracy of the HE estimate of
the transport coefficients is higher than GK’s. Using
the findings of Sect. 5, in Appendix A we demonstrate
that, in the large-T limit, one has indeed the following
relation between the statistical uncertainties: ΔλHE ≈
1√
3
ΔλGK.

3 Gauge invariance

3.1 General theory

The gauge-invariance principle of transport coefficients
is the condition by which transport coefficients are
largely insensitive to the specific definition of the fluxes.
In fact, from a microscopic standpoint, any two con-
served densities, q̂′(r, t) and q̂(r, t), whose integrals
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over a volume Ω differ by a quantity that scales as
the volume boundary, should be considered equivalent
in the large volume limit, Ω → ∞. For instance, two
equivalent densities may differ by the divergence of a
(bounded) vector field b̂(r, t):

q̂′(r, t) = q̂(r, t) − ∇ · b̂(r, t). (16)

In this sense, q̂(r, t) and q̂′(r, t) can be thought of as
different gauges of the same scalar field. Since Q̂ =∫
Ω

q̂(r, t)dr is also conserved, for any given gauge of the
conserved density, q̂(r, t), a conserved current density
can be defined, ĵ(r, t), to satisfy the continuity equa-
tion, Eq. (1). By combining Eqs. (16) and (1) we see
that conserved current densities, as well as macroscopic
fluxes, transform under a gauge transformation as

ĵ′(r, t) = ĵ(r, t) + ˙̂
b(r, t),

Ĵ
′
(t) = Ĵ(t) + ˙̂

B(t),
(17)

where B̂(t) = 1
Ω

∫
b̂(r, t)dr, the time dependence being

implicit via the phase-space point Γt, e.g. Ĵ(t) =
J(Γt), and where the dot indicates the Poisson brackets
with the unperturbed Hamiltonian. We conclude that
the macroscopic energy fluxes in two different energy
gauges differ by the total time derivative of a bounded
phase-space vector function. Nonetheless, both defini-
tions must lead to the same transport coefficient. To
prove such a gauge-invariance principle, let us consider
a generic transport process with conserved flux repre-
sented by the stochastic stationary process Ĵ(t), and
define the (generalised, conserved) charge displacement
per unit volume D̂(T ) =

∫ T
0

Ĵ(t) dt. According to the
HE formulation we can express the transport coefficient
of the process, σ, as

σ = c lim
T →∞

〈|D̂(T )|2〉
2T , (18)

where the factor c is specific to the transport process
considered. The addition of a time-bounded term B̂(T )
to D̂(T ), resulting in the new displacement D̂

′
(T ) ≡

D̂(T )+B̂(T ) produces a transport coefficient σ′ which
coincides with σ. In fact, by direct calculation, we have

σ′ ≡ c lim
T →∞

〈|D̂′(T )|2〉
2T

= c lim
T →∞

O(T )
︷ ︸︸ ︷
〈|D̂(T )|2〉 +

O(T 1/2)
︷ ︸︸ ︷
2〈B̂(T )D̂(T )〉 +

O(T 0)
︷ ︸︸ ︷
〈|B̂(T )|2〉

2T

= c lim
T →∞

〈|D̂(T )|2〉
2T ≡ σ. (19)

3.2 Some considerations on boundary conditions

To conclude this section, we spend a few words to
examine the role of boundary conditions (BC) in prac-
tical molecular dynamics simulations of a finite sam-
ple of the system. First of all, the simulation box
must be larger than the relevant correlation/diffusion
lengths of the system, for equilibrium properties to
be independent of specific BC adopted in the simu-
lation. In EMD simulations, periodic BC (PBC) are
preferred since (1) they minimize size effects, and (2)
the limit limT →∞

∫ T
0

〈Ĵ(t)Ĵ(0)〉dt commutes with ther-
modynamic limit, where L,N → ∞ while the den-
sity L3/N is kept fixed. This commutation no longer
holds in open BC (OBC) at thermodynamic equilib-
rium, where the asymptotic time limit, T → ∞, must
be taken only after the thermodynamic limit is per-
formed.

