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Abstract The equation of state (EoS) and composition of
dense and hot Δ-resonance admixed hypernuclear matter is
studied under conditions that are characteristic of neutron star
binary merger remnants and supernovas. The cold, neutrino
free regime is also considered as a reference for the astrophys-
ical constraints on the EoS of dense matter. Our formalism
uses the covariant density functional (CDF) theory success-
fully adapted to include the full J P = 1/2+ baryon octet
and non-strange members of J P = 3/2+ decouplet with
density-dependent couplings that have been suitably adjusted
to the existing laboratory and astrophysical data. The effect
of Δ-resonances at finite temperatures is to soften the EoS
of hypernuclear matter at intermediate densities and stiffen it
at high densities. At low temperatures, the heavy baryons Λ,
Δ−, Ξ−, Ξ0 andΔ0 appear in the given order if theΔ-meson
couplings are close to those for the nucleon-meson couplings.
As is the case for hyperons, the thresholds of Δ-resonances
move to lower densities with the increase of temperature
indicating a significant fraction of Δ’s in the low-density
subnuclear regime. We find that the Δ-resonances comprise
a significant fraction of baryonic matter, of the order of 10%
at temperatures of the order of several tens of MeV in the
neutrino-trapped regime and, thus, may affect the supernova
and binary neutron star dynamics by providing, for example,
a new source for neutrino opacity or a new channel for bulk
viscosity via the direct Urca processes. The mass-radius rela-
tion of isentropic static, spherically symmetric hot compact
stars is discussed.

a e-mail: sedrakian@fias.uni-frankfurt.de (corresponding author)
b e-mail: arus@bao.sci.am

1 Introduction

The EoS of dense, strongly interacting matter is the key
input for an array of astrophysical simulations of compact
objects in isolation and binaries within various scenarios. A
large collection of EoS is already featured on the CopmOSE
database [1]. Nevertheless, the need for further developments
and export of new EoS to this and other databases is neces-
sary because of the strong constraints that emerged during
the recent years and will appear in the future, notably due
to the multimessenger observations of binary neutron star
(BNS) mergers, isolated nearby neutron stars in X-rays and
radiopulsars.

The formation of hot and neutrino-rich compact objects is
predicted by numerical simulations of core-collapse super-
nova (SN) and BNS mergers. In the core-collapse supernova
context, a hot proto-neutron star is formed during the contrac-
tion of the supernova progenitor and subsequent gravitational
detachment of the remnant from the expanding ejecta [2–9].
A transient formation of dense hot matter arises in the case
when the progenitor mass is large (typically tens of solar
masses) and the matter collapses into a black hole [10–13].

Numerical simulations indicate that BNS mergers pro-
duce hot and dense interacting matter in the post-merger
phase [14–18]. The outcome of a merger depends on the
combined masses of merged objects and may result both
in a black hole and a stable neutron star. In any case, a
transient hot object is formed and, therefore, the spectrum
of gravitational waves emitted in this phase (which can be
observed with advanced gravitational wave instruments) will
carry imprints of the EoS of hot and dense matter. This
EoS also determines the stability of the remnant object and
thus the outcome of the transient evolution [19] as well as
the efficacy of dissipative processes [20–27] that should be
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included [26] in the frequently employed ideal hydrodynam-
ics simulations.

The local properties of matter in the “hot” stage of evolu-
tion in the above astrophysical contexts is characterized by
the density, temperature (or entropy), and the lepton fractions
for electrons and μ-ons. The EoS in this stage depends on
multiple parameters which can be compared to the simpler
one-parametric EoS of cold and β-equilibrated matter. Since
many nuclear and astrophysical constraints are placed on the
cold EoS, it is mandatory to study this limit in parallel with
the finite-temperature EoS. The cold and hot regimes also dif-
fer in the fact that in the hot case neutrinos are trapped above
the temperature Ttr � 5 MeV; in this regime, the neutrino
mean-free path is shorter than the size of the star [28]. As
we will discuss below the composition of matter is strongly
affected by the prescription for the neutrino fractions (via the
fixation of the lepton number).

In this work, we report an extension of our previous study
of hot hypernuclear matter [29] which builds upon the work
of Ref. [30] to include non-strange J P = 3

2
+

members of the
baryons decuplet – the Δ-resonances. Our numerical imple-
mentation is based on the code of Ref. [30] supplemented
with hidden strangeness σ ∗ and φ mesons which account for
the interactions amongst hyperons [29]. In the hypernuclear
sector, we will adopt the parameter set already discussed
in Refs. [31–33] in the case of zero-temperature EoS. In the
nucleonic sector, we will use CDF parameters corresponding
to the DDME2 parameterization [34]. Heavy baryons have
been studied in the zero-temperature limit in recent years
because of the emerging new astrophysical and laboratory
constraints [31,32,35–41], for a review see [42]. The study
of the hypernuclear matter with Δ-resonance admixture at
finite temperatures begun recently [43–45]. These references
employed CDFs with density-dependent couplings, as we do
below. However, our study differs from these works by (a)
the parametrization of the CDF in the nuclear and/or hyper-
nuclear sectors; (b) the mesonic content of the Lagrangian.
Specifically Refs. [43–45] include σ, ω, and ρ mesons only
while we will include in addition the hidden strangeness σ ∗
and φ mesons.

This work is organized as follows. In Sect. 2 we dis-
cuss the main elements of CDF approach at finite temper-
atures. The general purpose EoS is then specified for the
scenarios of SN and BNS mergers in Sect. 2.3. We present
the numerical results on the EoS and composition in Sect.
3. The mass-radius (hereafter M-R) relation of static cold
and isentropic, hot compact stars and the astrophysical con-
straints are discussed in Sect. 4. In Sect. 5 we provide a
summary of our main findings. We use the natural (Gaus-
sian) units with h̄ = c = kB = 1, and the metric signature
gμν = diag(1,−1,−1,−1).

