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Abstract We compute singlet pairing gaps and critical tem-
peratures in pure neutron matter with different many-body
approximations. Medium effects tend to reduce gaps and crit-
ical temperatures compared to the standard BCS ansatz. In
the mean-field approximation, the ratio of these two quanti-
ties remains constant across a wide range of densities. This
constant ratio is close to the universal prediction of BCS the-
ory, whether three-neutron interactions are included or not.
Using a more sophisticated many-body approach that incor-
porates the effect of short-range correlations in pairing prop-
erties, we find that the gap to critical temperature ratio in the
low-density regime is substantially larger than the BCS pre-
diction, independently of the interaction. In this region, our
results are relatively close to experiments and theoretical cal-
culations from the unitary Fermi gas. We also find evidence
for a different density dependence of zero-temperature gaps
and critical temperatures in neutron matter.

1 Introduction

Neutron stars (NSs) are key astrophysical objects. Their exis-
tence depends on several predicted properties of matter at
the extremes of density, temperature and isospin asymme-
try [1,2]. In turn, the astrophysical properties of NSs may
be used to constrain the properties of extreme matter and,
one hopes, the underlying nuclear physics properties. The
telltale example of how the connection between microscopic
(nuclear) and macroscopic (astrophysical) properties can be
established is the relationship between the Equation of State
(EoS) of nuclear matter and the mass-radius relation of NSs.
General relativity is required to compute NS structure [3],
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typically implemented by means of the hydrostatic, spher-
ically symmetric and non-rotating Tolman–Oppenheimer–
Volkov (TOV) equations. These equations require as input
the EoS of dense matter, usually in the form of a nuclear
physics inspired, one-to-one relation between energy density
and pressure [4]. The solution of the TOV equations, in turn,
provides a mass-radius relation for NSs, which can be imme-
diately compared to observations [5,6]. In the current era of
multi-messenger astrophysics, there is an ever increasing set
of available NS data, including tens of pulsar masses from
radio sources [7–9]; a handful of radii from X-ray observa-
tions [6,10,11]; and tidal deformabilities from gravitational
waves [12–14]. Ultimately, the expectation is that a mean-
ingful comparison between predictions and observations can
constraint the available space of EoSs and, with it, the under-
lying nuclear models to generate them. As a starting step
in this long-term endeavour, several EoS compilations are
already available [15,16], providing a useful starting point for
data-theory comparisons. The CompOSE database is one of
such EoS compilations, focusing (not exclusively) on finite-
temperature effects for supernova simulations [17].

While the mass-radius relation is a holy grail of NS
physics, there are other aspects of NSs that are of general
astrophysical interest. Nuclear many-body theory indicates
that neutrons undergo spontaneous pairing in the crust and
outer core of the star [18,19], much as they do in nuclei [20].
The existence of a superfluid phase may affect the dynamics
of the star. For example, the observation of period glitches of
pulsars are often interpreted as an abrupt transfer of angular
momentum from superfluid matter to the rest of the star [21].
Similarly, the superfluid pair-formation mechanism of rela-
tively young pulsars may accelerate their cooling [22–28].
These observations provide an insight beyond the EoS of NS
dense matter, with the tantalising potential to elucidate dif-
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ferent microphysical mechanisms at play in the interior of
the star.

Like the EoS, the superfluid properties of a NS are the-
oretical predictions based on a given set of ingredients and
approximations. Several predictions of the pairing gaps are
available in the literature [20,29,30]. Some of these have
been reduced to simple numerical parametrizations for ease
of practice [31], although no universal database is currently
employed. In practice, in the astrophysical context, EoS and
superfluid gaps are often exploited independently of their
origin. In doing so, one may mix together predictions that
are based on very different nuclear physics models. These
inconsistencies are often disregarded, because the final astro-
physical observations may not always have enough resolv-
ing power to distinguish among different scenarios. But, as
the quantity and quality of astrophysical data influenced by
superfluidity increases, a reduction of the parameter space
is likely to provide more stringent constraints. Theoretical
consistency is imperative if the ultimate goal is to provide a
propagation of information from astrophysical observations
all the way down to nuclear physics [32].

Here, we identify and quantify one specific obstacle in this
direction. More specifically, we examine an approximation
employed in the astrophysical context that is not necessarily
justified in terms of nuclear many-body theory. We look at the
relation between the size of the zero-temperature superfluid
gap, Δ0 = Δ(T = 0), and the critical temperature, Tc, of the
superfluid transition. Hereafter, we work with the choice of
units h̄ = kB = 1. In the simple Bardeen–Cooper–Schrieffer
(BCS) model of superconductivity, one finds that the ratio of
these two quantities is independent from the strength of the
interaction, from the density of the medium as well as from
the cut-off of the regulator. In this case, the universal ratio
simply is Δ0/Tc = π/eγ ≈ 1.764 [33]. This remarkable
result, or its corresponding extension to the triplet case [34–
37], is exploited throughout the NS literature [22,31].