Differently stated, PBC have to be preferred with
respect to OBC, since they are the only ones which can
sustain a steady-state flux [16]. Nonetheless, this poses
some issues in the definitions of the fluxes, since the
textbook definition relying on the first moment of the
time-derivative of the (periodic) charge density q̂(r, t),

Ĵ(t) =
1
Ω

∫

Ω

˙̂q(r, t) rdr, (20)

cannot be employed since r is ill-defined in extended,
PBC-closed systems. Strictly speaking, Eq. (20) is ill-
defined in PBC for the very same reason why macro-
scopic polarisation is so in insulators [17]. The formal
meaning of this equation is that it should be considered
as the leading order of a Taylor series of the Fourier
transform of the time derivative of the conserved den-
sity in powers of its argument: ˙̃̂

q(k, t) = −ik · Ĵ(t) +
O(k2). Computer simulations performed for systems of
any finite size, L, give access to the Fourier compo-
nents of conserved (current) densities at finite wave-
vectors whose minimum magnitude is |kmin| = 2π

L .
Let cL(t) =

〈ˆ̃j(kmin, t) · ˆ̃j(−kmin, 0)
〉

L
be the (spatial

Fourier transform of the) current-current correlation
function evaluated at k = kmin, which can be easily
evaluated from a MD simulation. Unfortunately, cL(t)
cannot be directly used to estimate, not even by extrap-
olation, the values of the transport coefficients, because
the corresponding GK integral vanishes for any finite
system size. In practice, the flux to be used to evaluate
transport coefficients from the GK formula is obtained
from Eq. (20) by formal manipulations that make the
flux boundary insensitive. The time correlation function
CL(t) .= 〈Ĵ(t) ·Ĵ(0)〉L, computed for a system of size L,
is well-defined as well, and has the property that, for
any given t,

lim
L→∞

(
CL(t) − cL(t)

)
= 0. (21)

The tricky thing is the convergence of the limit in
Eq. (21) is not uniform and, while

∫∞
0

cL(t)dt = 0,
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∫∞
0

CL(t)dt is the non-vanishing GK integral yielding
the transport coefficient we are after. Therefore, def-
initions for the fluxes suitable to PBC must be prop-
erly designed not only from the speculative standpoint,
but also to run meaningful simulations. In what fol-
lows, we shall largely use these PBC-based definitions
together with the gauge invariance principle to draw
general conclusions on transport properties which do
not depend on the system size, and hold in the thermo-
dynamic limit.

4 Convective invariance

In a multicomponent system, the (relevant) conserved
charges are the energy and the particles number (or,
equivalently, the masses) of each atomic species. Since
the total-mass flux (i.e. the total linear momentum) is
itself a constant of motion, for a K-species system the
number of independent conserved fluxes is equal to K
(energy, plus K − 1 partial masses) [18]. Further con-
straints may reduce the number of relevant conserved
fluxes. For instance, energy flux becomes the only rel-
evant conserved flux in solids or in one-component
molecular liquids, as long as the molecules do not dis-
sociate. In true multicomponent systems (molten salts,
solutions, etc.), neither the mass fluxes of the single
atomic species are constant of motion nor their inte-
gral is a bound quantity. This fact must be taken into
account in practical simulations of heat transport since
the thermal conductivity relates, by definition, a gradi-
ent of temperature to the induced energy flux in the
absence of convection, i.e. when the non-equilibrium
average of the macroscopic mass flux vanishes.

To make things simpler but also more quantitative,
let us consider a two-component system, like, e.g. a
molten salt. The conserved fluxes are the energy flux
JE and the mass flux of one of the species JM . The
following system of phenomenological equations holds:

⎧
⎨

⎩

JE = ΛEE∇
(

1
T

)
+ ΛEM∇

(
Δμ
T

)

JM = ΛME∇
(

1
T

)
+ ΛMM∇

(
Δμ
T

)
,

(22)

where Δμ is the difference between the chemical poten-
tials of the two species [19], and where JM ≡ JM1 =
−JM2 , JMl

being the mass flux of species l, the last
step following from the conservation of linear momen-
tum. When we set the mass flux JM = 0,

∇
(

Δμ

T

)

= − ΛME

ΛMM
∇
(

1
T

)

(23)

which can be substituted in the first equation of the
system to finally find

JE = −κ∇T (24)

κ ≡ 1
T 2

[

ΛEE − (ΛEM )2

ΛMM

]

, (25)

where we employed the symmetric property ΛEM =
ΛME . In the light of GK theory, the thermal conduc-
tivity κ is obtained by removing from the GK integral
of the energy flux a term which represents the contri-
butions of convection/mass diffusion to heat flow [20].

It is straightforward to verify that a change in the
definition of the microscopic energy flux by any multiple
of the mass flux,

Ĵ
′
E = ĴE + c ĴM , c ∈ R, (26)

does not affect κ, even if such change does change each
of the Onsager coefficients in Eq. (25). We dub this
peculiar property the “convective invariance” principle.
This can be easily extended to more than two species,
K > 2, thanks to standard linear algebra techniques.
In such case, κ becomes

κ =
1

T 2

⎛

⎝ΛEE −
K−1∑

l,m=1

ΛEMl
(L−1)lmΛEMm

⎞

⎠ , (27)

where L = {ΛMlMm} is the square matrix of Onsager
coefficients of the mass fluxes. The convective-invariance
principle reads