2 Relativistic density functional with density-dependent
couplings

2.1 Equation of state

The Lagrangian of the stellar matter is given by

L = Lb + Ld + Lm + Lλ + Lem, (1)

where the J P
B = 1

2
+

baryon Lagrangian is given by

Lb =
∑

b

ψ̄b

[
γ μ

(
i∂μ − gωbωμ − gφbφμ − 1

2
gρbτ · ρμ

)

−(mb − gσbσ − gσ ∗bσ
∗)

]
ψb, (2)

where the b-sum is over the J P
B = 1

2
+

baryon octet b ∈
(n, p,Λ,Ξ0,−,Σ0,±), ψb are the Dirac fields of the octet
with masses mb. The mesonic fields included in theory are
σ, σ ∗, ωμ, φμ, and ρμ with meson-baryon couplings gmb

where m index runs over the mesons m ∈ (σ, ω, ρ, σ ∗, φ).
Later on we will specify the theory to the case where the cou-
plings are density-dependent. The strange mesons σ ∗ and φ

couple only to hyperons. The second term in Eq. (1) stands
for the contribution of the non-strange J = 3

2
+

members of
the baryons decuplet which is the quartet of Δ-resonances
d ∈ (Δ−,Δ0,Δ+,Δ++) and is given explicitly by

Ld =
∑

d

ψ̄ν
d

[
γ μ

(
i∂μ − gωdωμ − 1

2
gρdτ · ρμ

)

−(md − gσdσ)

]
ψdν, (3)

where the d-summation is over the resonances described by
the Rarita–Schwinger fields ψdν .

The mesonic Lagrangian is given by

Lm = 1

2
∂μσ∂μσ − m2

σ

2
σ 2 − 1

4
ωμνωμν + m2

ω

2
ωμωμ

−1

4
ρμν · ρμν + m2

ρ

2
ρμ · ρμ + 1

2
∂μσ ∗∂μσ ∗

−m∗2
σ

2
σ ∗2 − 1

4
φμνωμν + m2

φ

2
φμφμ, (4)

where mσ , mσ ∗ , mω, mφ and mρ are the meson masses. The
field-strength tensors for vector fields are given by

ωμν = ∂μων − ∂μων, (5)

φμν = ∂μφν − ∂μφν, (6)

ρμν = ∂νρμ − ∂μρν . (7)

The leptons will be assumed non-interacting and are
described by the free-field Dirac Lagrangian
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Lλ =
∑

λ

ψ̄λ(iγ
μ∂μ − mλ)ψλ, (8)

where ψλ are leptonic fields and mλ are their masses. In the
case of cold stellar matter the lepton index λ ∈ (e, μ) runs
over electrons and μ-ons and their antiparticles, whereas τ -
leptons can be neglected because of their large mass. For
temperatures above trapping temperature Ttr = 5 MeV elec-
tron and μ-on neutrinos are trapped (the details of trapping
depend on the local density of matter and its composition). In
that case, the three flavors of left-handed neutrinos (assum-
ing Standard Model particle content) need to be included
in the Lagrangian (8). In this work, we neglect electromag-
netism and drop the termLem from the Lagrangian (1). It has
been included elsewhere to accommodate the possibility of
extremely large magnetic fields in compact stars, see [46–48]
and references therein.

Having defined the Lagrangian (1) of the system we pro-
ceed to evaluate the partition function of the system. The
evaluation is simplified by the fact that we consider a sta-
tionary system in the infinite limit, i.e., the time and space
variations of the fields can be neglected. The partition func-
tion is evaluated in the mean-field approximation by keeping
only the Hartree terms. With these approximations, the pres-
sure and energy density are given by

P = Pm + Pb + Pd + Pλ + Pr , (9)

E = Em + Ed + Ed + Eλ, (10)

where the contributions due to mesons and J P
B = 1

2
+

-
baryons are given by

Pm = −m2
σ

2
σ 2 − m∗2

σ

2
σ ∗2 + m2

ω

2
ω2

0 + m2
φ

2
φ2

0 + m2
ρ

2
ρ2

03,

(11)

Em = m2
σ

2
σ 2 + m∗2

σ

2
σ ∗2 + m2

ω

2
ω2

0 + m2
φ

2
φ2

0 + m2
ρ

2
ρ2

03,

(12)

Pb =
∑

b

gb
6π2

∫ ∞

0

dk k4

Eb
k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)

]
,

(13)

Eb =
∑

b

gb
2π2

∫ ∞

0
dk k2Eb

k

×
[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)

]
, (14)

where f (E) = [1 + exp(E/T )]−1 is the Fermi distribution
function, gb = 2Jb+1 = 2 is the spin (Jb = 1/2) degeneracy
factor of the baryon octet. The expressions for Pd and Ed
follow from (13) and (14) via a replacement of the indices b
by d and taking into account that the spin degeneracy factor
is gd = 4 for Δ-resonances. The lepton contribution is given
by

Pλ =
∑

λ

gλ

6π2

∫ ∞

0

dk k4

Eλ
k

[
f (Eλ

k − μλ) + f (Eλ
k + μλ)

]
,

(15)

Eλ =
∑

λ

gλ

2π2

∫ ∞

0
dk k2Eλ

k

× [
f (Eλ

k − μλ) + f (Eλ
k + μλ)

]
, (16)

where the degeneracy factor gλ = 2Jλ + 1 is equal 2 for
electrons and μ-ons and 1 for neutrinos of all flavors. The
single-particle energies of baryons and Δ-resonances (which

include interactions) are given by Eb
k =

√
k2 + m∗2

b and

Ed
k =

√
k2 + m∗2

d , respectively, where the corresponding
effective (Dirac) masses are given by

m∗
b = mb − gσbσ − gσ ∗bσ

∗, m∗
d = md − gσdσ, (17)

where the mesonic fields now correspond to their mean-
field values, see Eqs. (23)–(27) below. Leptons are treated
as non-interacting gas and their kinetic energies are given

by Eλ
k =

√
k2 + m2

λ, where mλ is given by the free mass
of electron or μ-on and is assumed vanishingly small in the
case of neutrinos.