In the following, we explore whether this BCS prediction
of a constant Δ0/Tc ratio remains valid for the singlet gap
in the NS context. There are reasons to believe that this may
not be the case. First of all, the impact of the medium on
the pairing gap is sizeable and non-trivial in neutron matter
[20,38]. At the simplest possible level, nucleon propagation
is modified by a mean field potential. Beyond this mean-field
picture, more sophisticated many-body approximations also
predict a substantial modification of single-particle strength.
Second, and equally relevant, the nucleonic interaction is far
from the simple one considered in the BCS model. In par-
ticular, three-neutron forces (3NF) are important at nuclear
densities, and their appearance is known to modify the pair-
ing gap at zero temperature [39]. We look at whether such
modifications can affect the pairing gap, the critical temper-
ature and their ratio.

More fundamentally, the BCS many-body approximation
can be interpreted as the lowest-order of a many-body expan-
sion in the context of superfluids. Since the expansion param-
eter in this case is the strength of the potential, one may ques-
tion whether expectations from BCS predictions are reliable
anymore in the strongly interacting, high-density regime of
neutron stars. Along these lines, one can foresee two differ-
ent types of medium modifications. In one instance, the gap
Δ0 and the critical temperature Tc may be modified, while
keeping their ratio Δ0/Tc intact. This probably requires some
cancellations or fine tuning, which operate at the BCS level
and, possibly, beyond. Alternatively, the medium modifica-
tions may change both Δ0 and Tc in a way that their ratio is
modified. This scenario has already been realised in several
instances in ultracold gases and high-Tc superconductors,
where the ratio Δ0/Tc deviates substantially from the BCS
prediction [40–44].

Chiral effective field theory interactions among nucleons
provide a solid starting point to explore the properties of
dense neutron matter in the region of interest for singlet pair-
ing superfluidity, up to and around saturation density [45,46].
Importantly, by looking at the cutoff and scheme dependence,
one can quantify to some extent the theoretical uncertainty of
neutron-matter properties [47]. Interactions are only the start-
ing point, though. For dense matter studies, one also needs to
resort to a many-body scheme that provides an approximate
solution for the thermodynamics and the superfluid prop-
erties. Many different methods exist to address specifically
the EoS problem, both at zero and finite temperature [48–
50]. When it comes to superfluidity, however, one typically
works in a BCS approach, with some minor modification
[20,35,36,51]. Extensions beyond the BCS level are typi-
cally phenomenological in nature [52–54], or cannot easily
be systematized to provide theoretical uncertainties [38,55–
57].

Recently, we have formulated a new theoretical frame-
work that addresses this issue and facilitates the sys-
tematic exploration of many-body effects in superfluid
systems at finite temperature [58,59] framework, dubbed
Nambu-Covariant Green’s Functions, develops a diagram-
matic expansion that can potentially provide predictions
for many-body scheme uncertainties. Importantly, the the-
ory can also be used to build self-consistent approaches
and hence provide a simplified superfluid counterpart to the
more conventional self-consistent Green’s function (SCGF)
approach [60,61]. The numerical implementation of this
Nambu-covariant Green’s function method is not yet avail-
able. While this is developed, we explore here an alterna-
tive approach based on previous SCGF work [38,57,62]. We
include the effect of short-range correlations (SRC) effec-
tively in the pairing gap by modifying the superfluid gap
equation with convolutions of normal propagators. We study
both the gap and the critical temperature calculations, to pro-
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vide an initial assessment of the modifications of the Δ0/Tc
ratio in dense matter. While this approach is not yet entirely
consistent, we find a strong modification of the ratio even in
the low-density regime. Exploring the astrophysical impli-
cations of these findings will require the full development of
new techniques in the future.

We now proceed to discuss the two different many-body
approximations that we employ to compute the pairing gap,
in an effort to provide an estimate of theoretical uncertain-
ties. We also provide parametrizations for the gap and the
critical temperature dependence on Fermi momentum, in an
attempt to assess whether these dependences are the same or
not. We first introduce the BCS approach with a Hartree-Fock
(HF) single-particle spectrum, and discuss finite-temperature
results. Then, we discuss a finite-temperature extension of
the SCGF model that can incorporate the effects of short-
range correlations effectively in the superfluid phase. This
extension was originally introduced in Ref. [62] and further
developed at zero temperature in Refs. [38,57]. The results
presented here represent the first systematic exploration of
this method across a wide range of temperatures. Our dis-
cussion is restricted to the singlet gap in the 1S0 channel, but
the extension to an angle-averaged triplet case is relatively
straightforward.

