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Abstract We present the first neutron star merger sim-
ulations performed with the newly developed Numerical
Relativity code SPHINCS_BSSN. This code evolves the
spacetime on a mesh using the BSSN formulation, but
matter is evolved via Lagrangian particles according to a
high-accuracy version of general-relativistic Smooth Parti-
cle Hydrodynamics (SPH). Our code contains a number of
new methodological elements compared to other Numerical
Relativity codes. The main focus here is on the new elements
that were introduced to model neutron star mergers. These
include (a) a refinement (fixed in time) of the spacetime-
mesh, (b) corresponding changes in the particle–mesh map-
ping algorithm and (c) a novel way to construct SPH initial
data for binary systems via the recently developed “Arti-
ficial Pressure Method.” This latter method makes use of
the spectral initial data produced by the library LORENE,
and is implemented in a new code called SPHINCS_ID.
While our main focus is on introducing these new method-
ological elements and documenting the current status of
SPHINCS_BSSN, we also show as a first application a
set of neutron star merger simulations employing “soft”
(Γ = 2.00) and “stiff” (Γ = 2.75) polytropic equations
of state.

1 Introduction

With the first observation of a merging binary black hole
in 2015 [1], gravitational wave detections have become an
active part of observational astronomy. The first detection
of a merging neutron star binary [2–8], in both gravita-
tional waves (GWs) and electromagnetic (EM) radiation, fol-
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lowed in 2017 and this watershed event (hereafter referred
to as GW170817) settled many long-standing open ques-
tions. It showed, among other things, that neutron star merg-
ers are able to launch relativistic jets and can produce short
gamma ray bursts [9–12] and it confirmed the long-held sus-
picion [13–16] that neutron star mergers are major production
sites of r-process elements [7,17,18]. For an excellent recent
review on r-process nucleosynthesis see [19]. The inspiral
phase of GW170817 has also provided interesting constraints
on the tidal deformability of neutron stars [3,20,21] and
therefore on the properties of cold nuclear matter. The com-
bined GW-/EM-detection further allowed to tightly constrain
the propagation speed of gravitational waves [4] and to mea-
sure the Hubble parameter [2].

To connect multi-messenger observations to the physical
processes that govern the merger and post-merger phases,
one needs 3D numerical simulations that include the rele-
vant physics ingredients. Despite the fact that the first fully
relativistic simulations of a binary neutron star merger were
performed more than two decades ago [22], the simulation
of binary neutron star mergers has remained, until today, a
formidable computational physics challenge [23–26]. Part of
this is related to the multitude of involved physics ingredi-
ents, such as strong-field gravity, relativistic hydrodynamics,
the hot nuclear matter equation of state (EOS) and neutrino
transport. The other part is of purely numerical origin and
includes, for example, dealing with the very sharp transition
from high-density neutron star matter to vacuum, the accu-
rate evolution of a spacetime, the treatment of singularities
and horizons, or the huge range of length and time scales in
the long-term evolution of ejected matter.

Until very recently all Numerical Relativity codes that
solve the full set of Einstein equations used an Eulerian
hydrodynamics framework [27–30]. While these approaches
have delivered a wealth of precious insights into the
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dynamics and physics of compact binary mergers, they are
also not completely free of limitations. For example, follow-
ing the small amounts of merger ejecta, ∼ 1% of the binary
mass, is a serious challenge for such approaches. This is
because the advection of matter is not exact and its accuracy
depends on the numerical resolution (which usually deteri-
orates with the distance from the collision site). Moreover,
vacuum is usually treated as a low density atmosphere (but
still often of the density of a low mass white dwarf star)
which can impact the properties of the ejecta. Since the small
amounts of ejecta are responsible for the entire EM signa-
ture, we have invested a fair amount of effort into developing
a new methodology that is particularly well-suited for fol-
lowing such ejecta from a relativistic binary merger.

With a focus on ejecta properties and to increase the
methodological diversity, we have recently developed [31]
the first Numerical Relativity code that solves the full set
of Einstein equations on a computational mesh, but evolves
the fluid via Lagrangian particles according to a high-
accuracy version of the Smooth Particle Hydrodynamics
(SPH) method. This code has been developed from scratch
and it has delivered a number of results that are in excellent
agreement with established Eulerian codes, see [31]. Here we
describe the further development of our new code with a par-
ticular focus on simulating the first fully relativistic binary
neutron star (BNS) merger simulations with a Lagrangian
hydrodynamics code.

Our paper is structured as follows. Section 2 is dedi-
cated to the various new methodological elements of our
code SPHINCS_BSSN (“Smooth Particle Hydrodynamics
In Curved Spacetime using BSSN”). In Sect. 2.1.1 we sum-
marize the major hydrodynamics ingredients, in Sect. 2.1.2
we describe our new (fixed) mesh refinement approach to
evolve spacetime and in Sect. 2.1.3 we describe how the parti-
cles and the mesh interact with each other. Section 2.2 is ded-
icated to the detailed description of how we set up relativis-
tic binary systems with (almost) equal baryon-number SPH
particles based on initial configurations obtained with the
LORENE library [32–34], using the new codeSPHINCS_ID.
In Sect. 3 we present our first BNS simulation results, in
Sect. 2.1.4 we briefly describe the performance of the current
code version and in Sect. 4 we provide a concise summary
with an outlook on future work.

2 Methodology

Within SPHINCS_BSSN [31] we evolve the spacetime, like
the more common Eulerian approaches, on a mesh using
the BSSN formulation [35,36], but we evolve the fluid
via Lagrangian particles in a relativistic SPH framework,
see [37–40] for general reviews of the method. Note that
all previous SPH approaches used approximations to rela-

tivistic gravity, either Newtonian plus GW-emission back-
reaction forces [15,41,42], post-Newtonian hydrodynamics
approaches [43–45] that implemented the formalism devel-
oped in [46], used a fixed background metric [47,48] or the
conformal flatness approximation [49,50], originally sug-
gested in [51,52]. The latter approach obtains at each time
slice a static solution to the relativistic field equations and
therefore the spacetime is devoid of gravitational waves. For
this reason GW-radiation reaction accelerations have to be
added “by hand” in order to drive a binary system towards
coalescence.

SPHINCS_BSSN is to the best of our knowledge the first
Lagrangian hydrodynamics code that solves the full Einstein
field equations. The code has been documented in detail in
the original paper [31] and it has been extensively tested with
shock tubes, oscillating neutron stars in Cowling approxima-
tion, oscillating neutron stars in fully dynamical spacetimes
and with unstable neutron stars that either transit from an
unstable branch to a stable one or collapse into a black hole.
In all of these tests very good agreement with established
Eulerian approaches was found.