For contact interactions, the mesonic mean-fields shift the
value of the baryon and Δ-resonance non-interacting chem-
ical potentials μb and μd to

μ∗
b = μb − gωbω0 − gφbφ0 − gρbρ03 I3b − Σr , (18)

μ∗
d = μd − gωdω0 − gρdρ03 I3d − Σr , (19)

where I3b/3d is the third component of isospin of baryons/Δ-
resonances and the rearrangement self-energy Σr is given by

Σr =
∑

b,d

(
∂gωb

∂nb
ω0nb + ∂gρb

∂nb
I3bρ03nb + ∂gφb

∂nb
φ0nb

− ∂gσb

∂nb
σnsb − ∂gσ ∗b

∂nb
σ ∗nsb + b ↔ d

)
. (20)

This quantity adds a contribution to the pressure in a
manner that guarantees the thermodynamical consistency
(specifically the energy conservation and fulfillment of the
Hugenholtz–van Hove theorem). The true pressure is given
by Eq. (9) where the rearrangement term is

Pr = nBΣr , (21)

where nB is the net baryon density. It can be verified that the
contribution from the rearrangement self-energy guarantees
the validity of the thermodynamic relation

P = n2
B

∂

∂nB

( E
nB

)
. (22)
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The expectation values of mesons in the mean-field and
infinite system approximations are given by

m2
σ σ =

∑

b

gσbn
s
b +

∑

d

gσdn
s
d , (23)

m2
σ ∗σ ∗ =

∑

b

gσ ∗bn
s
b, (24)

m2
ωω0 =

∑

b

gωbnb +
∑

d

gωdnd , (25)

m2
φφ0 =

∑

b

gφbnb, (26)

m2
ρρ03 =

∑

b

gρbnb I3b +
∑

d

gρdnd I3d , (27)

where the scalar and baryon (vector) number densities are
defined for the baryon octet and Δ-resonances as

nsb = 〈ψ̄bψb〉, nb = 〈ψ̄bγ
0ψb〉, (28)

nsd = 〈ψ̄dνψ
ν
d 〉, nd = 〈ψ̄dνγ

0ψν
d 〉, (29)

respectively. The explicit expressions of these expectation
values at finite temperatures can be computed in a standard
way, and are given in the case of spin-J 1

2
+

by

nb = gb
2π2

∫ ∞

0
k2dk

[
f (Eb

k − μ∗
b) − f (Eb

k + μ∗
b)

]
, (30)

nsb = gb
2π2

∫ ∞

0

k2dk m∗
b

Eb
k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)

]
.

(31)

The expressions for the Δ-resonances are obtained upon
exchange b ↔ d.

2.2 Fixing couplings

In this work, we continue to employ a model with density-
dependent couplings that depend on the net baryon density
nB . The influence of the temperature on the effective inter-
actions in the theory (as well as possible contributions from
fluctuations) is thus neglected. The density-dependence of
the nucleon-meson couplings is

giN (nB) = giN (nsat)hi (x), (32)

where nsat = 0.152 fm−3 is the saturation density, x =
nB/nsat and

hi (x) = ai + bi (x + di )2

ai + ci (x + di )2 , i = σ, ω, (33)

hρ(x) = e−aρ(x−1). (34)

The five constraints hi (1) = 1, h′′
i (0) = 0 and h′′

σ (1) =
h′′

ω(1) allow one to reduce the number of free parameters in
isoscalar-scalar and iso-scalar-vector sector to three. In the
nucleonic (hereafter N ) sector, the parameters of the model
are fixed from the nuclear phenomenology and properties
of selected nuclei. We adopt the DDME2 model [34] with
the couplings and other parameters defined in Table 1. For a
review of the theory that uses density-dependent couplings
for the meson-baryon interactions, see, for example, [49].

Let us turn to the hyperonic (hereafterY ) sector. We follow
the established procedure to fix the couplings of the vector
mesons according to the SU(6) spin-flavor symmetric model
[50] and adjust the scalar meson couplings to reproduce the
values of the phenomenological potential depths of various
hyperons at the saturation density in isospin symmetrical
nuclear matter.

Quantitatively one defines the ratios of hyperonic cou-
plings to the corresponding nucleonic couplings, i.e., RiY =
giY /giN for i = {σ, ω, ρ} and Rσ ∗Y = gσ ∗Y /gσN , RφY =
gφY /gωN . The values of corresponding ratios are listed in
Table 2. The ratio RσΛ for Λ-hyperons [31] is numerically
close to the value determined from fits to Λ-hypernuclei data
[51]. The commonly considered range of potentials for Σ and
Ξ hyperons, in the sense defined above, is given by

−10 ≤ UΣ(nsat) ≤ 30 MeV, (35)

−24 ≤ UΞ(nsat) ≤ 0 MeV. (36)

The lower value of the range UΞ(nsat) was obtained from
the analysis of the Ξ + p → ΛΛ two-body capture events
in 12C and 14N emulsion nuclei [52]; more shallow results
were obtained from the analysis of the 9Be(K−, K+) reac-
tion, specifically, UΞ(nsat) = −17 MeV [53], and on the
bases of the (2+1)-flavor lattice QCD simulations close to
the physical point by the Lattice19 collaboration [54]. Our
adopted values of the couplings match those used previ-
ously by Ref. [31]. The remaining parameters in the hyper-
onic sector, which determine the density-dependence of the
couplings, are the same as in the nucleonic sector. In par-
ticular, the hidden strangeness mesons are assigned masses

Table 1 The values of
parameters of the DDME2 CDF

Meson (i) mi (MeV) ai bi ci di gi N

σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396

ω 783 1.3892 0.9240 1.4620 0.4775 13.0189

ρ 763 0.5647 – – – 7.3672
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Table 2 The ratios of the couplings of hyperons and Δ-resonances to
mesons to those of nucleons in our model

b\R Rωb Rφb Rρb Rσb Rσ ∗b

Λ 2/3 −√
2/3 0 0.6106 0.4777

Σ 2/3 −√
2/3 2 0.4426 0.4777

Ξ 1/3 −2
√

2/3 1 0.3024 0.9554

Δ− 1 0 1 1 0

Δ0 1 0 1 1 0

Δ+ 1 0 1 1 0

Δ++ 1 0 1 1 0

mσ ∗ = 980 MeV and mφ = 1019.45 MeV, and the density-
dependence of their couplings coincides with the ones of σ -
and ω-mesons, respectively.