Ĵ
′
E = ĴE +

K−1∑

l=1

cl ĴMl
, cl ∈ R ⇒ κ′ = κ. (28)

Any linear combination of the mass fluxes can be added
to the energy flux without affecting the thermal conduc-
tivity. This statement has a direct, crucial consequence
concerning ab initio calculations: the heat conductivity
cannot in fact depend on whether atomic cores con-
tribute to the definition of the atomic energy, as they
would in an all-electron calculation, or not, as they
would when using pseudo-potentials. In the latter case,
the energy of isolated atoms would depend on the spe-
cific form of pseudo-potential adopted, which is to a
large extent arbitrary, while the heat conductivity in
all cases should not. Thanks to convective invariance,
shifting the zero of energy of each species by a quantity
δEl would result in a change Ĵ

′
E = ĴE +

∑K−1
l=1

δEl

Ml
ĴMl

which does not affect κ, just like physical intuition
would suggest. Finally, from a more practical way, con-
vective invariance also avoids the calculation of partial
enthalpies to dispose of the spurious self-energy effects,
a rather tedious and cumbersome task [21–23].

5 Cepstral analysis

5.1 Wiener–Khinchin theorem

Cepstral analysis is a powerful spectral method intro-
duced in the ’60s for the analysis of time series, mainly
in the field of speech recognition and sound engineer-
ing [24]. To deploy its power to extract the transport
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coefficient from the time series of the relevant con-
served fluxes, we must shift to a Fourier-space rep-
resentation of stochastic processes, as allowed by the
Wiener–Khinchin theorem [25,26]. The latter states
that the expectation of the squared modulus of the
Fourier transform of a stationary process is the Fourier
transform of its time correlation function. We can thus
apply this result to the case where the stochastic pro-
cess is a conserved flux, Ĵ(t) [the Cartesian indices have
been omitted for clarity], and generalize Eq. (9) to the
finite-frequency regime as follows:

ST (ω) =
1
T

〈∣
∣
∣
∣
∣

∫ T

0

Ĵ(t)eiωtdt

∣
∣
∣
∣
∣

2〉

= 2Re

∫ T

0

〈
Ĵ(t)Ĵ(0)

〉
eiωtdt + O(T −1).

(29)

More generally, when several fluxes interact with each
other, one can define the cross-spectrum of the con-
served fluxes as the Fourier transform of the cross time-
correlation functions:

Slm(ω) =
∫ ∞

−∞
〈Ĵ l(t)Ĵm(0)〉 eiωtdt

=
1
T Re

〈∫ T

0

Ĵ l(t)e−iωtdt

∫ T

0

Ĵm(t)eiωtdt

〉

+ O(T −1).
(30)

Onsager’s coefficients can be thus expressed as

Λlm =
Ω

2kB
Slm(ω = 0). (31)

As we shall see, one can leverage on the Wiener–
Khinchin theorem and the gauge invariance principles
to obtain good estimates (i.e. within 10% accuracy)
of the transport coefficients with relatively short EMD
simulations (i.e. 10–100 ps). In practice, this result is
based on a particular spectral method named cepstral
analysis of time series, which we describe below.

5.2 Periodograms and power spectra

Let us focus on one specific flux. In MD simulation, we
shall have it as a (discrete time) sample, here denoted
with the calligraphic font, of the flux process:

Jn ≡ J (nε), n = 1, . . . , N − 1. (32)

Here ε is the sampling period, in general a multiple
of the timestep of the simulation Δt, so that Nε is
the total length of the simulation. The discrete Fourier
transform of the flux time series is defined by

J̃k =
N−1∑

n=0

e2πi kn
N Jn, (33)

for 0 ≤ k ≤ N −1. The sample power spectrum Sk (i.e.
the periodogram) is defined as

Sk =
ε

N

∣
∣
∣J̃k

∣
∣
∣
2

, (34)

and, for large N , it is an unbiased estimator of the
power spectrum of the process, as defined in Eq. (29),
evaluated at

ωk =

{
2π k

Nε for k ≤ N
2

−ωk− N
2

for k > N
2 ,

(35)

namely
〈Sk〉 = S(ωk). (36)

Since Jn ∈ R, we have

J̃k = J̃ ∗
N−k,Sk = SN−k, (37)

which, in the continuous limit, amounts to saying that
the power spectrum is an even function of frequency:
S (ω) = S (−ω). Thanks to this last point, peri-
odograms are usually reported for 0 ≤ k ≤ N

2 and
their Fourier transforms are evaluated as discrete cosine
transforms. The space autocorrelations of conserved
currents j(r,Γ(t)) are usually short-ranged. Therefore,
in the thermodynamic limit, the corresponding fluxes
J(Γ(t)) = Ω−1

∫
Ω

j(r,Γ(t)) dr can be considered sums
of (almost) independent identically distributed (iid)
stochastic variables: according to the central-limit the-
orem their equilibrium distribution is Gaussian. Gener-
alizing this argument allows us to conclude that any
conserved-flux process is Gaussian as well. The flux
time series is in fact a multivariate stochastic variable
that, in the thermodynamic limit, results from the sum
of (almost) independent variables, thus tending to a
multivariate normal deviate. In particular,

• for k = 0 or k = N
2 , J̃k ∼ N

(
0, N

ε S(ωk)
)

∈ R;
• for k /∈

{
0, N

2

}
, ReJ̃k and ImJ̃k are independent

and both ∼ N
(
0, N

2εS(ωk)
)
.