Here, we present simulations of the first neutron star merg-
ers with SPHINCS_BSSN and to this end we needed some
additional code enhancements. These are, first, the use of a
refined mesh (currently fixed in time; our original version
used a uniform Cartesian mesh), and second, related modifi-
cations to the particle-to-mesh mapping algorithm. The third
new element concerns the construction of initial configura-
tions using an adaptation of the recently developed “Artificial
Pressure Method” (APM) [31,53] to the case of binary sys-
tems. Based on binary solutions obtained with the library
LORENE [34], the APM represents the matter distribution
with optimally placed SPH particles of (nearly) equal bary-
onic mass. We focus here mostly on the new methodological
elements of SPHINCS_BSSN, for some technical details we
refer the reader to the original paper [31].

As conventions, we use G = c = 1, with G grav-
itational constant and c speed of light, metric signature
(−,+,+,+), greek indices run over 0, . . . , 3 and latin
indices over 1, . . . , 3. Contravariant spatial indices of a vec-
tor quantity w at particle a are denoted as wi

a and covariant
ones will be written as (wi )a .

2.1 Time evolution code

We describe the Lagrangian particle hydrodynamics part of
our evolution code in Sect. 2.1.1 and the spacetime evolution
in Sect. 2.1.2. A new algorithm to couple the particles and the
mesh is explained in Sect. 2.1.3. This new algorithm follows
the ideas of “Multidimensional Optimal Order Detection”
(MOOD) method [54].
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2.1.1 Hydrodynamics

The simulations are performed in an a priori chosen “com-
puting frame,” the line element and proper time are given by
ds2 = gμν dxμ dxν and dτ 2 = −ds2 and the line element
in a 3+1 split of spacetime reads

ds2 = −α2dt2 + γi j (dx
i + β i dt)(dx j + β j dt), (1)

where α is the lapse function, β i the shift vector and γi j
the spatial 3-metric. A particle’s proper time τ is related to
coordinate time t by Θdτ = dt , where a generalization of
the Lorentz factor

Θ ≡ 1
√−gμνvμvν

with vα = dxα

dt
(2)

is used. This relates to the four-velocity U ν , normalized to
UμUμ = −1, via

vμ = dxμ

dt
= dxμ

dτ

dτ

dt
= Uμ

Θ
= Uμ

U 0 . (3)

The equations of motion can be derived from the Lagrangian
L = − ∫

TμνUμUν
√−g dV , where g is the determinant of

the spacetime metric and we use the stress–energy tensor of
an ideal fluid

Tμν = (ρ + P)UμU ν + Pgμν. (4)

Here P is the fluid pressure and the local energy density (for
clarity including the speed of light) is given by

ρ = ρrest + uρrest

c2 = nm0c
2
(

1 + u

c2

)
. (5)

The specific internal energy (i.e., per rest mass) is abbreviated
as u, and n is the baryon number density as measured in
the rest frame of the fluid. The quantity m0 is the average
baryon mass, the exact value of which depends on the nuclear
composition of the matter. If the matter is constituted by free
protons of massmp and mass fraction X p, free neutrons (mn ,
Xn) and a distribution of nuclei where species i has a mass
fraction Xi , a proton number Zi , neutron number Ni , mass
number Ai = Zi + Ni and binding energies Bi , then the
average baryon mass is given by

m0 = X pmp + Xnmn +
∑

i

Xi
Zim p + Nimn − Bi

Ai
. (6)

In practice, however, the deviations of the exact value of m0

from the atomic mass unit (mu = 931.5 MeV) are small. For
example, for pure neutrons the deviation is below 0.9% and
for a strongly bound nucleus such as iron the deviation of the
average mass from mu would only be ≈ 0.2%. Therefore,
we use in the following m0 ≈ mu . We further use from now
on the convention that all energies are measured in units of
m0c2 (and then use again c = 1). This means practically,
that our pressure is measured in the rest mass energy units of
m0, that is, it is the physical pressure divided by m0, and thus

the Γ -law equation of state reads P = (Γ − 1)nu. Note that
the specific energy u is, with our conventions, dimensionless
and therefore it is not scaled.

Important choices for every numerical hydrodynamics
method are the fluid variables that are evolved in time. We use
a density variable that is very similar to what is used in Eule-
rian approaches [27–29,55], which, with our conventions,
reads

N = √−gΘ n. (7)

If we decide that each SPH particle a carries a fixed baryon
number νa , we can at each step of the evolution calculate the
density at the position of a particle a via a summation (rather
than by explicitly solving a continuity equation)

Na =
∑

b

νb W (| �ra − �rb|, ha), (8)

where the smoothing length ha characterizes the support size
of the SPH smoothing kernel W , see below. Here and in all
other SPH-summations the sum runs in principle over all
particles, but since the kernel has compact support, it contains
only a moderate number of particles (in our case exactly 300).
We refer to these contributing particles as “neighbours.” As
a side remark, we note that non-zero baryon numbers νb
and positive definite SPH kernels W ensure strictly positive
density values at particle positions which makes it safe to
divide by N in the equations below.

As momentum variable, we choose the canonical momen-
tum per baryon which reads (a detailed step-by-step deriva-
tion of the equations can be found in Sec. 4.2 of [38])

(Si )a = (ΘEvi )a, (9)

whereE = 1+u+P/n is the relativistic enthalpy per baryon.
This quantity evolves according to

d(Si )a
dt

=
(
d(Si )a
dt

)

hyd
+

(
d(Si )a
dt

)

met
(10)

with the hydrodynamic part being

(
d(Si )a
dt

)

hyd
= −

∑

b

νb

{
Pa
N 2
a
Da
i + Pb

N 2
b

Db
i

}

(11)

and the gravitational part
(
d(Si )a
dt

)

met
=

(√−g

2N
Tμν ∂gμν

∂xi

)

a
. (12)

In the hydrodynamic terms we have used the abbreviations

Da
i ≡ √−ga

∂Wab(ha)

∂xia
and Db

i ≡ √−gb
∂Wab(hb)

∂xia
.

(13)
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The canonical energy per baryon reads

ea =
(
Siv

i + 1 + u

Θ

)

a
=

(
ΘEviv

i + 1 + u

Θ

)

a
, (14)

and is evolved according to

dea
dt

=
(
dea
dt

)

hyd
+

(
dea
dt

)

met
, (15)

with
(
dea
dt

)

hyd
= −

∑

b

νb

{
Pa
N 2
a

vib Da
i + Pb

N 2
b

via Db
i

}

(16)

and
(
dea
dt

)

met
= −

(√−g

2N
Tμν ∂gμν

∂t

)

a
. (17)

Note that the physical gradients in the hydrodynamic evolu-
tion equations are numerically expressed in the above SPH
equations (11) and (16) by terms involving gradients of the
SPH smoothing kernel W , see Eq. (13). This is the most fre-
quently followed strategy in SPH. It is, however, possible
to use more accurate gradient approximations that involve
the inversion of a 3 × 3-matrix. This gradient version was
first used in an astrophysical context by [56] and it possesses
the same anti-symmetry with respect to exchanging particle
identities as the standard kernel gradient approach, which
makes it possible to ensure numerical conservation exactly
in a straightforward way; see, for example, Sec. 2.3 in [38]
for a detailed discussion of conservation in SPH. This alter-
native gradient approximation has been extensively tested in
[40] and [53] and was found to very substantially increase
the overall accuracy of SPH.1 Following [40], one can simply
replace the quantity Da

i in Eq. (13) by

D̃a
i = √−ga

3∑

d=1

Cid(�ra, ha) (�rb − �ra)d Wab(ha), (18)

and correspondingly for D̃b
i , where the “correction matrix”

(accounting for the local particle distribution) is given by

Cki (�r , h) =
(

∑

b

νb

Nb
(�rb − �r)k(�rb − �r)iW (|�r − �rb|, h)

)−1

.