Finally, let us turn to the Δ-resonance (hereafter Δ) matter.
The information on the Δ-potential in the isospin symmetric
nuclear matter is available from the analysis of the scattering
of electrons and pions off nuclei and from the simulations of
the heavy ion collisions. The isovector meson-Δ-resonance
couplings are less explored. Recent work suggests for the
ratios the ranges [31,55]

RρΔ = 1, 0.8 ≤ RωΔ ≤ 1.6, RσΔ = RωΔ ± 0.2. (37)

In the following we adopt representative values

RρΔ = RωΔ = RσΔ = 1. (38)

Note that within a certain range of the parameters the Δ-
admixed matter undergoes spinodal instability [56]; for fixed
RρΔ = RσΔ = 1 this occurs for RωΔ ≤ 0.8, therefore the
choice (38) avoids such instabilities.

2.3 Adapting CDF to conditions in supernovas and merger
remnants

Consider next matter composed of baryon octet, Δ-reso-
nances, and leptons. If equilibrium is established in matter
with respect to the weak processes, then the following rela-
tions for the chemical potentials of the species hold

μΛ = μΣ0 = μΞ0 = μΔ0 = μn = μB, (39)

μΣ− = μΞ− = μΔ− = μB − μQ, (40)

μΣ+ = μΔ+ = μB + μQ, (41)

μΔ++ = μB + 2μQ, (42)

where μB and μQ = μp − μn are the baryon and charge
chemical potentials. The net charge of baryons is given by
the sum

n p + nΣ+ + 2nΔ++

+nΔ+ − (nΣ− + nΞ− + nΔ−) = nQ . (43)

Next we define the dimensionless baryon and lepton charge
densities via YQ = nQ/nB , Ye,μ = (ne,μ − ne+,μ+)/nB ,
where e+ refers to the positron and μ+ – to the anti-μ-on.
Then, the charge neutrality condition in terms of these new
quantities can be written

YQ = Ye + Yμ. (44)

When neutrinos are trapped in matter, i.e., are in thermal
equilibrium characterized by a distribution function at matter
temperature, the quantities that are fixed are the lepton num-
bersYL ,e = Ye+Yνe andYL ,μ = Yμ+Yνμ of the electron and
μ-on families, respectively, which are conserved separately
and, therefore, are associated with lepton-number chemical
potentials μL ,e and μL ,μ. In the free-streaming (untrapped)
neutrino regime the neutrino chemical potentials vanish and
the lepton chemical potentials are equal to the charge chem-
ical potential up to the sign. Thus, we have

μe = μμ = −μQ = μn − μp, (free streaming) (45)

μe = μL ,e − μQ, μμ = μL ,μ − μQ . (trapped) (46)

The thermodynamical conditions depend on the astrophysi-
cal scenario under consideration. As well known, neutrinos
are trapped when their mean-free path is shorter than the size
of the system (roughly the stellar radius) [20–22]. The elec-
tron and μ-on neutrino spheres (with their surfaces defined
by the location of the last neutrino scattering) are not identi-
cal and, therefore, the trapping regimes may depend on the
lepton family.

We will fix below the lepton number in each family sepa-
rately, assuming that the neutrino oscillations are neglected
and will neglect τ -leptons as they are too massive to be rel-
evant.

In the case of BNS mergers, the initial conditions corre-
spond to two cold neutron stars, which are dominated by the
neutron component. In this case, our working assumption is

YL ,e = YL ,μ = 0.1, (47)

which is consistent with the lepton abundances in the pre-
merger neutron stars.

For supernova matter the predicted electron and μ-on lep-
ton numbers are typically [2,43]

YL ,e = 0.4, YL ,μ = 0. (48)

However, note that the electron fraction may vary signifi-
cantly along the supernova profile in a time-dependent man-
ner. Furthermore, μ-onization in the matter can lead to a
small fraction of μ-ons (of the order 10−3) [57,58] which
we will neglect here.

We will show below isentropic results for the entropy per
baryon S/A = 1, which is a representative value of the
entropy of the core of a BNS remnant [59] and of a core
region of a supernova and proto-neutron star [60]. In both
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cases the dense core of the star maintains its low entropy,
whereas the outer layers are heated by shock(s) and dissipa-
tion and may reach a larger value of S/A. The sensitivity of
the EoS and composition on the value S/A has been quan-
tified in Ref. [45] who used a somewhat different density
functional.

3 Composition and EoS of hot NYΔ matter

We have extended the numerical code for the computation of
finite temperature hypernuclear matter, as presented in Ref.
[30], to include Δ-resonances. The numerical procedure is
based on a self-consistent solution of the equations for the
meson fields (23)–(27) and the scalar and baryon densities
(30) and (31) for fixed values of temperature and density
or, alternatively, entropy per baryon S/A and density. In the
neutrino-trapped regime the lepton numbers YL ,e and YL ,μ

are fixed to values that are characteristic either for supernova
or BNS merger physics, see Sect. 2.3.