2 Bardeen-Cooper-Schrieffer pairing

The momentum-dependent superfluid gap at a given temper-
ature can be computed from an integral gap equation, which
has the generic structure

Δk = −
∫

dk′

(2π)3

V(k, k′)
2χk′

Δk′ . (1)

Here, Δk is the singlet pairing gap that one is interested in,
which appears in both sides of the equation. Within the BCS
approximation, V(k, k′) is the bare NN interaction in the
1S0 partial wave for the singlet pairing case of interest here.
k and k′ are, respectively, the incoming and outgoing relative
momentum of a pair. The standard BCS kinematics involves
a zero center-of-mass momentum [20].

The energy denominator χk contains information on the
superfluid pairs, including the gap itself as well as the tem-
perature of the system. In a standard BCS approximation, the
denominator is

1

2χk
= 1 − 2 f (ξk)

2ξk
, (2)

with f (ω) = [
1 + exp

(
ω−μ
T

)]−1
a Fermi-Dirac distribution.

The quasi-particle energies are defined by

ξk =
√

(εk − μ)2 + Δ2
k , (3)

where Δk denotes the gap contribution, μ is the chemical
potential, and εk , the single-particle spectrum.

Different approximations to εk provide different pairing
gaps. The standard BCS approach uses only a crude kinetic
dispersion relation, εk = k2/2m. One step towards a more
realistic description is to dress this dispersion relation with a
mean-field Σk ,

εk = k2

2m
+ Σk . (4)

This is motivated theoretically by the well-known Hartree-
Fock-Bogoliubov approach [63]. The mean-field incorpo-
rates the average effect of interactions in the medium,

Σk =
∫

dk′

(2π)3 〈kk′|V |kk′〉An′
k . (5)

Here, the interaction matrix elements are antisymmetrized
and k and k′ represent single-particle momentum vectors. At
the BCS level, the pairing interactionV(k, k′) is related to the
matrix elements 〈k1k2|V |k′

1k
′
2〉A by setting k1 = −k2 = k

and k′
1 = −k′

2 = k′ and expanding to the appropriate partial
wave.

The momentum distribution in the superfluid case is given
by the expression

nk = 1 − εk − μ

ξk
tanh

(
ξk

2T

)
. (6)

At each Fermi momentum, kF = (3π2ρ)1/3, we find the
corresponding chemical potential by inverting the expression

ρ = 2
∫

dk

(2π)3 nk . (7)

This already departs from the standard BCS approach, which
employs μ = εF = k2

F/2m. This determination of μ is more
consistent with the Hartree–Fock–Bogoliubov picture in the
canonical ensemble, and with other many-body approxima-
tions [64–66]. Compared to the standard BCS approach, this
canonical implementation yields a small reduction of the gap
in the low-density regime.

One of the key advantages of chiral interactions is that
each order in the expansion gives rise to associated many-
body forces [45]. These become more relevant as the den-
sity of the system increases. In the predictions shown here,
we use the N3LO Entem-Machleidt (EM) interaction VNN

[67] and supplement it with a three-nucleon force (3NF) W
at N2LO. We use Λ = 500 MeV in both cases. The 3NF
are incorporated following Refs. [68–70], using the P = 0
approximation and an internal nonlocal regulator. We con-
tract W with the momentum distribution of Eq. (6) to obtain
an effective two-body force, W̃ . Carefully considering the
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Fig. 1 Left panel: superfluid gap Δ as a function of temperature T in
the BCS+HF approximation. Circles (triangles) correspond to results
with the EM force (EM+3NF) force. Right panel: the same for results
using the SRC approximation

normal ordering of each contribution, one finds that in the
calculation of the single-particle mean-field, Σ , one needs to
employ the sum V = VNN + 1

2 W̃ . In contrast, in the pairing
gap V = VNN + W̃ [39,58,59]. We compute the Hartree-
Fock self-energy numerically with partial waves up to a total
angular momentum of the neutron pair J = 10.