Here N (μ, σ2) indicates a normal deviate with mean μ
and variance σ2. In conclusion, in the large-N (i.e. long-
time) limit the periodogram of the time series reads:

Sk = S (ωk) ξk, (38)

the ξ ∼ 1
2�χ

2
2� being independent random variables,

where χ2
2� is the chi-square distribution with 2� degrees

of freedom and � is the number of independent samples
of the current (for instance, � = 3 when the 3 equiva-
lent Cartesian components of the flux are considered).
In particular,

〈
ξ
〉

= 1 and var
(
ξ
)

= 1/�.
Equation (38) shows that Sk=0 is an unbiased esti-

mator of the zero-frequency value of the power spec-
trum, i.e. that 〈S0〉 = S(0), and, through Eq. (31), of
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the Onsager coefficient we are after. However, this esti-
mator is not consistent, i.e. its variance does not vanish
in the large-N limit: The multiplicative nature of the
statistical noise makes it difficult to disentangle it from
the signal. A way to solve the problem is to apply the
logarithm to Eq. (38) to turn the multiplicative noise
into an additive one by defining the log-periodogram,
Lk, as

Lk = logSk = log (S(ωk)) + log(ξk). (39)

The quantities log(ξk) are iid stochastic variables
whose statistics is well known: their mean and vari-
ance are simply expressed in terms of the digamma
and trigamma functions, ψ(�) and ψ′(�), respectively
[27]. Furthermore, whenever the number of significant
(inverse) Fourier components of log(S(ω)) is much
smaller than the length of the time series, applying a
low-pass filter to Eq. (39) would result in a reduction
of the power of the noise, without affecting the signal.
To exploit this idea, we define the cepstrum of the time
series as the inverse Fourier transform of its sample log-
spectrum [28]:

Cn =
1
N

N−1∑

k=0

Lke−2πi kn
N . (40)

A generalized central-limit theorem for Fourier trans-
forms of stationary time series ensures that, in the
large-N limit, these coefficients are a set of indepen-
dent (almost) identically distributed zero-mean normal
deviates [29,30]. It also follows that:

Cn ≡ 〈Cn〉 =
1
N

N−1∑

k=0

log
(
S(ωk)

)
e−2πi kn

N . (41)

Figure 3 confirms the typical behaviour of cepstral coef-
ficients calculated from the low-frequency region of the
periodogram. We see that only a few coefficients are in
fact substantially different from zero, within statistical
uncertainty.

Let us indicate by P ∗ the smallest integer such that
Cn ≈ 0 for P ∗ ≤ n ≤ N − P ∗. By limiting the Fourier
transform of the sample cepstrum, Eq. (40), to P ∗ coef-
ficients, we obtain an efficient estimator of the zero-
frequency component of the log-spectrum, L ∗

0 , whose
expectation and variance are

L∗
0 ≡ 〈L ∗

0 〉 = log(S0) + ψ(�) − log(�), (42)

var(L ∗
0 ) = ψ′(�)

4P ∗ − 2
N

. (43)

We thus see that the logarithm of the Onsager coeffi-
cient we are after can be estimated from the cepstral
coefficients of the flux time series through Eqs. (42-
43), and that the resulting estimator is always a nor-
mal deviate whose variance depends on the specific sys-
tem only through the number of these coefficients, P ∗.

Fig. 3 First 40 cepstral coefficients for the log-spectrum of
the charge flux in an ab initio MD simulation of molten KCl.
They are significantly non vanishing only up to n ≈ 15. The
vertical dashed line indicates the number of coefficients to
retain according to the AIC

Notice that the absolute error on the logarithm of the
conductivity directly and nicely yields the relative error
on the conductivity itself. The efficacy of this approach
obviously depends on our ability to estimate the num-
ber of coefficients necessary to keep the bias introduced
by the truncation to a value smaller than the statistical
error, while maintaining the magnitude of the latter at
a prescribed acceptable level. In Ref. [8], it has been
proposed to estimate P ∗ using the Akaike’s informa-
tion criterion [31], even if other more advanced model
selection approaches may be more effective [32]. A plot
of L∗