(19)

For the simulations in this paper we use D̃a
i and D̃b

i (instead
of Da

i and Db
i ) in Eqs. (11) and (16).

With our choice of variables, the SPH equations retain
the “look-and-feel” of Newtonian SPH, although the vari-
ables have a different interpretation. As a corollary of this
choice, we have to recover the physical variables n, u, vi , P

1 A numerical gradient accuracy measurement showed an improvement
of 10 orders of magnitude when using the matrix inversion gradients,
see Fig. 1 in [40].

from the numerically evolved variables N , Si , e at every step.
This “recovery step” is done in a similar way as in Eulerian
approaches, the detailed procedure that we use is described
in Sec. 2.2.4 of [31].

We use a modern artificial viscosity approach to handle
shocks, where—following the original suggestion of von
Neumann and Richtmyer [57]—the physical pressure P is
augmented by a viscous pressure contribution Q. Here we
briefly summarize the main ideas, but we refer to [31],
Sec. 2.2.3, for the explicit expressions. For the form of the vis-
cous pressure Q we follow [48], but we make two important
changes. First, instead of using “jumps” in quantities between
particles (i.e., differences of quantities at particle positions)
we perform a slope-limited reconstruction of these terms to
the midpoint between the particles and use the difference of
reconstructed values from both sides in the artificial pres-
sure. This reconstruction in artificial viscosity terms is a new
element in SPH, but it has been shown to be very beneficial
in Newtonian hydrodynamics [53,58]. The second change
concerns the additional time-dependence of the amount of
dissipation applied. The expression for the viscous pressure
Q contains a parameter which needs to be of order unity
for dealing with shocks. This parameter can be made time-
dependent [40,59–61] so that it has a close to vanishing value
where it is not needed. In steering this dissipation parameter,
we follow the idea of [62] to monitor the entropy evolution of
each particle. Since we are simulating an ideal fluid, the evo-
lution should conserve a particle’s entropy perfectly unless it
encounters a shock. Since, in our SPH version, entropy con-
servation is not actively enforced, we can use it to monitor
the quality of the flow. If a particle either enters a shock or
becomes “noisy” for numerical reasons its entropy will not be
conserved exactly and we use this non-conservation to steer
the exact amount of dissipation that needs to be applied. For
details of the method we refer to the original paper [62] and
to [31] for the SPHINCS_BSSN-specific implementation.

The SPH equations require a smoothing kernel function.
We have implemented a large variety of different SPH ker-
nel functions, but here we employ exclusively the Wendland
C6-smooth kernel [63] that we have also used in our origi-
nal paper [31]. This kernel has provided excellent results in
extensive test series [40,53]. This kernel needs, however, a
large particle number in its support for good estimates of den-
sities and gradients and we therefore assign to each particle
a smoothing length so that exactly 300 particles contribute in
the density estimate, Eq. (8). This number has turned out to
be a good compromise between accuracy and computational
effort and it is enforced exactly as a further measure the keep
the numerical noise very low. In practice, we achieve this
via a very fast “recursive coordinate bisection” tree-structure
[64] that we use to efficiently search for neighbour particles.
For further implementation details concerning the smoothing
length adaptation, we refer to [53].
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2.1.2 Spacetime evolution on a structured mesh

We have implemented two frequently used variants of
the BSSN equations in SPHINCS_BSSN, the “Φ-method”
[35,36] and the “W -method” [65,66]. The corresponding
code was extracted from the McLachlan thorn [67] in the
Einstein Toolkit [68,69], and we built our own wrappers to
call all the needed functions. The complete set of BSSN equa-
tions is rather lengthy and will therefore not be reproduced
here. It can be found in Numerical Relativity text books [27–
29,55,70] and also in the original SPHINCS_BSSN paper
[31]. For all the tests presented later in the paper we use the
“Φ-method.” We expect our simulations to be insensitive to
this choice, as the two methods differ mostly in their treat-
ment of black hole punctures. Hence the simulations could
just as well have been done using the “W -method”.

Our original implementation [31] evolved the spacetime
on a uniform Cartesian grid, but for the complex geometry
of a neutron star merger a (vertex-centered) fixed mesh re-
finement scheme is much more efficient. In this scheme, the
first refinement level consists of a coarse grid whose outer
boundaries represent the physical boundaries of the space-
time simulation. Each next, finer level has the same number
of grid points, but the boundaries placed at only half of the
previous level, and consequently this refinement level has
twice the resolution. Any number of refinement levels can be
specified.

As we are using finite differences (FD) to calculate the
spatial derivatives for the spacetime evolution, we need to
surround the finer grids with a number of ghost grid points
that are filled with values from the previous, coarser grid via
an interpolation (“prolongation”) operator. This is illustrated
for two levels of refinement in Fig. 1. When prolongating
in 3D, the fine grid points can be divided into four classes
depending on where they are located on a cube defined by
eight coarse grid points: (1) at the corners (vertices), (2) at
the center of edges, (3) at the center of faces and (4) at the
center of the cube. Hence we do not need a fully general inter-
polation scheme and it is sufficient, and also more efficient,
to implement only a small subset specialized for those four
specific cases. In the current code version, we have linear
and cubic polynomial interpolation implemented. For linear
interpolation, the interpolated value is simply the value of
the coinciding coarse grid point for the corner case. When
the fine grid point is located on the edge of the cube, it is
exactly between two coarse grid points and linear interpola-
tion reduces to the average of those two coarse grid points.
Similarly when the fine grid point is located on the face or
center of a cube, it is always located at the exact center
of four (face) or eight (center) coarse grid points and lin-
ear interpolation reduces to just the average of those coarse
grid points. For the edge-centered fine grid points (for sim-
plicity we only write the x-direction here) the cubic inter-

Fig. 1 An illustration of 2 levels of grid refinement used in the code.
The coarse grid points are shown as blue squares, the fine grid points
as green ones and the ghost points (needed for the finite difference
operators near the boundary of the fine grid) are marked as red crosses

polation stencil consists of four coarse grid points located
at xi − 3δx , xi − δx , xi + δx and xi + 3δx with values
�fe = ( fi−3, fi−1, fi+1, fi+3), where δx is the fine grid spac-
ing. In this case, the unique interpolating cubic polynomial
corresponds to weights �we = (−1/16, 9/16, 9/16,−1/16)

so that the interpolated value at xi is fi = �we · �fe. The
interpolating operators in the y- and z-directions are simi-
larly defined. For interpolation of face-centered points, the
stencil, �ff , will consist of 4 × 4 coarse grid points that we
flatten into a row vector of length 16 and the weights are
simply the vectorization of the outer product of the weights
for the edge interpolation (producing a column vector of
length 16) �wf = vec( �we

⊗ �we) and the interpolated value
is fi = �wf · �ff . In practice the flattening is done in the x-
direction first, but the order does not matter since the outer
product of weights for the edge interpolation is symmetric.