Because μ enters both the gap equation and the momen-
tum distribution, the BCS+HF gaps and quasi-particle ener-
gies need to be computed iteratively. At each density and
temperature, one can iterate Eqs. (1)–(4) to find a solution
for the momentum dependent mean-fields, Σk , and gap func-
tions, Δk . As temperature increases, smearing out the Fermi
surface, one expects the gap to decrease until it disappears at a
given Tc. We explore this phase transition by simulating sev-
eral temperatures for a given density (or Fermi momentum)
value, as shown in Fig. 1. The left panel shows the pairing gap
at k = kF , Δ(T ), for a density ρ = 0.04 fm−3 and varying
temperatures, T . As temperature increases, the gap decreases
monotonically until it eventually disappears for a given criti-
cal temperature. The resolution of Tc is limited by the numer-
ical mesh. For the EM results only (full circles) shown in
Fig. 1, Tc lies between 1.1 and 1.2 MeV. We thus estimate
the critical temperature at this density as Tc = 1.15 ± 0.05
MeV. The inclusion of repulsive 3NF generally decreases
the pairing gap. The EM+3NF results shown with triangles
(dashed lines) are indeed lower across the whole temperature
range. The pairing gap decays faster with 3NFs as a function
of temperature, and the corresponding critical temperature is
Tc = 0.85 ± 0.05 MeV. We stress that these results incor-
porate a temperature-dependent single-particle spectrum Σ ,
with 3NFs that are consistently included in the pairing inter-
action. This complicates the potential application of alterna-
tive methods that estimate Tc using algorithms relying on the
Thouless criterion, like the Weinberg eigenvalue approach
used in Ref. [71].

One can proceed similarly for different densities, gener-
ating a mesh of gap values for different thermodynamical
conditions. With this, one gets the results displayed in Fig. 2.
The top panel shows the zero-temperature gap, Δ0, as a func-
tion of Fermi momentum. We show three different sets of
results. The dashed line is a reference standard BCS value,
obtained with the EM NN interaction only; a non-interacting
single-particle spectrum, i.e. Σ = 0; and a chemical potential
μ = εF . In contrast, the circles and triangles joined by a full
line correspond to EM BCS+HF results (Σ �= 0) with (trian-
gles) or without (circles) 3NFs. In these results, the chemical
potential is determined using Eq. (7).

The gaps show the standard dumbbell shape for all cases.
The position and size of the maximum gap depends on the
many-body scheme. For the EM BCS results, the gap max-
imum is close to 3 MeV at kF = 0.9 fm−1. The BCS+HF
results have in general lower gap values, with a maximum
around ≈ 2.7 MeV at a Fermi momentum of ≈ 0.8 fm−1.
As density increases beyond the peak, the gap subsequently
decreases and closes near 1.4 − 1.5 fm−1 for the BCS+HF
simulations, and around 1.6 fm−1 for the BCS-only case. The
effect of the 3NF is to reduce the maximum gap by about 0.2
MeV, and also to bring the gap closure to lower densities.
This effect is well-known and has already been identified in
BCS and in BCS+HF calculations [38,39]. Our results also
coincide with those generated by Drischler et al. in Ref. [39].

While the symbols in Fig. 2 represent the numerical sim-
ulations, the lines have been obtained by fits to the data with
the function

gx (kF ) = gx0
(kF − kx0 )2

(kF − kx0 )2 + kx1

(kF − kx2 )2

(kF − kx2 )2 + kx3
, (8)

with gx0 , kx0 , kx1 , kx2 and kx3 numerical parameters [31]. Here, x
labels the data that is fitted, with x = Δ0 for pairing gaps and
x = Tc for critical temperatures. Details on the numerical fit
to this function are given in Appendix A. We note that the fits
provide a very good reproduction of the BCS results, with
maximum deviations with respect to data of 0.04 MeV across
the whole density regime. The top rows of Table 1 provide
the corresponding fit parameters for the pairing gaps. kΔ

0 and
kΔ

2 represent the Fermi momenta at which the gap opens and
closes, respectively. The opening Fermi momentum is the
same for both the EM and EM+3NF calculations, as expected
naively from the growing importance of 3NFs with density.
In contrast, the fit indicates that the closing Fermi momentum
for the singlet gap without 3NFs, kΔ

2 = 1.49 fm−1, is larger
than the EM+3NF result, kΔ

2 = 1.37 fm−1.
The central panel in Fig. 2 shows Tc as a function of Fermi

momentum, obtained as explained earlier by computing the
gap at different temperatures. Because of the limited numer-
ical mesh of temperatures, we assign an error to Tc, which
is typically εTc = 0.05 MeV or, on occasions, 0.1 MeV.
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Table 1 Parameters generated by a fit to the calculated gaps, Δ0 (top 2 rows), and the critical temperatures (bottom 2 rows). These results correspond
to the BCS+HF approximations