0 vs P ∗ is shown in Fig. 4. We immediately real-
ize that P ∗ returned by the AIC (vertical dashed line)
is indeed capable to find the correct value for the log-
spectrum—within statistical error—of lowest variance.
Furthermore, thanks to the convective invariance prin-
ciple described in Sect. 4, the cepstral analysis can be
extended to multicomponent systems [7]. This multi-
variate cepstral method has been recently applied to
calculate the ab initio thermal conductivity of water
at planetary conditions from trajectories as short as a
few tens of picoseconds [33]. It has been also shown
that the multivariate cepstral analysis is able to sub-
stantially reduce the statistical error affecting the esti-
mate of thermal conductivity even for one-component
systems: it can in fact decorrelate the finite-frequency
power spectrum of non-diffusive fluxes (like the mass
flux, or the adiabatic electronic flux in ab initio simu-
lations) from the heat flux power spectrum, which will
have its total power considerably reduced, and whose
low-frequency portion will be easier to analyse [7]. The
statistical tools for time-series analysis presented in
this Section have been implemented in the open-source
code SporTran, which is freely downloadable from
the GitHub repository https://github.com/lorisercole/
sportran [34].
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Fig. 4 The ω = 0 component of the log-spectrum of the
charge flux vs P ∗ for an ab initio MD simulation of molten
KCl. The expectation value (dots, Eq. (42)) and its uncer-
tainty (shaded area, square root of Eq. (43)) are displayed.
The vertical dashed line indicates the optimal P ∗ predicted
with the AIC

6 Ab initio heat transport in insulators

Until only a few years ago, it was thought that ab ini-
tio MD simulations were in general unsuitable to a GK
theory of thermal transport, since the continuous elec-
tronic density makes any decomposition of the energy
flux into local, atomic contributions fully arbitrary [35].
This consideration clashes with a reductionist picture
whereby a fundamental description of the microscopic
interactions should be in principle suitable to describe
heat transport in the very general GK theory, as well.
Once again, this apparent inconsistency stands on the
misconception that the definition of microscopic fluxes
must be unique, and it is thus solved thanks to the
gauge-invariance principle. Apart from correcting such
a misconception, the gauge-invariance principle proves
to be also a rigorous mathematical tool to derive a well-
defined expression (out of the infinitely many possibili-
ties!) for the energy flux directly from DFT, with no ad
hoc approximation tailored on the considered physical
system [36]. The starting point is the standard DFT
definition of the total energy in terms of the Kohn–
Sham (KS) eigenvalues εv, eigenfunctions φv(r), and
density n(r) =

∑
v |φv(r)|2 [37]:

EDF T =
1
2

∑

n

MnV 2
n +

e2

2

∑

n,m 	=n

ZnZm

|Rn − Rm|

+
∑

v

εv − e2

2

∫
n(r)n(r′)
|r − r′| drdr′

+
∫

(εXC [n](r) − μXC [n](r)) n(r)dr, (44)

where e is the electron charge, εXC [n](r) is a local
exchange-correlation (XC) energy per particle defined
by the relation

∫
εXC [n](r)n(r)dr = EXC [n], the lat-

ter being the total XC energy of the system, and
μXC(r) = δEXC

δn(r) is the XC potential [in this Section and

in Sect. 7 we drop the hat on top of classical observables
to avoid confusion with quantum operators]. From this
we can write a DFT energy density as [38]

EDF T =
∫

eDF T (r)dr,

eDF T (r) = eel(r) + eZ(r),
(45)

where

eel(r) = Re
∑

v

φ∗
v(r)

(
HKSφn(r)

)

− 1
2
n(r)vH(r) + (εXC(r) − μXC(r)) n(r),

(46)

eZ(r) =
∑

n

δ(r − Rn)
(

1
2
MnV 2

n + wn

)

, (47)

wn =
e2

2

∑

m 	=n

ZnZm

|Rn − Rm| , (48)

HKS is the instantaneous self-consistent Kohn–Sham
Hamiltonian, and vH = e2

∫
dr′ n(r ′)

|r−r ′| is the Hartree
potential. An explicit expression for the DFT energy
flux,

JE

DF T =
1
Ω

∫
rėDF T (r)dr, (49)

obtained by computing the first moment of the time
derivative of the energy density in Eqs. (45–48), results
in a number of terms, some of which are either infi-
nite or ill-defined in PBC, since the position operator
is not periodic. Leveraging on gauge invariance and on
a careful breakup and refactoring of the various harm-
ful terms, as explained in Refs. [5,39], we can recast
Eq. (49) in a form suitable to PBC, whose final expres-
sion is

JE

DF T = JH + JZ + J0 + JKS + JXC , (50)

where

JH =
1

4πΩe2

∫
∇vH(r)v̇H(r)dr, (51)