Finally, for interpolation of the cube centered points, the
stencil, �fc, will consist of 4×4×4 coarse grid points flattened
into a row vector of length 64 and, again, the weights are sim-
ply the vectorization of the outer product of the weights for
the edge interpolation �wc = vec( �we

⊗ �we
⊗ �we) (this time

producing a column vector of length 64) and the interpolated
value is fi = �wc · �fc.

During the evolution, we update the values in the coarse
grid points wherever possible with values from the fine (more
accurate) grid (“restriction”). As coarse grid points that need
restriction always coincide with a fine grid point, restriction
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simply consists of copying the value from the fine grid point
to the coarse grid point.

We integrate our coupled system of hydrodynamics and
BSSN equations via a 3rd order Total Variation Diminishing
(TVD) Runge–Kutta integrator [71]. During each substep,
the right-hand-sides (RHS) for the BSSN variables are cal-
culated using finite differences (FD) where possible, that is,
everywhere except at the ghost points (taking into account
the size of the FD stencil) on all refinement levels. The state
vector (consisting of all evolved variables on all possible
grid points) is then evolved forward in time on all refinement
levels where the RHS has been computed. After that, the
state vector is updated in the ghost zones on each fine grid,
via prolongation from the next-coarser grid, in a loop over
refinement levels starting from the coarsest level. Finally, the
solution on the coarser grids are updated via restriction from
the finer grids in a second loop over refinement levels starting
from the finest refinement level.

When interpolating metric information from the grid to the
particles, we first find out which refinement level to inter-
polate from. Obviously, we want to use the finest possible
refinement level in order to get the most accurate metric
information on the particles. We therefore start on the finest
refinement level and check whether the considered particle is
located inside this grid. If it is, we perform the interpolation
the same way as described in [31]. If it is not, we move on
to the next refinement level. We repeat until the interpolation
can be performed or we reach the coarsest refinement level.
Handling particles that leave the coarsest grid is not neces-
sary for the cases presented here, but it will be implemented
for future studies of merger ejecta.

2.1.3 Particle–mesh coupling: A MOOD approach

A crucial step in our approach is the mapping of Tμν , origi-
nally known at the particle positions, to the mesh (“P2M-
step”) and the mapping of the metric acceleration terms
(dSi/dt)met and (de/dt)met from the mesh to the particle
positions (“M2P-step”), see Eqs. (12) and (17). In this paper,
we provide a further refinement of the P2M-step, see below,
whereas the M2P-step is the same as in our original paper
[31].

We map a quantity A known at particle positions �rp =
(xp, yp, z p) to the grid point �rg via

Ag = A(�rg) =
∑

p Vp Ap Ψg(�rp)
∑

p Vp Ψg(�rp) , (20)

where Vp = νp/Np is a measure of the particle volume. We
construct the functions Ψ as tensor products of 1D shape
functions

Ψg(�rp) = Φ

( |xp − xg|
l p

)
Φ

( |yp − yg|
l p

)
Φ

( |z p − zg|
l p

)
,

(21)

where l p = V 1/3
p . After extensive experimenting, we had

settled in the original paper on a hierarchy of shape functions
that have been developed in the context of vortex methods
[72].

The interpolation quality of the shape functions is closely
related to the order with which they fulfill the so-called
moment conditions [72]
∑

q

xα
q Φ(xq − x) = xα for 0 ≤ |α| ≤ m − 1, (22)

for points located at xq . This means that the interpolation is
exact for polynomials of a degree less than or equal to m − 1
and such an interpolation is said to be “of order m” [72].
Good interpolation quality, however, does not automatically
guarantee the smoothness of the shape functions, understood
as the number of continuous derivatives. In fact, a number
of shape functions that are commonly used, e.g. in particle-
mesh methods for plasmas, are of low smoothness only and
this can introduce a fair amount of noise in simulations. Being
of higher order m, however, comes at the price of a larger
stencil and therefore at some computational expense. Posi-
tive definite functions can only be maximally of order two
[73], for higher orders the shape functions need to contain
negative parts which can become problematic when the par-
ticle distribution within the kernel is far from being isotropic.
A particularly disastrous case is encountering a sharp (e.g.
stellar) surface. Here, violent Gibbs-phenomenon like oscil-
lations can occur that can lead to unphysical results. For this
reason we have implemented a hierarchy of kernels, so that
the highest order shape functions can be used when it is safe,
and less accurate, but more robust functions are used when
it is not. How this is decided and implemented is described
below.

Last, but not least, another characteristics of shape func-
tions is their highest involved polynomial degree (“degree”).2

In this work we use smooth shape functions of high order that
were constructed by Cottet et al. [74]. We follow their nota-
tion of using Λp,r for a function that is of order p + 1 (i.e.,
reproduces polynomials up to order p) and of smoothness
Cr . Our chosen shape functions are the following:

(i) the Λ4,4-kernel (order 5, regularity C4 and degree 9)
[74]

2 We mention the degree here only for completeness.
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Λ4,4(|x |)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 5

4
|x |2 + 1

4
|x |4 − 100

3
|x |5 + 455

4
|x |6

− 295

2
|x |7 + 345

4
|x |8 − 115

6
|x |9, |x | < 1,

−199 + 5485

4
|x | − 32975

8
|x |2

+ 28425

4
|x |3 − 61953

8
|x |4 + 33175

6
|x |5

− 20685

8
|x |6 + 3055

4
|x |7 − 1035

8
|x |8

+ 115

12
|x |9, 1 ≤ |x | < 2,

5913 − 89235

4
|x | + 297585

8
|x |2

− 143895

4
|x |3 + 177871

8
|x |4 − 54641

6
|x |5

+ 19775

8
|x |6 − 1715

4
|x |7 + 345

8
|x |8

− 23

12
|x |9, 2 ≤ |x | < 3,

0, else.
(23)

(ii) Λ2,2 kernel (order 3, smoothness C2, degree 5 [74]

Λ2,2(|x |) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − |x |2 − 9

2
|x |3 + 15

2
|x |4

−3|x |5, |x | < 1,

−4 + 18|x | − 29|x |2

+43

2
|x |3 − 15

2
|x |4 + |x |5, 1 ≤ |x | < 2,

0, else.
(24)

(iii) and, finally, the M4 kernel (order 2, smoothness C2,
degree 3) [72]

M4(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

6

(
2 − |x |)3 − 2

3

(
1 − |x |)3

, |x | < 1,

1

6

(
2 − |x |)3

, 1 ≤ |x | < 2,

0, else.
(25)

Note that Λ4,4 and Λ2,2 are, differently from usual SPH-
kernels, not positive definite. The supports of these kernels
are sketched (for a 2D example) in Fig. 2. We apply a hierar-
chy of these kernels starting with Λ4,4 followed by Λ2,2 and
we use the safest (positive definite, but least accurate) kernel
M4 as a “parachute.”