BCS+HF gΔ
0 kΔ

0 kΔ
1 kΔ

2 kΔ
3

Units MeV fm−1 fm−2 fm−1 fm−2

EM 24.76 0.02 1.23 1.49 0.89

EM+3NF 15.09 0.02 1.02 1.37 0.62

gTc0 kTc0 kTc1 kTc2 kTc3

EM 7.30 0.02 0.92 1.48 0.69

EM+3NF 7.94 0.01 1.00 1.37 0.59

The data has a very similar shape to the BCS+HF zero-
temperature gap - a dumbbell, with a maximum of ≈ 1.5
MeV at around kF ≈ 0.8 fm−1. Tc decreases at high den-
sity, until it closes around 1.4 fm−1. BCS results without
HF spectra (dashed lines) predict substantially larger critical
temperatures. To quantify the similarity between the shape
of the gap parameter and the critical temperature, we fit the
function of Eq. (8) to the Tc data, considering the theoreti-
cal uncertainty. We provide the fit parameters in the bottom
rows of Table 1. Looking again at the opening and closing
Fermi momenta, kTc0 and kTc2 , we find a very good agreement
between the gap and the critical temperature data. The com-
parison between the values of kx1 and kx3 can only be done
in relative terms. We find that the ratio kx1 /kx3 for the gap
and Tc fits with the EM interaction are close to each other,
kx1 /kx3 = 1.3−1.4. For the EM+3NF fits, the fits provide two
consistent ratios kx1 /kx3 = 1.6 − 1.7, which are different to
the EM ones. These ratios illustrate the faster decline with
Fermi momentum of the EM+3NF results as opposed to the
EM-only ones. With this in mind, we conclude that the gap
and the critical temperature are different for different inter-
actions, but they have essentially the same dependence in kF
within the BCS+HF approximation.

Finally, the bottom panel of Fig. 2 shows the results for
the ratio of the gap to the critical temperature values, Δ/Tc.
The bands correspond to the (independent) uncertainty prop-
agation of the errors associated to the gap (negligible at
the BCS+HF level) and the critical temperature (of order
εTc = 0.05 MeV, as stated above). We raise at least two rel-
evant astrophysical conclusions from this result. First, the
ratio is obviously quite constant over a wide density regime.
This supports the statement in the previous paragraph that
the functional forms of Δ0(kF ) and Tc(kF ) are very similar
in the BCS+HF approximation. Second, the ratio does coin-
cide with the BCS result, Δ0/Tc = 1.764 [33] within the
uncertainties generated by our results which are of the order
of 0.1. The deviations from the universal constant are com-
mensurate with this uncertainty and there are no clear trends
nor departures from this value.

We stress that the results presented here, within the
BCS+HF approach (solid lines), go beyond the standard BCS
(dashed line) approximation that is used to derive the identity
Δ0/Tc = 1.764. This result arises from an analysis of the
kernel of Eq. (1) close to T = 0 and close to Tc. The standard
analysis neglects the effects of the momentum dependence
(or the non-locality) of the interaction, and is performed in
the absence of 3NFs. Likewise, the analysis typically neglects
the single-particle mean-field, Σ = 0. Here, instead, Σ is
momentum, density and temperature dependent at the HF
level. 3NFs affect the pairing properties both through Σ

itself, but also through the pairing interaction, V . And, yet,
even though these changes do substantially modify the val-
ues of Δ0 and Tc independently (see top and central panels),
our results indicate that the ratio Δ0/Tc is independent of all
such medium modifications.

3 Beyond-BCS pairing

We now apply the very same methodology in an approxi-
mation that goes beyond the BCS+HF approximation. We
aim to test whether the ratio Δ0/Tc can be modified, but we
also want to quantify the deviation from the BCS+HF results.
To this end, we implement an approximation that incorpo-
rates the fragmentation of quasi-particle strength effectively
in the pairing properties [38,57,62]. The single-particle spec-
tral function, Ak(ω), provides a positive-definite probability
distribution which describes the fragmentation of strength for
a given momentum, k, in the normal state [72,73]. In a mean-
field approximation, such as HF, this is just a δ peak centered
at a certain effective single-particle energy εk . Going beyond
mean-field approximations, however, the spectral functions
departs from this basic δ distribution [72,73].