We start the discussion with the finite-temperature EoS
of dense matter which is shown in Fig. 1 for purely nucle-
onic, hyperonic, andΔ-admixed hyperonic matter. It includes
the cases of low-temperature (T = 0.1 MeV) matter in β-
equilibrium, which corresponds to the neutrino-free case. In
addition it contains the results for T = 50 MeV, which cor-
responds to the trapped neutrino regime, for selected com-
binations of electron and μ-on fractions corresponding to
SN physics (YL ,μ = 0, YL ,e = 0.4) and BNS merger
physics (YL ,μ = YL ,e = 0.1). The presence of hyperons
strongly softens the EoS of nucleonic matter consistent with
the fact that new degrees of freedom appear and, therefore,
the degeneracy pressure of neutrons is reduced. If Δ’s are
added to hypernuclear matter, the EoS becomes stiffer in
the high-density range and softer at the intermediate-density,
as already observed in the zero-temperature calculations
[31,32,36–41]. The case of constant entropy per baryon S/A
is shown in Fig. 2. The softening of the EoS with the onset
of hyperons and Δ-resonances is seen also in this case, as
it is a robust consequence of the onset of additional degrees
of freedom. At asymptotically high density the Δ admixture
leads (as in the isothermal case) to a harder EoS.

Figure 3 shows the composition of finite-temperature
hyperonic matter admixed with Δ-resonances. Hyperons Λ,
Ξ− and Ξ0 appear in the given order at low temperature,
with the Σ− hyperon fraction being strongly suppressed by
the highly repulsive potential in nuclear matter at saturation
density [61–66]. This is in contrast with the early predic-
tions made for the free hyperonic gas, where Σ− was the
first hyperon to nucleate [67] and in an early version of the
present CDF work which employed a weaker repulsive poten-
tial [30]. At finite temperature T = 50 MeV the isospin triplet

Fig. 1 Pressure as a function of the baryon density normalized by
the saturation density nsat . The upper panel labeled μν = 0 assumes
neutrino-free β-equilibrium matter in the cases of purely nucleonic
(labeled N ), hyperonic (labeled NY ) andΔ-admixed hyperonic (labeled
NYΔ) matter at temperature T = 0.1 MeV. The remaining panels
show the same dependence in neutrino trapped regime at temperature
T = 50 MeV in the two cases YL ,μ = YL ,e = 0.1 (middle panel);
YL ,e = 0.1, YL ,μ = 0.1 (lower panel). The case YL ,e = 0.1 is charac-
teristic of a BNS merger remnant, whereas the case YL ,e = 0.4 for SN

of Σ±,0 appears in amounts comparable (but sub-leading) to
other hyperons for both SN and BNS merger cases.

We find that among the Δ-resonances only Δ− and Δ0

appear in the matter (in the given order). At low tempera-
tures, there are clearly visible thresholds of appearance of
the resonances above twice the saturation density with only
Δ− reaching a significant (10%) level in the intermediate
density regime. At high temperatures, the fractions of both
Δ− and Δ0 are comparable and phenomenologically signifi-
cant (≤ 10%). The abundances of heavy baryons in the case
of fixed entropy per baryon is shown in Fig. 4. Fixing the
entropy requires the temperature to increase as the density
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Fig. 2 Same as in Fig. 1, but in each panel instead of constant temper-
ature the entropy per baryon is fixed at S/A = 1

increases and the abundances at each density correspond to
a temperature that is intermediate compared to those shown
in Fig. 3. As a consequence, for example, the thresholds for
heavy baryons are less steep and these are shifted to lower
densities compared to the T = 0.1 MeV β-equilibrium case.

Let us turn now to the fractions of leptons. In the case
of BNS mergers the imposed condition YL ,e = YL ,μ = 0.1
implies that the fractions of electron and μ-on are almost
equal. The same applies to their neutrinos. In the SN case
YL ,μ = 0, and the μ-on neutrinos are replaced by a much
smaller amount of μ-on antineutrinos, which in turn allow
for a small fraction of μ-ons to be present despite the con-
dition YL ,μ = 0 was imposed. The lepton fraction, which
is intimately related to the charge neutrality condition, is
affected once hyperons and Δ-resonances are introduced.
The effect of adding Ξ− and Δ− to the composition in the
low-temperature and β-equilibrated matter is that the proton
fraction becomes balanced by these particles rather than lep-
tons, and as a consequence the electron and μ-on populations

Fig. 3 Composition of matter for Δ-admixed hyperonic matter. The
upper panel corresponds toβ-equilibrium case at T = 0.1 MeV whereas
the remaining panels correspond to trapped neutrino matter at T =
50 MeV with the lepton fractions fixed at YL ,μ = YL ,e = 0.1 (middle
panel), and YL ,e = 0.4, YL ,μ = 0 (lower panel). At T = 0.1 MeV the
hyperons Λ, Ξ− and Ξ0 as well as Δ− an Δ0 resonances appear along
with the standard nucleonic (i.e. neutron-proton-electron and muon)
composition. In the neutrino trapped regime the triplet Σ0± appears
as well as electron and muon neutrinos (middle panel) and electron
neutrinos (lower panel)

drop rapidly and eventually they become extinct at high den-
sities. The decrease of lepton number densities with increas-
ing baryon density is observed also in the hot, β-equilibrated
neutrino-trapped matter, with the main difference being the
fact that the lepton populations remain finite at all densities.
Since the lepton fractions are fixed in this case, this has the
consequence that neutrino fractions increase with density.
The effect of Ξ− and Δ− at finite temperature is less dra-
matic, since electrons are present at all densities, whereas
the fractions of μ-ons depend on whether we adopt the BNS
merger or SN values of lepton fractions. In the first case, the
electron and μ-on fractions are quantitatively close to each
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Fig. 4 Same as in Fig. 3, but for constant entropy per baryon S/A = 1

other. In the SN case, μ-on fraction is strongly reduced but
is not zero because of a population of μ-on antineutrinos.

As well-known (see, e.g., Refs. [32,56]), the onset of Δ−
shifts the balance between the chemical potentials of parti-
cles participating in the Urca reactions n → p + e + ν̄ and
e + p → n + ν. The proton fraction becomes large enough
(compared to the npeμ-matter) so that the first Urca process
can take place in the matter. The electron extinction implies
that the first Urca process is favored (because of the absence
of final state Pauli blocking of electron states) compared to
the second one, which is suppressed because of the absence
of the initial state electrons. Thus, the presence of Δ’s can
promote the nucleonic Urca processes. In addition, Δ’s them-
selves participate in Urca processes as their emergence can
lead to additional processes, such as Δ− → n + e− + ν̄ or
Δ− → Λ + e− + ν̄ [68]. In hot matter these processes may
contribute to the neutrino opacity, which is relevant in super-
nova context [10–13], and bulk viscous damping of density
oscillations in BNS mergers [20–24].