In the original paper we applied a heuristic method based
on the particle content of the neighbour cells to decide which
kernel to use. Instead of this, we use here a Multidimensional
Optimal Order Detection (MOOD) method. The main idea is
to use a “repeat-until-valid” approach, that is, to use the most
accurate kernel that does not lead to any artifacts. To detect
artifacts we check whether the resulting grid values of T g

μν

are outside of the range of the values of the contributing par-
ticles, see below. This strategy is actually similar to MOOD

Fig. 2 2D sketch of the support sizes for the different kernels that are
used in the MOOD-mapping for a specific grid point (red square). The
green square indicates the support of the Λ4,4-kernel, blue refers to Λ2,2
and red to the “parachute” kernel M4

approaches that are used in hydrodynamics; see, for exam-
ple, [54]. Specifically, we proceed according to the following
steps:

(i) Start with the highest order kernelΛ4,4 for the mapping.
(ii) Check whether the Λ4,4-result is acceptable: if all com-

ponents of T g
μν at a given grid point are inside of the

bracket [Tmin
μν , Tmax

μν ], where the maximum and mini-
mum values refer to the particles inside the Λ4,4 sup-
port, we accept the Λ4,4-mapping. Otherwise, we con-
sider the mapping as questionable and proceed to the
next kernel, Λ2,2.3

(iii) Check whether the Λ2,2-result is acceptable: as in the
previous step, we check whether the grid-result is out-
side of the bracket given by the particles in the support
of Λ2,2. If it is not, the Λ2,2-mapping is accepted.

(iv) If also the Λ2,2-result is not acceptable, we resort
to our “parachute” solution, the positive definite M4-
mapping.

Efficient implementation via a hash grid. The tasks involved
in the P2M-step are (a) identify all particles that contribute
to any given grid point, see Eq. (20), that is, those particles
that are within the (tensor-product) support of the grid point’s
kernel, (b) loop over all grid points and add the particle Tμν-
contributions.

We have implemented an efficient P2M-step that involves
a hash grid at each refinement level n. The mesh size of our
hash grid Δ(n) is chosen to be twice the mesh size of the
gravity grid, δ(n), see upper part of Fig. 3 for an illustrating
sketch in 2D. The reason why we chose a factor of two is that

3 In practice, all three kernel options are calculated in the same loop, so
that no re-mapping is needed, we only need to choose the highest-order,
but still valid option.
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Fig. 3 For an efficient mapping of the particle-Tμν to the gravity grid
on refinement level n (on which the spacetime is evolved; grid spacing
δ(n); thin lines), we employ an additional hash grid with twice the grid-
spacing (Δ(n); thick lines). This is illustrated for the 2D-case in the upper
part of the figure. The actual particle data needed for the mapping is
stored in a cache-friendly linear array, see the lower part of the figure
and the main text for more details

when updating the stress–energy tensor at a given gravity grid
point, we need to collect the contributing particles from the
hash grid. We do not want to have to check too many hash grid
cells, so the hash grid cells should be larger than the gravity
grid cells. On the other hand, they should not be too large,
since then we would loop over many particles that in the end
do not contribute to the grid point. A factor of two fulfils these
criteria and makes the involved details (e.g., getting the hash
grid indices from the gravity grid indices) very simple.

For performance reasons we store the data needed in the
P2M-mapping process in a simple linear cache-array. The
hash grid is only “virtual” in the sense that its structure is
only needed to identify particles belonging to the same hash
grid cell, but the data is actually stored in the linear cache-
array. We first identify the 3D indices (i, j, k) of the hash
grid cell that contains the particle. These indices are then
translated into a single index in our linear cache-array via
l lin = i + ( j − 1)nx + (k − 1)nxny , where nx , ny, nz are the
numbers of hash grid cells in the x-, y- and z-direction on the
current mesh refinement level. The index l lin labels a segment
in the cache-array that contains all the data associated with
the particle in hash grid cell (i, j, k) that is needed for the
mapping. Since all data is stored in exactly the order in which
it is needed, this approach guarantees virtually perfect cache
efficiency.
The particles are filled into this hash grid as follows:

– In one first linear loop over the particles, each particle
determines in which hash cell (i, j, k) it is located. Each
of the hash cells keeps track of how many particles it
contains.

– After this loop, we can quickly count the number of
entries, so that each (i, j, k) hash cell knows how many
entries there are in the cache-array corresponding to the
previous cells. In other words, after this (very fast) count-
ing step, each hash grid cell knows the starting and fin-
ishing index that define the cache-array section storing
all the properties of the particles contained in this (i, j, k)
hash cell. Hence, all subsequent summations can be per-
formed very efficiently.

– In another linear loop, those particle properties that
are needed during the actual mapping are filled into
the 1D array in exactly the same order in which
they will be addressed during the mapping step (posi-
tion, particle volume, stress–energy tensor components):
(x, y, z, V, T00, T0x , ..., Tzz). The resulting cache-array
is sketched in the bottom part of Fig. 3. This cache-array
approach has the advantage that the array has a fixed max-
imum length of 14 times the SPH particle number. We
apply this mapping sequentially for each grid refinement
level. If all particles are contained in the grid of a given
level, the cache-array is completely filled, otherwise it is
shorter since it does not contain entries from the particles
outside the grid. Most importantly, the cache-array has
to be allocated only once during the simulation, its size
is known at compile time, and it can be used for every
refinement level as a memory-efficient, “read-only” data
structure in the P2M-step.

– The actual contribution-loop for each grid cell is then per-
formed by checking the particle content of each poten-
tially contributing hash cell and, if applicable, the particle
contribution is added according to Eq. (20).

Compared to our initial, straightforward implementation, the
above described cache-efficient P2M-step is more than 20
times faster for the simulations shown in this paper.

2.1.4 Code performance

The code is written in modern Fortran, except for the C++
routines which we extracted fromMcLachlan from the Ein-
stein Toolkit in order to be able to evolve the spacetime.
Currently the code is parallelized for shared memory archi-
tectures using OpenMP directives and pragmas. As the time
spent in different parts of the code depends on the particle
distribution, it is impossible to uniquely quantify the perfor-
mance, but based on the simulations presented here, we can
give some representative numbers.