In the SCGF approach at finite temperature, Ak(ω) is
instead a density and temperature-dependent function, with
a strong peak around a preferred single-particle energy, but
also relatively large widths beyond the Fermi surface [61].
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Fig. 2 Top panel: zero-temperature superfluid gap Δ0 as a function of
neutron matter Fermi momentum. Filled circles (triangles) represent the
BCS+HF solution for the N3LO EM (N3LO+3NF) potential. Dashed
lines correspond to the BCS solution for the EM interaction. Central
panel: critical temperature Tc as a function of neutron matter Fermi
momentum. The error bars represent the numerical uncertainty in the
determination of Tc. The symbols have the same meaning as the the top
panel. Bottom panel: ratio of Tc to Δ as a function of Fermi momentum.
The dashed horizontal line is the BCS result Δ0/Tc = 1.764

We access the spectral function by means of finite tem-
perature SCGF calculations [38,61,69]. For any given den-
sity and temperature, a SCGF simulation sums an in-medium
(particle-particle and hole-hole) ladder series at finite tem-
perature [74,75]. For a fixed ρ, we can perform simulations
for several values of T , down to minimum temperatures of
order 2 MeV, well above any pairing instability [76]. With
this data, we can extrapolate below the minimum temperature
value and obtain a normal spectral function in a regime which
may be superfluid, as explained in Ref. [57]. This extrapola-
tion allows us to compute a fragmented pairing contribution
to the denominator,

1

2ζk
=

∫
dω

2π

dω′

2π

1 − f (ω) − f (ω′)
ω + ω′ Ak(ω)Ak(ω

′) , (9)

so that χk =
√

ζ 2
k + Δ2

k in the pairing gap equation, Eq. (1)
[62]. We note that the extrapolation procedure only works for
systems which are relatively degenerate or, in other words,
for relatively large densities, above kF ≈ 0.6 fm−1.

The extrapolated pairing denominator χk can be directly
employed in the gap equation, Eq. (1). We stress, how-
ever, that many-body theoretical approaches indicate that the
integral convolution should also include one superfluid (as
opposed to normal) spectral function [77]. In other words,
we are missing feedback effects from the superfluid into the
gap itself. These effects occur very close to the Fermi surface
and are expected to be relatively small [62]. In the absence
of the full implementation of a consistent many-body the-
ory of superfluids, as presented in Refs. [58,59], we use this
approach as an initial step forward in the analysis.

SRC associated with realistic NN forces induce fragmen-
tation on spectral functions. This fragmentation reduces the
pairing gap [62,74]. Our simulations corroborate this con-
clusion at finite temperatures. The right panel of Fig. 1
shows SRC pairing gaps as a function of temperature for
EM (circles) and EM+3NF (triangles). The SRC gaps are
smaller than their BCS+HF counterparts across the whole
temperature regime. Importantly, the temperature depen-
dence of these results is steeper, and the corresponding criti-
cal temperatures are substantially reduced. We note that the
T = 0 temperature result for the EM interaction deviates
from the monotonous dependence obtained with the finite-
temperature results. This is most likely an artefact of the
numerical extrapolation procedure. In the following, we asso-
ciate a constant theoretical uncertainty, εΔ0 = 0.1 MeV, to
our results, to account for such issues. In the case of EM+3NF,
this error also incorporates the uncertainty associated to the
fact that the reduction of the 3NF into an effective 2-body
force is performed with a step-function momentum distribu-
tion, nk , as opposed to the pairing-corrected distribution of
Eq. (6).
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Fig. 3 The same as Fig. 2 for the SRC approximation

We present the results for Δ0 in the SRC for the EM (cir-
cles) and the EM+3NF (triangles) interactions in the top panel
of Fig. 3. This figure also includes the BCS results (dashed
line). Compared to Fig. 2, the SRC results provide smaller
gaps across the whole density regime, with maximum gaps
here of order 2.4 MeV. Just as in the BCS+HF case, 3NFs tend
to reduce the maximum gap and the closure Fermi momen-
tum further. We provide the associated fits to this data in
Table 2. These fits suggest that the gap opens at zero Fermi

momentum, kΔ
0 = 0 fm−1. This is the lowest bound imposed

in our fitting procedure. We stress, however, that the lack of
SRC data in the region below the peak does not help in con-
straining the low-density parameters. The closure gap Fermi
momentum, kΔ

2 , in contrast, is better determined and rela-
tively close to the BCS+HF results.

We show in the top panel of Fig. 3 (squares) recent gap
results obtained with quantum Monte Carlo (QMC) tech-
niques in Ref. [30]. These results are based on the Av8’ inter-
action supplemented with the Urbana-IX three-body force.
For Fermi momenta k < 0.4 fm−1, the agreement between
the extrapolated SRC and QMC results is remarkable. QMC
results peak at a somewhat lower value of Δ0 ≈ 2 MeV, a dis-
crepancy that could be due to the difference in interactions, in
many-body schemes or both. While the intermediate density
dependence is different, we note that there is an agreement
in the closure Fermi momentum, which is around kF ≈ 1.4
fm−3 for both the QMC and the SRC predictions with the
EM interaction.