Fig. 5 Composition of Δ-admixed hyperonic matter as in Fig. 3. The
conventions are the same except that the lepton number fractions are
fixed at YL ,e = YL ,μ = 0.1, and the panels have fixed temperatures
T = 10, 20, and 30 MeV as labeled. The lepton number fractions are
characteristic of BNS mergers

Let us finally comment on the high-temperature and low-
density limit, where our computations are limited to the den-
sity 0.5nsat. It is seen from Fig. 3 that in this limit hyperon
and Δ-resonance thresholds are absent and they propagate
up to the lower bound of the density range considered. A
hint on the presence of these species at lower densities is
provided by the recent observation that the low-density hot
nuclear matter contains a significant fraction of strangeness
(Λ-particles) as well as Δ-resonances in addition to clusters
and free nucleons [69].

In closing our discussion of the numerical results, we
would like to explore the evolution of the fractions of par-
ticles with temperature while keeping the lepton fractions
constant according to Eqs. (47) and (48). Figures 5 and 6
below address these cases.

Consider first the case of BNS merger with fixed values of
lepton fractions YL ,e = YL ,μ = 0.1 and temperature values
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Fig. 6 Same as in Fig. 5, but for lepton number fractions fixed atYL ,e =
0.4 and YL ,μ = 0 which are characteristic of supernova matter

T = 10, 20 and 30 MeV as shown in the panels of Fig. 5.
First note that the n, p, e, μ fractions depend weakly on the
temperature. The equality of lepton numbers implies that the
electron and μ-on fractions are almost equal. The small elec-
tron excess over μ-ons is compensated by the μ-on neutrino
excess over the electron-neutrinos. At high densities, the neu-
trino fractions depend weakly on the temperature as well but
at low densities their fractions decrease with increasing tem-
perature and, eventually, become negative at temperatures
between 40 and 50 MeV.

Hyperons and Δ-resonances have still sharply increasing
fractions at the thresholds at T = 10 MeV similar to the low-
temperature, neutrino-free regime. The main change visible
in the low-density regime is the shift of the thresholds of
hyperons and Δ-resonances to lower densities with increas-
ing temperature. In the high-density regime, the changes with
the temperature are not significant as the quantum degener-
acy dominates thermal effects. In this density regime, the Λ

is the most abundant among the heavy baryon species and

its fraction exceeds that of neutron for nB/nsat ≥ 6. The Ξ -
hyperons have similar to Δ− fractions � 10%, whereas the
abundance of Δ0 is mildly suppressed at lower temperatures
and becomes comparable to that of Δ− at T ≥ 30 MeV.
Finally, for T ≥ 20 MeV the Σ hyperons appear, but their
fractions remain below 1%.

Consider next the case of SN with fixed values of lepton
fractions YL ,e = 0.4 and YL ,μ = 0 as shown in Fig. 6. The
remarks regarding the shift of the heavy-baryon thresholds
toward low densities with increasing temperature are valid
also in this case. At high densities the dominance of Ξ0

over Ξ− occurs earlier, the reason being the suppression of
Ξ− fractions by electrons with preassigned lepton fraction.
Indeed, electrons supply the necessary negative charge which
was otherwise due to Ξ− hyperons. The main difference
to the BNS case arises from the suppression of the μ-on
fraction to below 1%. Their non-vanishing number is due
to the presence of μ-on antineutrinos, as pointed out above.
Because of this, the charge neutrality is mainly maintained
by the equality of the abundances of protons and electrons,
with slight departure due to the presence of Ξ− and Δ−
at high density. The small μ-on fraction also results in the
complete dominance of the electron-neutrinos over their μ-
onic counterparts.

As pointed out in the previous work [29], where reso-
nances were neglected, there is a special isospin degeneracy
(ID) point where the fractions within each isospin multiplet
coincide. We find that in the Δ-resonance admixed matter this
feature is maintained and extended to the Δ±Δ++, and Δ0

resonances. At the ID point of the isospin multiplet of Σ0,±
hyperons the fractions of Σ− and Σ+ interchange their roles
from being most abundant to least abundant Σ-hyperon with
increasing density. We see that the fractions of Δ−,0 reso-
nances, the fractions of isospin multiplet of Σ0,± hyperons,
n and p fractions, as well as Ξ− and Ξ0 fractions coin-
cide at that point. This property becomes evident from the
β-equilibrium conditions (39)–(42). First, note that at high
densities μ∗

n−μ∗
p � μn−μp because the density scaling (34)

implies that the contribution of the ρ-meson mean-field to the
effective baryon chemical potentials (18) and (19) vanishes
exponentially. Now, if at any ID point the neutron and proton
fractions are equal, i.e., μ∗

n = μ∗
p, then the charge chemical

potential μQ = μp − μn = 0 and, therefore, μb = μB . In
this case, the effective chemical potentials within any given
isospin-multiplet are equal and, therefore, their fractions are
equal as well.

Returning to the chemical potentials, we show in Figs. 7
and 8 their effective values minus the respective effective
masses for Δ-admixed hypernuclear matter in the cases of
constant temperature and fixed entropy per baryon, respec-
tively. The emergence of the isospin degeneracy point is
seen in finite-temperature neutrino-trapped matter calcula-
tions in each isospin multiplet for all lepton number com-
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Fig. 7 Effective chemical potentials with the effective mass subtracted
as functions of the normalized baryon density nB/nsat . Each particles
species are shown by the same lines as in Fig. 3 with temperature and
lepton fraction fixed as indicated

binations considered. To the left from this point μQ ≤ 0
which according to Eqs. (39)–(42) implies that baryons with
smaller charges are more abundant. To the right of this point
μQ ≥ 0, and the ordering of baryon fractions within each
multiplet is reversed, as seen in Fig. 7. The same feature is
observed also in the case of constant entropy (rather than
constant temperature) case, see Refs. [43,45].