In Table 1 we give a breakdown of how the time is spent
in various important parts of the code for representative low,
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Table 1 Breakdown of the time spent in different parts of the code. The
different parts of the code are, in order: computation of the right-hand-
sides (RHSs) in the hydro (SPH) and BSSN equations, mapping of the
stress–energy tensor from the particles to the grid (P2M), mapping of
the metric from the grid to the particles (M2P), restriction operators,

prolongation operators, and finally the state vector update (see Sect. 2.1
for more details). Note that not all parts of the code are listed, so num-
bers do not add up to 100%. The symbols LR, MR and HR refer to low,
medium and high resolution, see Sect. 3.1

Resolution Hydro RHS (%) BSSN RHS (%) P2M (%) M2P (%) Restriction (%) Prolongation (%) Update state vector (%)

LR 29.5 33.6 12.1 1.8 1.4 5.8 8.7

MR 31.3 31.9 17.2 1.7 0.6 3.5 6.5

HR 35.9 23.1 14.1 1.7 0.6 3.6 7.1

medium and high resolution runs. As can be seen, the major
part of the time is spent in the hydrodynamics and spacetime
evolution routines with additional significant time spent in
the mapping of the stress–energy tensor to the grid. Run-
ning the code on compute nodes equipped with 128 AMD
EPYC 7763 processors it initially takes 1.3, 3.2, 7.8 minutes
to evolve one code unit of time at low, medium and high reso-
lution respectively. This is maintained for the duration of the
inspiral but as smaller time steps are required for hydrody-
namic stability during and after the merger, the times required
to evolve 1 code unit of time at the end are 2.2, 5.1 and 11.3
minutes at low, medium and high resolution, respectively.
The memory usage for one of the medium resolution runs
presented here is about 30 GB.
The OpenMP scaling is decent, but can certainly be improved.
Scaling experiments show a speedup of about 43 on 128
cores.

2.2 Initial data

A crucial ingredient for every relativistic simulation are ini-
tial data (ID) that both satisfy the constraint equations and
accurately describe the physical system of interest. In the fol-
lowing, we describe how we compute such ID for BNS, that
we subsequently evolve with SPHINCS_BSSN.

2.2.1 Quasi-equilibrium BNS with LORENE

The library LORENE computes ID for relativistic BNS under
the assumption of “quasi-equilibrium,” see [32] and [75,
Sec. 9.4] for more details. This assumption states that the
radial velocity component of the stars is negligibly small
compared to the azimuthal one and the orbital evolution is
essentially realized via a sequence of circular orbits. Equiv-
alently, one assumes that a helical Killing vector field exists.
This assumption is reasonably well justified since at a sepa-
ration of ∼ 50 km, the time derivative of the orbital period (at
the second post-Newtonian level) is about 2% of the period
itself [32].

LORENE allows to compute ID for corotational and irrota-
tional binaries. Since any neutron star viscosity is too small

to spin up the neutron stars during the rapid final inspiral
stages to corotation [32,76,77], the irrotational case is gen-
erally considered more realistic, but mergers with rapidly
spinning neutron stars can lead to interesting effects and the
corresponding simulations are now feasible [78–80]. In this
paper, we restrict ourselves to irrotational binaries. Another
assumption that is made in LORENE is the conformal flatness
of the spatial metric γi j . This is a commonly made approxi-
mation which substantially simplifies the solving of the con-
straint equations.

LORENE provides spectral solutions that can be evaluated
at any point. By default, the code BinNS in LORENE allows
to export the LORENE ID to a Cartesian grid. However, this
is not sufficient for our purposes, since we need to evalu-
ate the solution not only on our refined mesh, but also at
the positions of the SPH particles. Hence, we have extended
BinNS to evaluate the spectral data at any given spacetime
point. We have further linked the relevant functions inBinNS
to our own code that sets up the ID for SPHINCS_BSSN
and is called SPHINCS_ID. Since in the original version
of LORENE, BinNS was able to handle only BNS with sin-
gle polytropic EOS, we extended it to read and export also
configurations with piecewise polytropic and tabulated EOS
such as those available in the CompOSE database [81]. In
other words, all the needed information that LORENE pro-
vides about the BNS is accessible within SPHINCS_ID.
Despite having these capabilities, we restrict ourselves to
purely polytropic equations of state in this first study.

2.2.2 The “Artificial Pressure Method” for binary systems

SPH initial conditions are a delicate subject. The particle dis-
tribution has to, of course, accurately represent the physical
system under consideration (e.g., densities and velocities),
but there are additional requirements concerning how the par-
ticles are actually distributed, see, for example, [40,82,83].
The particle arrangement should be stable, so that in an
equilibrium situation, the particles ideally should not move
at all. Many straightforward particle arrangements (such as
cubic lattices), however, are not stable and particles quickly
start to move if set up in this way. The reason is a “self-
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regularization” mechanism built into SPH that tries to locally
optimize the particle distribution (see, e.g., Sec. 3.2.3 in [84]
for more details). To make things even harder, the particles
should be distributed very regularly, but not in configura-
tions with pronounced symmetries, since the latter can lead
to artifacts, for example if a shock propagates along such a
symmetry direction.4 Last, but not least, the SPH particles
should ideally have practically the same masses/baryon num-
bers, since for large differences numerical noise (i.e., small
scale fluctuations in the particle velocities) occurs that can
have a negative impact on the interpolation accuracy.

All of these issues are addressed by the “Artificial Pres-
sure Method” (APM) to optimally place SPH particles. The
method has been suggested in a Newtonian context [53] and
was recently generalized to the case of general relativistic
neutron stars [31]. In this work, we go one step further and
apply the APM in the construction of relativistic binary sys-
tems.

The main idea of the APM is to start from a distribution
of equal-mass particles and let the particles find the positions
in which they minimize their density error with respect to a
desired density profile. In other words, each particle has to
measure in which direction the density error is decreasing
and move accordingly.

In practice, this is achieved by assigning to each particle a
an “artificial pressure,” πa , that is based on the discrepancy
between actual, measured SPH-density, ρa , and the desired
profile value at the position of the particle, ρP (�ra):

πa = max

(
1 + ρa − ρP (�ra)

ρP (�ra) , 0.1

)
(26)

where the max-function has been used to avoid negative pres-
sures. For more details of the method we refer to the original
paper [53]. This pressure is then used in a position update
formula that is modelled after a fluid momentum equation
(see [53] for the derivation):

δ�raAPM = −1

2
h2
aν0

∑

b

πa + πb

Nb
∇aWab(ha), (27)

where the quantities have the same meaning as in the fluid
section, Sect. 2.1.1, and ν0 is the baryon number desired
for each particle (equal to the total baryon mass divided by
the chosen particle number). Iterations with such position
updates drive the particles towards positions where they min-
imize their density error. It does, however, not necessarily
guarantee that the particle distribution is locally regular and
provides a good interpolation accuracy (for corresponding
criteria see, e.g., Sec. 2.1 in [84]). To achieve this, we add a
small additional “regularization term” [85]5

4 See, e.g., Fig. 17 in [40] for an illustration.

δ�ra reg = h4
a

∑

b

Wab(ha)êab, (28)

where êab = (�ra − �rb)/|�ra − �rb|, so that the final position
update reads

�ra → �ra + (1 − ζ )δ�raAPM + ζ δ�ra reg. (29)

The parameter ζ determines how important the local regu-
larity requirement on the particle distribution is compared to
the accuracy with which the desired density profile is repro-
duced. Since our main emphasis is on reproducing the desired
density, the value of 1 − ζ should not be too much below
unity, but the exact parameter value is only of minor impor-
tance. We find good results for ζ = 0.05, which we use
throughout this paper. We start the APM iteration with an
initial particle distribution obtained by first placing particles
on spherical surfaces, as described in Appendix B.1, and then
slightly moving them away from the surfaces by a small ran-
dom displacement. We noticed that the use of such random
displacements led to better results of the APM procedure.