JZ =
1
Ω

∑

n

[

V n

(
1
2
MnV 2

n + wn

)

+
∑

m 	=n

(Rn − Rm)
(

V m · ∂wn

∂Rm

)
⎤

⎦ , (52)

J0 =
1
Ω

∑

n

∑

v

〈

φv

∣
∣
∣
∣(r̂ − Rn)

(

V n · ∂v̂0

∂Rn

)∣
∣
∣
∣φv

〉

,

(53)

JKS =
1
Ω
Re
∑

v

〈φ̄c
v|ĤKS + εv|φ̇c

v〉, (54)
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JXC

α=x,y,z =

{
0 (LDA)

− 1
Ω

∫
n(r)ṅ(r)∂εGGA(r)

∂(∂αn) dr (GGA).
(55)

Here v̂0 is the bare, possibly non-local, (pseudo-)potential
acting on the electrons and

|φ̄c
v〉 = P̂c r̂ |φv〉,

|φ̇c
v〉 = ˙̂

Pv |φv〉
(56)

are the projections over the empty-state manifold of
the action of the position operator over the vth occu-
pied orbital, and of its adiabatic time derivative [40–42],
respectively, P̂v and P̂c = 1 − P̂v being the projector
operators over the occupied- and empty-states mani-
folds, respectively. Both these functions are well defined
in PBC and can be computed, explicitly or implicitly,
using standard density-functional perturbation theory
[42]. These rather complicated formulae have been
implemented in the open-source code QEHeat of the
Quantum ESPRESSO project which has been pub-
licly released [43].

7 Ab initio charge transport in ionic
conductors

7.1 Ab initio charge transport in ionic conductors

While in metals the current is carried by delocalised
conduction electrons, in electronic insulators the elec-
trons are bound to follow adiabatically the ionic motion
and no charge transport can occur if the ion positions
are frozen. Nonetheless, when ions are allowed to move,
like in ionic liquids, charge can be displaced. Daily life
examples range from simple salted water, to liquid elec-
trolytes employed in Li-ion batteries, or to the molten
salts (NaCl, KCl, etc.) used as heat exchangers in power
plants.1 Due to their large electronic bandgap, ionic liq-
uids are in general transparent to visible light and pos-
sess a negligible fraction of “free”, conduction electrons.
When the quantum nature of the electrons is consid-
ered, a question arises about a proper definition for the
charge flux, J(t), to employ in the GK expression for
the electrical conductivity, σ:

σ =
Ω

3kBT

∫ ∞

0

〈J(t) · J(0)〉 dt. (57)

Any static partition of the instantaneous total charge
to express J into atomic contributions is in fact totally
arbitrary.

1 Pure water itself displays conductive behaviour in its
exotic phases at high temperatures/pressures, where H2O
molecules are (fully or partially) dissociated. This has impli-
cations in both charge [57] and heat transport [33].

The solution comes from the modern theory of polar-
isation (MTP), which provides a definition for the
polarisation P valid for extended systems [45–47]. Just
like the electronic Hamiltonian and ground state, P
depends on time through the nuclear coordinates only:
we can thus apply the chain rule and write J(t) as a
sum of atomic contributions

J(t) = Ṗ (t) =
e

Ω

Nat∑

i=1

Z∗
i (t) · V i(t), (58)

where V i(t) is the atomic velocity of the ith atom
and Z∗

i (t) is a time-dependent tensor whose entries,
Z∗

iαβ ≡ 1
e

∂Pα

∂Riβ
, are the derivative of the cell polarisa-

tion along the Cartesian direction α with respect to the
atomic displacement of atom i along β. The dynamical
charges Zi are called “Born effective-charge tensors”,
and can be computed in perturbation theory [43], or by
finite force differences when introducing a finite electric
field E in accordance to the MTP [48]. Born charge ten-
sors are in general strongly dependent on the atomic
positions, and they display large fluctuations along a
AIMD trajectory, even for strongly ionic systems [49].
For these reasons, the charge flux defined in Eq. (58) is
in general fluctuating and does not vanish identically.
Therefore, there is no apparent reason for the GK inte-
gral in Eq. (57) to be exactly zero. How come, then,
that the electrical conductivity of, say, pure water is
zero? And why, instead, under the same microscopic
formalism, does a salted water solution have a non-
vanishing σ? Another strange “coincidence” reported
in the literature [50] is that by replacing in Eq. (58)
the time-dependent Born charge tensors with the prede-
fined constant integer charges—the oxidation numbers
of the atoms—to define a new flux

J ′(t) =
e

Ω

Nat∑

i=1

qS(i)V i(t) (59)

leads to the same GK integral, Eq. (57), that is obtained
via the alternative definition J in Eq. (58).2

It seems, therefore, that two main aspects must be
understood to answer the fundamental questions raised
above: first, the presence of integer numbers suggests
some underlying quantisation in the charge transport
process; second, the insensitivity of σ to the choice of
one of the two different definition J �= J ′ hints at a
manifestation of the gauge invariance principle of trans-
port coefficients, described in Sect. 3. We analyse in
detail these two aspects in what follows.