Consider next the effective masses of the baryons, which
are shown in Fig. 9 for β-equilibrium matter at fixed temper-
ature T = 0.1 MeV as functions of density. The temperature
dependence of the effective masses of baryons is very weak.
The effective masses of isospin multiplets (n, p), Σ0,±, Ξ0,−
and Δ0,− are degenerate, which have important implications
for degeneracies in chemical potentials.

The density dependence of the temperature for fixed
S/A = 1 for the cases of μν = 0 and neutrino-trapped
regime with Ye = Yμ = 0.1 and Ye = 0.4,Yμ = 0 are shown

Fig. 8 Same as in Fig. 7, but for constant entropy per baryon S/A = 1

Fig. 9 Effective Dirac masses of baryons as functions of normalized
by saturation density baryonic density. The temperature is fixed at T =
0.1 MeV for β-equilibrated, neutrino-free matter. Note that the isospin
multiplets have the same effective mass in the present model of CDF
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Fig. 10 Dependence of temperature on density for fixed S/A = 1
in the cases of neutrino-transparent matter (μν = 0) with different
compositions labeled as N , NY , and NYΔ. The cases of neutrino-
trapped matter with Ye = Yμ = 0.1 and Ye = 0.4, Yμ = 0 are shown
shown by dash-dotted and dash-double-dotted curves

in Fig. 10. The neutrino trapping occurs for temperatures
(roughly) T ≥ 5 MeV [20–22]. It is seen that the temper-
ature quickly rises above this limit as the density increases.
This implies that most of the volume of an isentropic star
with S/A = 1 will be in the neutrino-trapped regime. We,
therefore, conclude that the upper panels in Figs. 4 and 7 do
not refer to a realistic situation to be encountered in BNS or
SN contexts.

4 Cold and hot, isentropic compact stars

Next, it is useful to use hot and cold EoS of Δ-admixed hyper-
onic matter presented in the previous sections to compute the
spherical symmetrical static configurations of compact stars.
The case of cold EoS can be confronted with the current astro-
physical constraints. Such analysis in the case of Δ-admixed
hyperonic matter can be found in Refs. [31,32,41,43,45].
The astrophysical constraints against which our EoS will be
tested are as follows:

(a) PSR J0030+0451 is the first object with highly accu-
rate inferred mass and radius from X-ray observations
[70,71]. Both the mass and the radius were inferred by
fitting to the data obtained by the NICER X-ray observa-
tory. The modeling of the soft X -ray pulses emitted by
hot spots of a rotating star leads to two (independent) pre-
dictions (68% credible interval (CI)) M = 1.34+0.15

−0.16M�,

R = 12.71+1.14
−1.19 km [70] and M = 1.44+0.15

−0.14 M�,

R = 13.02+1.24
−1.06 km [71].

Fig. 11 Gravitational mass versus radius for non-rotating spherically-
symmetric stars. Three sequences are shown for β-equilibrated,
neutrino-transparent stars with nucleonic (N ), hypernuclear (NY ) and
Δ-admixed hypernuclear (NYΔ) composition for T = 0.1 MeV. In
addition, we show sequences of fixed S/A = 1 neutrino-trapped, isen-
tropic stars composed of NYΔ matter in two cases of constant lepton
fractionsYLe = YLμ = 0.1 andYLe = 0.4, YLμ = 0. The ellipses show
90% CI regions for PSR J0030+0451, PSR J0740+6620 and gravita-
tional wave event GW170817 (see the text for details)

(b) PSR J0740+6620 is the second pulsar with a measured
mass and radius again via observations and analysis of
the NICER X-ray observatory data. Its radius estimates
are 12.39+1.30

−0.98 [72] and 13.71+2.61
−1.50 km [73] and the mass

estimates are 2.07+0.07
−0.07 M� and 2.08+0.09

−0.09 M� (68% CI).
Note that the mass of this pulsar was independently mea-
sured to be 2.08+0.07

−0.07 M� using the effect of Shapiro
delay [74].

(c) GW170817 is the first multimessenger gravitational
wave event which among various observables in the grav-
itational and electromagnetic spectrum allowed an infer-
ence of the tidal deformability of a star involved by the
LIGO-Virgo Collaboration [75]. The current upper limit
of the (dimensionless) tidal deformability is Λ̃ ≤ 580.

The 90% CI ellipses for the constraints in the M-R dia-
gram are shown in Fig. 11. The static solutions of Einstein’s
equations in spherical symmetry which are represented by the
Tolman-Oppenheimer-Volkoff equations [76] were solved
for input cold and finite-temperature isentropic EoS and the
results are shown in Fig. 11. In the case of cold EoS we
consider the three cases of purely nucleonic (N ), hyper-
onic (Y N ) and Δ-resonance admixed hypernuclear matter
(Y NΔ). Our nucleonic model has a maximum gravitational
mass of Mmax = 2.48M� and a radius of R = 12.1 km. For
cold Y N and Y NΔ matter the softening of the EoS results
in a reduction of the maximum mass; for the Y NΔ model
Mmax = 2.0M� with the corresponding value of the radius
Rmax = 11.6 km. It is seen that the M-R values of the models
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Table 3 Properties of non-rotating spherically symmetric cold β-
equilibrated, neutrino-transparent, compact stars based on the EoS
models considered in this work. The first three columns show the
maximum gravitational mass (MG,max), and the corresponding radius
(Rmax) and central baryon number density (nc,max) for the (cold) EoS

with N , NY and NYΔ compositions. The remaining columns show
the threshold densities of heavy baryon defined here by the condition
nb,d/nsat ≥ 10−3. The radius of a canonical mass 1.4M� star for all
cold EoS considered is R1.4M� = 13.13 km and its (dimensionless)
tidal deformability is Λ̃1.4M� = 707.3