A crucial ingredient of the method is the placement of
the “boundary” or “ghost” particles. These serve as a shield
around the star to prevent the real particles from exiting the
surface of the star during the APM iteration. The artificial
pressure that we assign to these ghost particles is a few times
higher (we use three times) than the maximum value inside
the star. This is to ensure that particles that approach the
stellar surface from the inside, see an increasing pressure
gradient which keeps them inside the stellar surface. Since
the stars in a close binary system are tidally deformed, the
ghost particles have to be placed in a way that allows the
real particles to model the surface geometry, see Appendix
B.2 for more details on how this is achieved. Once the APM
iteration has converged, the ghost particles are discarded.
Figure 4 shows the ghost particles (red) placed around the
real particles (black) on spherical surfaces before and after
applying the APM, for one star of one of our simulations (run
LR_2x1.3_G2.00, see Table 2).

After each step of the APM iteration, the particle positions
are reset so that the center of mass of the particle distribution
coincides (within machine precision) with the stellar center
of mass given by LORENE. In addition, at each step of the
APM iteration, the particle positions are reflected about the
xy plane, to impose exact equatorial-plane symmetry.

Once the APM iteration with particles of equal baryon
number, ν0, has converged, we perform one single, final cor-
rection of the individual particle baryon numbers, νa . To this

5 Note the typo in our original SPHINCS_BSSN paper [31]: in
Eq. (100) the summation symbol is missing.
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Fig. 4 Shown are the particle distributions before (a) and after (b) the
APM iteration for one neutron star of our run LR_2x1.3_G2.00,
see Table 2. The physical SPH particles are shown in black and

the ghost/boundary particles (discarded after the APM iteration) are
shown in red. The plots are cuts through the xz and xy plane, within
y ∈ [−1.18, 1.18] km and z ∈ [−1.18, 1.18] km
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Fig. 5 Typical relative density errors (i.e., relative difference between
the SPH kernel density estimate at particle positions and the LORENE
density) after the APM iteration on the xz and xy planes (the con-
tours are computed using particles in y ∈ [−0.44, 0.44] km and

z ∈ [−0.44, 0.44] km, respectively). The same star as in Fig. 4
(LR_2x1.3_G2.00, see Table 2) is shown. Typical density errors
in the bulk of the star are below 1%, whereas in the hard-to-resolve
surface layers, errors can reach 10%

end we first calculate the SPH particle number density,6

Ña =
∑

b

Wab(ha), (30)

and then assign to each particle the “desired” baryon number

νdes
a = Na

Ña
, (31)

where Na is the density according to LORENE. The baryon
number assigned to each particle is a “capped” version of νdes

a
in (31), so that νa remains in the interval [√2νo, νo/

√
2] and

the baryon number ratio is ≤ 2. This correction step changes
the baryon masses only moderately, but improves the density
estimate in the outer layers by roughly an order of magnitude.

This method allows to obtain a low baryon number ratio on
each star, separately. In order to have a low baryon number
ratio overall, that is, across both stars, we set the particle
numbers within each star to have a similar ratio as the binary
mass ratio. For more details, see Appendix B.1.

Figure 5 shows contour plots of the relative difference
between the LORENE mass density and the SPH kernel esti-
mate of the mass density performed on the final particle dis-
tribution (including the one update on the baryon number).
In the bulk of the stars the errors are lower than ∼ 1%. Only
in the surface layers are the errors larger. Here, the very steep
physical density gradients are difficult to capture at finite res-
olution with nearly equal SPH particle masses. These layers
will adjust slightly at the beginning of a simulation, trying to
find a true numerical equilibrium.

As the last comment, we note that, for equal-mass BNS,
we use the APM to place particles within one star only. The

6 This is just the SPH-density formula, (8), but weighing each particle
with unity rather than with its baryon number.

particles in the second star are obtained by simply reflecting
those on the first star with respect to the yz plane. In this way,
the symmetry of the system is preserved also at the level of
the particle distribution.

2.2.3 Initial values for the SPH particles

Once the final particle locations have been found, we need
to assign particle properties according to the
LORENE solution. The computing frame fluid velocity in
Eq. (3) is related to the fluid velocity with respect to the
Eulerian observer viEul (provided by LORENE) by

v0 = 1, vi = α viEul − β i . (32)

The generalized Lorentz factor Θ can then be computed from
vi using Eq. (2). The baryon number per particle ν is deter-
mined as described in Appendix B.1 and Sect. 2.2.2. The
smoothing length h of each particle is computed so that each
particle has exactly 300 contributing neighbours in the den-
sity estimate, as in SPHINCS_BSSN. Then, knowing ν and
h, the density variable N can be computed using Eq. (8), and
the local rest frame baryon number density n is computed
inverting Eq. (7),

n = N√−g Θ
. (33)

The local rest frame baryon mass density is then

ρrest = n m0, (34)

where m0 is the average baryon mass. The specific internal
energy u and the pressure P are then computed using the
EOS, starting from ρrest.
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Table 2 Parameters of the performed simulations. The masses are grav-
itational masses in solar units. Γ is the polytropic exponent and K the
corresponding constant in code units. The initial orbital angular veloc-
ity Ω0 is in units of rad/s. The quantity hmin is the minimal smoothing
length during the evolution, Δmin

g is the grid resolution at the finest

refinement level, and they are both given in m. ngrid is the number
of grid points on each refinement level. All simulations start from a
coordinate separation of a0 = 30.4748 (corresponding to 45 km) and
use 7 levels of grid refinement, with the outermost refinement level’s
boundary at ≈ 2268 km