The central panel of Fig. 3 shows the critical temperature
obtained in the SRC approach. The maximum Tc for both the
EM and the EM+3NF in this approach is below 1 MeV. This
represents a decrease of 0.5 MeV with respect to the BCS+HF
data in the central panel of Fig. 2. This is also 0.7 MeV lower
than the maximum Tc of the BCS-only approximation. While
the error bars in the plot are not negligible, with a few points
with εTc = 0.1 MeV, they do allow for a numerical fit. The
results, presented in the bottom rows of Table 2 indicate that
Tc may vanish at a Fermi momentum which is around 0.05
fm−1 lower than the corresponding gap closure parameter.

Astrophysical applications, like cooling curve simula-
tions, rely on parametrizations of the density dependence
of Tc, which is often assumed to be the same as that of the
gap, Δ. The results of our SRC fits indicate that the func-
tional forms of the gap and the critical temperature fits may
be quite different. For the EM force, for instance, the ratio
of fit gap parameters is kΔ

1 /kΔ
3 ≈ 1.4, whereas the corre-

sponding Tc fit yields kΔ
1 /kΔ

3 ≈ 1.9. A similar conclusion
is drawn with EM+3NF, thus indicating that the functional
dependences are rather dissimilar.

The main results of this paper are presented in the bottom
panel of Fig. 3. We report on the ratio of the gap to the critical
temperature within the SRC approach. The bands associated
to the data incorporate the errors in both the gap and the
critical temperature, propagated assuming that they are inde-
pendent to each other. In addition to the BCS ratio (dashed
line), the figure shows the prediction Δ0/Tc = 2.7±0.3 from
Ref. [41]. This band is extracted from a functional renormal-
ization group analysis applied to the unitary Fermi gas. This
comparison is of interest because of the un-naturally large S-
wave scattering length displayed by neutrons in the vacuum.
Neutron matter can thus be interpreted as a deviation from the
standard unitary Fermi gas. The band obtained in Ref. [41] is
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Table 2 The same as Table 1 for the SRC approximation

SRC gΔ
0 kΔ

0 kΔ
1 kΔ

2 kΔ
3

Units MeV fm−1 fm−2 fm−1 fm−2

EM 5.87 0.00 0.67 1.46 0.47

EM+3NF 5.04 0.00 0.57 1.35 0.39

gTc0 kTc0 kTc1 kTc2 kTc3

EM 2.53 0.00 0.74 1.40 0.39

EM+3NF 2.98 0.00 0.77 1.30 0.42

commensurate with other predictions from different many-
body approaches. This band is also close to a ratio of inde-
pendent experimental values for Δ0 = 0.44(3)εF [78] and
Tc = 0.167(13)εF [79], which yields Δ0/Tc = 2.63 ± 0.27
[80].

The data obtained within the SRC approach in the low
Fermi momentum regime, kF < 1 fm−1, is consistent with a
ratio value of Δ0/Tc = 2.4±0.3. This is substantially larger
than the BCS result, which is excluded even when consider-
ing theoretical errors in the gap and the critical temperature.
We stress that there are substantial differences in gap and crit-
ical temperature values between the EM and the EM+3NF,
but the ratio predictions in the region kF = 0.6 − 1.0 fm−1

are extremely uniform. In particular, the ratio is insensitive to
the inclusion of 3NFs. We have performed the same analysis
for the CD-Bonn interaction, not shown here for brevity, and
find also a good agreement in the ratios. Overall, this indi-
cates that the ratio value due to the SRC method is robust.

The behaviour at higher densities is more difficult to pin
down. We have access to only a few data points and the
associated errors increase substantially as Tc decreases. The
central values for the EM-only results indicate an increase in
the ratio as the gap closure is reached. The results with 3NF
at high densities are inconclusive, with one point lying above
and another below 2.4. Overall, however, there are clear
indications of deviations from the BCS ratio across a wide
set of densities when using the SRC approach. A density-
independent constant ratio could be straightforwardly imple-
mented in cooling simulations [22,25], before the more
sophisticated density dependence shown in Fig. 3 is explored.
The analysis of how such a renormalization of this ratio, or
even how different functional forms of Δ0 and Tc would
affect astrophysical simulations, lies beyond the exploratory
nature of this work.