MG,max Rmax nB,max/nsat nΛ/nsat nΞ−/nsat nΞ0 /nsat nΔ−/nsat nΔ0 /nsat
[M�] [km]

N 2.48 12.1 7.27 – – – – –

NY 2.01 11.8 7.79 2.25 2.55 5.62 – –

NYΔ 2.00 11.6 8.35 2.25 2.64 5.35 2.4 5.8

are compatible with the NICER inferences for canonical (i.e.
M ∼ 1.4M�) and massive (i.e. M ∼ 2M�) compact stars.
Note that the radii of all models are the same as in the case
of a canonical mass star, as the onsets of the hyperons and
Δ-resonances are at densities that are beyond the central den-
sity of such a star. It is clearly seen that the bifurcation point
of a heavy-baryon star from a purely nucleonic one lies at a
higher mass ∼ 1.55M�. The results for the radius are com-
patible with the GW170817, but lie at the upper edge of the
allowed radius. Also, the (dimensionless) tidal deformability
of 1.4M� star turns out to be Λ̃1.4M� = 707.3, which is larger
than the upper limit Λ̃ ≤ 580 given above. However, note
that larger values of Δ-resonance-mesons couplings, which
imply an early onset of these particles, can lead to a reduction
of the radius of the star by about 15% and a reduction in tidal
deformability; for a discussion of this point see Ref. [32]. An
alternative is a phase transition to quark matter phase at low
densities [33].

The case of hot, isentropic stars is relevant for transient
states of proto-neutron stars and BNS merger remnants. Fix-
ing the value of the entropy per particle and the lepton frac-
tion at a constant value throughout the entire star is clearly
an approximation. These quantities are known to have vari-
ations along with the radial profile of the star. Nevertheless,
such an assumption allows one to study (in a first approxi-
mation) the effects of trapped neutrinos and temperature on
the configurations of stars. The sequences of isentropic stars
composed of Y NΔ matter are shown in Fig. 11. It is seen that
in the trapped neutrino regime the maximum masses of the
stars are shifted towards larger values. At the same time, the
radii of the stars can be significantly larger than that of their
cold counterparts. For example, for a massive M ∼ 2M�
star this difference is about 2 km for YLe = 0.4.

5 Conclusions

We have extended our recent study of hypernuclear mat-
ter at finite temperature in the neutrino-free and neutrino-
trapped regimes to include the non-strange Δ-resonances.

Our work is based on the extension of the CDF formalism
and numerical code of Ref. [30] with the extensions in the
hypernuclear sector described previously in Ref. [29]. The
zero-temperature counterpart of this CDF and its astrophysi-
cal consequences were already discussed extensively by Li et
al. [31–33]. We have exposed two physical cases by adjusting
the lepton fractions of electrons and μ-ons to the conditions
of BNS mergers and SN.

Firstly, we recovered the well-known features of the EoS
that appear when hyperons and Δ-resonances are included
in the composition of matter. The hyperonization softens the
EoS compared to the nucleonic case. Secondly, the inclusion
of Δ’s softens the EoS at intermediate densities and stiffens it
at high densities compared to hypernuclear case (see Fig. 1).

Our conclusions can be summarized as follows:

– Δ-resonance thresholds The zero-temperature abrupt
increase in the heavy baryon abundances, in particular
Δ’s, at a given threshold is replaced by a much flat-
ter increase at high temperatures with the low-density
tail extending up to the lowest density value considered
n = 0.5nsat, see Figs. 3, 5 and 6. This clearly indicates
that at finite temperatures the Δ-resonances (in analogy
to hyperons) extend further into the dilute gas regime of
clustered nuclear matter.

– Intermediate and large densities The dominant Δ-reso-
nance is Δ− which has a threshold density close to that
of Λ for the moderate values of Δ-couplings assumed
in the present study. We find that Δ− is the dominant
charged heavy baryon at intermediate densities (up to
∼ 4nsat) and becomes sub-dominant (but not signifi-
cantly) to Ξ− at higher densities. The only other res-
onances are Δ0s, which appear at very high densities in
cold, β-equilibrated matter, but their fractions are com-
parable to Δ− if the matter is sufficiently hot, see Fig. 3.
The effect of the Δ’s on the stiffening of the EoS of the
hypernuclear matter at large densities, as seen in Figs.
1 and 2, results in the increase of maximum masses of
compact stars with Δ’s compared to their hypernuclear
counterparts, see Fig. 11.
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– Neutrino species In the two considered astrophysical sce-
narios – BNS mergers and SNs – the neutrino popula-
tions differ considerably. In the BNS merger scenario,
the fractions of electron and μ-on neutrinos are typically
a few percent. The conditionYL ,e = YL ,μ = 0.1 enforces
almost equal numbers of electrons and μ-ons. In SN sce-
nario the condition YL ,μ = 0 suppresses the μ-ons leav-
ing a negligible μ-on fraction in the finite temperature
neutrino-trapped regime due to a small amount of μ-on
antineutrinos. The matter is then dominated by electron
neutrinos with a fraction ∼ 10%. The μ-on antineutrino
fraction is negligible. The presence of Δ resonances will
provide an additional source of interaction with neutri-
nos via direct Urca processes, e. g., Δ− → Λ + e− + ν̄.
Consequently, the neutrino opacities may be affected by
their very efficient direct-Urca coupling to Δ’s (even in
the absence of hyperons). Furthermore, the bulk viscous
damping of density oscillations in BNS mergers can be
affected by the Δ’s via non-equilibrium Urca processes
involving Δ’s.

– Stellar configurations The stellar sequences based on the
cold EoS of NYΔ matter are consistent with the astro-
physical constraints set by the analysis of the NICER
data on the masses and radii of PSR J0030+0451 and
PSR J0740+6620. They are also consistent with the
radius determination in the gravitational wave event
GW170817, although the radii are at the upper edge of
90% CI region. Hot isentropic sequences can support
larger masses than their cold counterparts. They are also
more extended than the cold ones, the difference in the
radii ranging up to a few km depending on the values
of the entropy and lepton fraction and the mass range
considered.
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