7.2 Quantisation of charge transport

In 1983, David Thouless showed that for a quantum sys-
tem in PBC, with non-degenerate ground state evolving

2 It must be also remarked the the use of other definitions
for the atomic charges, like Bader charges, lead to a wrong
electrical conductivity [50].
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adiabatically under a cyclic, slowly varying Hamilto-
nian Ĥ(0) = Ĥ(τ), the total displaced dipole, Δμ is
quantised, i.e. the time integral of the current over one
cycle τ is equal to a triplet of integers, multiplied by
the side L of the cell, which we shall assume cubic for
simplicity [51]:

Δμ = Ω
∫ τ

0

J(t)dt = eLQ (60)

with Q = (Qx, Qy, Qz) ∈ Z
3. In AIMD simulations,

atomic trajectories are identified by paths in the nuclear
configuration space (NCS). The electronic Hamiltonian,
H(R(t)), depends parametrically upon time through
the nuclear positions, at time t, R(t) = {Ri(t)}, with
i = 1, . . . , Nat. A path C in NCS whose end points are
one the the periodic image of the other can be thus
considered as a cycle for the electronic Hamiltonian.
Therefore, we can thus employ Thouless’ theorem and
show, under very general hypothesis, that the electric
dipole displaced along C is itself partitioned into atomic
contributions:

ΔμC = eL
Nat∑

i=1

qS(i)ni, (61)

where ni = (nx, ny, nz)i is the triplet containing
the number of cells spanned, along C, by atom i in
x, y and z directions, and qS(i) are integer constants
which only depend on the species S(i) of atom i,
and are shown to coincide with the oxidation num-
bers suggested by chemical intuition [49]. This provides
a quantum-mechanical definition of oxidation numbers
where their integerness arises naturally (and not just as
an approximation of some real charge), and which iden-
tifies them as intrinsically dynamical quantities [49,52].

7.3 Gauge invariance of electrical conductivity

We are now ready to combine the theory of quantisation
of charge transport and the gauge-invariance principle
of transport coefficients to answer the questions raised
at beginning of this Section. Let us consider a physical
path in the NCS from an initial configuration I to the
configuration F , as a result, e.g. of an AIMD simulation.
Then we elongate the path fictitiously up to the point
I ′ which is the replica (periodic image) of the initial
point I sharing with the point F the same cell of the
nuclear configuration space, as depicted by the dashed
line in Fig. 5.

Due to the additivity of integrals, the electric dipole
displaced along the physical path IF reads

ΔμIF ≡
∫

IF

dμ = ΔμII′ + ΔμI′F . (62)

Since the open path I ′F entirely belongs to one cell,
ΔμI′F is a bounded quantity. Therefore, thanks to

Fig. 5 Paths in a two-dimensional NCS representing
atomic trajectories. I ′ is a periodic image of the starting
point I belonging to the same periodic cell of the physical
endpoint F . The path II ′ is the concatenation of the phys-
ical trajectory IF with the path I ′F entirely belonging to
one cell

gauge-invariance, to evaluate σ we only need to con-
sider

ΔμII′ =
∫

II′
dμ = eL

N∑

i=1

qS(i)ni (63)

since

σ ∝ lim
T →∞

〈|ΔμIF (T )|2〉
2T = lim

τ→∞

〈|ΔμII′(T )|2〉
2T . (64)

By the same token, the electric dipole displaced from I
to F by to the flux J ′(t) defined in Eq. (59) is

Δμ′
IF = ΔμII′ + e

N∑

i=1

qS(i)

∫ F

I′
dRi

︸ ︷︷ ︸
bounded

. (65)

Therefore, we can conclude that

σ′ ∝ lim
t→∞

〈|Δμ′
IF (T )|2〉
2T = lim

T →∞

〈|ΔμII′(T )|2〉
2T

(66)

which, by comparison with Eq. (64), proves the equiv-
alence of the electrical conductivities obtained via
Eqs. (58) and (59). This is shown in Fig. 6 for an ab
initio MD simulation of molten KCl.