4 Conclusions and outlook

In this paper, we have critically assessed the singlet superfluid
gap and the superfluid critical temperature in neutron matter.
We review whether often-used assumptions in astrophysical

simulations, like the constant ratio between the critical tem-
perature and the pairing gap predicted by BCS theory, hold
in many-body schemes that go beyond BCS. To this end, we
investigate two different avenues that go beyond standard
BCS theory. The first one, close to the HFB approach, incor-
porates medium effects through a Hartree-Fock mean-field,
Σ . The gap is informed of 3NFs through this mean-field, but
also through an averaged effective two-body contribution to
the pairing interaction. We find that medium effects, incorpo-
rated in this fashion, reduce substantially both the pairing gap
and the critical temperature compared to the standard BCS
approach. This reduction, however, does not modify the ratio
Δ0/Tc, which remains constant across densities and very
close to the BCS universal prediction. We conclude that the
medium modifications associated to the BCS+HF approach
operate effectively in the same direction in both quantities,
cancelling each other.

In contrast, the SRC approach to superfluid properties
considers a more sophisticated approach to medium mod-
ifications. It incorporates an extrapolation of normal spectral
functions to low temperatures and accounts for the fragmen-
tation of single-particle strength. We find, in agreement with
previous studies, that the pairing gap is reduced by SRCs.
The critical temperature is computed here extensively for the
first time, and we find it is also substantially reduced by SRC,
compared to BCS or BCS+HF expectations. The maximum
lies below Tc = 1 MeV across the whole density regime.
Numerical fits to our data suggest that the functional form
of Tc as a function of kF may be relatively different to that
of Δ0. In the low-density region, kF < 1 fm−1, we find a
universal value of the ratio Δ0/Tc = 2.4 ± 0.3. This is sub-
stantially larger than the BCS prediction, but bodes well with
theoretical simulations and experimental data for Δ0 and Tc
of the unitary Fermi gas.

In terms of future outlook, we differentiate between three
different, yet interconnected, aspects: developments of the
SRC approach; quantum many-body theory extensions; and
their astrophysical impact. The SRC approach that we have
just presented can be straightforwardly extended to other
pairing scenarios and, in fact, it has already been used to
predict triplet pairing gaps at zero temperature [38,57]. One
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could use this approach to test whether the triplet gap-to-Tc
ratio is also modified with respect to the BCS prediction.
Extending the extrapolation procedure to arbitrary isospin
asymmetry would also allow to explore similar effects in the
more astrophysically relevant case of β-equilibrated matter
and, in particular, would allow us to provide predictions for
proton superconductors. It would be interesting to explore
how NS thermal properties are modified using the SRC
results presented here. This includes, for instance, the spe-
cific heat of neutron-star matter and other important transport
coefficients.

Having said that, the relatively large errors of our numeri-
cal data are limiting the accuracy of our conclusions, and also
hamper further inferences at high densities. Further improve-
ments may require a new approach that actually accesses
superfluid properties from the outset. We know, for instance,
that there are missing aspects of the SRC approach that cer-
tainly modify Δ0, and can potentially alter the Δ0/Tc ratio.
Key among these is the effect of long-range correlations in
the pairing interaction, which was explored in Ref. [57] in a
phenomenological approach [52,54,81] and seen to further
reduce the singlet pairing gap. Moreover, the double convolu-
tion denominator in the SRC approach does not fully account
for superfluid properties and improvements of many-body
theory are necessary at that level. Ideally, these many-body
improvements should have associated uncertainties not only
from the NN and 3NF (say, from the chiral expansion), but
also from the many-body truncation scheme. In this sense, the
ideal way forward is the recently developed Nambu covari-
ant formalism of Refs. [58,59], a theoretical formalism that
fulfills all the necessary conditions to provide predictions in
this regime.

While quantum many-body theory developments occur,
one can potentially explore the relevance of these results in
astrophysical simulations. The fits we provide here can be
directly adopted in cooling simulations performed with con-
sistent EoS, to explore whether the reduction of Tc or, indeed,
the change of its functional form, have any relevant observ-
able impact.
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Appendix A: Numerical fits

The numerical fits have been performed with Python’s
scipy.optimize.curve_fit routine [82], which per-
forms a non-linear least squares fit of data to a function. We
use the non-zero values of Δ0 and Tc, as well as their errors,
in the fit. The data and fit routines are available in github
[83].

As a measure of the quality of the fit, we use the abso-
lute value of the maximum deviation from the data cen-
troids to the fits, rmax. This is small for the more pre-
cise and abundant BCS+HF data, with values rΔ0

max =
0.01 MeV

(
rTcmax = 0.04MeV

)
and rΔ0

max = 0.01 MeV(
rTcmax = 0.05MeV

)
for the EM and EM+3NF gap (Tc) data,

respectively. In contrast, the SRC data is more noisy and the
fit has lower quality. The maximum deviations for all quan-
tities and potentials in this case is r xmax = 0.04 MeV.
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