As explained in detail in Ref. [49], this result is
grounded on the hypothesis, which we dubbed strong
adiabaticity, that any closed paths in the NCS can be
shrunk to a point without closing the electronic gap:
this implies—see Eq. (61)—that charge transport can
occur only through a net displacement of the ions, as it
is typical of stoichiometric ionic conductors. The breach
of strong adiabaticity may instead dictate a non-trivial
charge-transport regime where charge may be adiabat-
ically transported even in the absence of a net ionic
displacement. As shown in Ref. [53] this non-trivial
behaviour is intertwined with the presence, in non-
stoichiometric electrolytes, of dissolved yet localised
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Fig. 6 Mean square dipole displaced along a trajectory
of molten KCl. The slope of the asymptotic behaviour
is proportional to the electrical conductivity. Calculations
employing the two different definitions Eqs. (58) and (59)
share the same slope, and thus the same electrical conduc-
tivity. The difference J ′ − J is instead non-diffusive (zero
slope). The fits of the curves at asymptotic times are also
displayed (dashed lines)

electrons, whose displacement is to a large extent uncor-
related to that of the ions. By the same token discussed
in Sect. 3.2, we remark that all the conclusions drawn in
this Section are independent of the (macroscopic) size
L of the system. In fact, even though all the derivation
of Eq. (66) is done at finite size, the use of charge fluxes
which are well defined in PBC ensures that the GK inte-
grals of their correlation functions are well defined and
non-vanishing identically, for any L.

8 Conclusions

To conclude, we believe that we managed to show how
the invariance principles of transport coefficients can
be employed, within the general Green–Kubo theory
of linear response, to demystify some common miscon-
ceptions based on the groundless assumption that the
microscopic conserved fluxes must be uniquely defined.
We have further deployed the power of invariance prin-
ciples in the construction of numerical tools for the sta-
tistical analysis of the time series of the fluxes, pro-
duced via equilibrium molecular dynamics simulations.
These tools provide accurate values for the transport
coefficients from the relatively short trajectories which
are accessible to ab initio MD simulations. We also
showed how to design an ab initio heat flux suitable
to extended systems in PBC, from which the ab ini-
tio thermal conductivity can be computed without any
further system- or phase-specific assumptions. Finally,
we have applied the gauge invariance principle to the
ab initio charge transport in ionic systems. We showed
that each ion can be associated with a well-defined inte-
ger and time-independent charge, and the exact ab ini-
tio electrical conductivity can be obtained by replac-
ing, with these integer charges, the time-dependent

Born tensors, which enter the definition of the charge
flux and whose calculation is a computationally expen-
sive and quite abstruse task. In this way, we recover
the classical (Faraday’s) idea of atomic contributions
to charge transport [54] and provided a theoretically
sound definition to the concept of oxidation states in
ionic liquid insulators. We are confident that the results
here exposed will be a valid aid for both theorists and
practitioners aiming at deeper insights and more effi-
cient implementations about the calculation of trans-
port coefficients from molecular dynamics simulations.
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Appendix A: Variance on GK and HE for-
mulas

To evaluate the statistical error affecting the GK or HE
expressions of the transport coefficients, Eq. (14), we con-
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Fig. 7 Variance of the estimators of the GK and HE inte-
grals of the charge-flux autocorrelation function, computed
from standard block analysis of an ab initio MD trajectory
of molten KCl. The variance on the GK integral (blue) is 3
times the variance affecting the HE formula (orange). The
black dotted line displays the theoretical estimate, Eq. (A2)

sider it as the expectation of the estimator:

λX(T ) =
1

4π

∫ ∞

−∞
Θ̃T

X(ω)S (ω)dω,

≈ 1

2Ttot

N−1∑
k=0

Θ̃T
X(ωk)S(ωk)ξk,

(A1)

where X = GK or HE, Ttot = Nε is the total length of the
time series of the flux, N the number of its terms, ε the
sampling period, and ξk are the set of independent stochas-
tic variables introduced in Eq. (38). As the ξk variables are
independent and identically distributed, one has

var (λX) =
2

4T 2
tot

N−1∑
k=0

Θ̃T
X(ωk)2S(ωk)2var (ξ)

≈ 1

2�Ttot

∫ ∞

−∞
Θ̃T

X(ω)2S(ω)2
dω

2π

≈ S(0)2

2�Ttot

∫ T

−T
ΘT

X(t)2dt =

{
4
�
λ2 T

Ttot
(GK)

4
3�

λ2 T
Ttot

(HE),

(A2)
where we employed Eq. (10) and where the factor 2 in the
first step accounts for the full correlation between S (ω)
and S (−ω). This behaviour is shown in Fig. 7, which dis-
plays the theoretical estimate, Eq. (A2), for the variance on
the GK integral, as well as the empirical variances for GK
(blue) and HE (orange) integrals of the charge flux autocor-
relation function, obtained via standard block analysis from
the simulation of molten KCl already discussed in Sect. 2.

Notice that, to obtain the variance on the mean value
〈λX〉, the variance of the process, which is independent
of the number B of trajectories (or blocks) of length Ttot

employed, must be further divided by B [56].
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