Masses [M�] Γ K Ω0 [rad/s] # particles hmin [m] ngrid Δmin
g [m] Name

2 × 1.3 2.00 100 1774 5 × 105 40 1213 590 LR_2x1.3_G2.00

2 × 1.3 2.00 100 1774 1 × 106 183 1433 500 MR_2x1.3_G2.00

2 × 1.3 2.00 100 1774 2 × 106 165 1933 370 HR_2x1.3_G2.00

2 × 1.3 2.75 3 × 104 1772 5 × 105 338 1213 590 LR_2x1.3_G2.75

2 × 1.3 2.75 3 × 104 1772 1 × 106 274 1433 500 MR_2x1.3_G2.75

2 × 1.3 2.75 3 × 104 1772 2 × 106 224 1933 370 HR_2x1.3_G2.75

2 × 1.4 2.00 100 1827 5 × 105 53 1213 590 LR_2x1.4_G2.00

2 × 1.4 2.00 100 1827 1 × 106 70 1433 500 MR_2x1.4_G2.00

2 × 1.4 2.00 100 1827 2 × 106 25 1933 370 HR_2x1.4_G2.00

2 × 1.4 2.75 3 × 104 1823 5 × 105 307 1213 590 LR_2x1.4_G2.75

2 × 1.4 2.75 3 × 104 1823 1 × 106 245 1433 500 MR_2x1.4_G2.75

2 × 1.4 2.75 3 × 104 1823 2 × 106 192 1933 370 HR_2x1.4_G2.75

2.2.4 BSSN initial data on the refined mesh

The ID for the BSSN variables is computed straightforwardly
by first importing the LORENE ID for the standard 3+1, or
ADM, variables to each level of the mesh refinement hier-
archy, and then computing the BSSN variables from them
using a routine extracted from the McLachlan thorn from
the Einstein Toolkit [69].7 For the sake of clarity, we note
that, for the runs shown in this paper, we use the initial val-
ues for the lapse function and the shift vector that LORENE
provides.

3 Simulations

In our original paper, we had focused on test cases where the
outcomes are accurately known. These included shock tubes
(exact result known), oscillating neutron stars in Cowling
approximation and in dynamically evolved space times (in
both cases oscillation frequencies are accurately known) and,
finally, the evolution of an unstable neutron star that, depend-
ing on small initial perturbations, either transitions into a sta-
ble configuration or collapses and forms a black hole (results
known from independent numerical approaches, e.g., [87–
89]). In all of these benchmarks our results were in excellent
agreement with established results.

Here, we want to take the next step towards more astro-
physically motivated questions. In particular, we want to

7 As is common practice, we refer to the Arnowitt–Deser–Misner for-
malism [86] compactly as “ADM.”

address for the first time the merger of two neutron stars
with SPHINCS_BSSN.

3.1 Initial Setup

In this first study, we simulate two binary systems with 2×1.3
M� and 2 × 1.4 M�, each time with a soft (Γ = 2.00,
K = 100 in code units; MTOV

max ≈ 1.64 M�) and a stiff
(Γ = 2.75, K = 30 000 in code units; MTOV

max ≈ 2.43 M�)
EOS. Both equations of state are admittedly highly ideal-
ized, and in one of our next steps we will include the physi-
cal EOSs that are provided by the CompOSE database [81].
Each of the simulations are run at three different resolutions:
(a) low-resolution (LR) with 5×105 SPH particles and 1213

grid points on every refinement level, (b) medium-resolution
(MR) with 106 SPH particles and 1433 grid points on each
refinement level and (c) high-resolution (HR) with 2 × 106

SPH particles and 1933 grid points on each refinement level.
All simulations start from a coordinate separation of 45 km,
and employ seven refinement levels out to 1536 code units
(≈ 2268 km) in each direction. The parameters of the per-
formed simulations are summarized in Table 2, the quoted
numbers are accurate to ∼ 1%.8 Note that we also show the
minimum smoothing length, hmin, during a simulation. This
is, of course, a quantity that adapts automatically according
to the dynamics and that is not determined beforehand. For

8 Our “soft” 1.3 M� star has a gravitational mass of 1.312 M� (1.458
M� baryonic), the “soft” 1.4 M� star has 1.409 M� (1.590 M� bary-
onic); our “stiff” 1.3 M� star has a gravitational mass of 1.309 M�
(1.475 M� baryonic) and the “stiff” 1.4 M� star has 1.403 M�(1.600
M� baryonic).
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example, the hmin = 40 m in run LR_2x1.3_G2.00 is so
small because the central object at very late times (∼ 18 ms)
collapses to a black hole. This is a very low resolution result,
it should be interpreted with caution.

3.2 Results

In Fig. 6 we show snapshots of the rest-mass density evo-
lution of the HR runs of our different binaries, with t = 0
corresponding to the simulation start. Figure 7 shows the
evolution of the maximum density (left) and minimum lapse
value (right) of the corresponding runs and Fig. 8 shows the
quadrupole GW amplitudes hmax (for an observer located
along the rotation axis; see Appendix A) times the distance to
the observer Dobs. These quadrupole approximation results
are written out “on the fly” and they can be compared to
the more accurate results that can be extracted in a post-
processing step from the spacetime evolution, see below.

As expected, the cases with the soft EOS, where the stars
are more compact and therefore closer to the point mass limit,
show a substantially longer inspiral and chirp signal (lines 1
and 3 vs lines 2 and 4 in Fig. 8). Being more compressible,
their peak density evolution is also more impacted by the
merger, see the left panel of Fig. 7, and this is also reflected
in the evolution of the minimum lapse value (right panel). In
the cases with the stiff EOS, in contrast, where the stars are
larger and more mass is at larger radii from the stellar cen-
tre, tidal effects are much more pronounced and effectively
represent a short-range, attractive interaction [26,90]. There-
fore our binaries with stiff EOS merge within less than two
orbital revolutions from the chosen initial separation. Being
rather incompressible, the post-merger central densities are
actually only moderately above the central densities of the
initial individual stars, see Fig. 7, left panel, and also the
lapse oscillations (right panel) are small. All of the remnants
seem to evolve to more compact configurations, but of the
shown cases only HR_2x1.3_G2.00 collapses to a black
hole during the simulated times.

For the simulations afforded in this study, numerical res-
olution still has a noticeable effect on the inspiral as, for
example, demonstrated by simulation HR_2x1.3_G2.00,
which takes about one orbit more until merger than
LR_2x1.3_G2.00 (upper right vs upper left in Fig. 8). The
HR runs with the soft equation of state do show some signs
of amplitude variations that could be attributed to eccentric-
ity, whereas the low and medium resolutions do not seem to
show that. We certainly do expect some eccentricity due to
the assumptions going into the ID construction. As to why
it is more pronounced in the HR case, it is possible that the
low and medium resolution runs are short enough so that
signs of eccentricity are washed out. Finally, these extracted
waveforms are calculated from gauge dependent quantities
and the amplitude variations could be entirely spurious. All

investigated systems, apart from the 2 × 1.4 M� cases with
Γ = 2.00, leave a stable remnant (at least on the simulation
time scale) and therefore keep emitting gravitational waves.
The exceptional case, see row three in Fig. 6, undergoes a
prompt collapse to a black hole within ∼ 1 ms after merger
(Fig. 7) which efficiently shuts off the gravitational wave
emission (row three in Fig. 8). A collapse to a black hole
is expected when the binary mass exceeds ∼ 1.5 × MTOV

max
[91–94], so the collapse in HR_2x1.4_G2.00 is actually
expected given that MTOV

max is only 1.64 M� and the initial
ADM mass of the system is 2.9M�.

We have, in addition to using the quadrupole formula,
also extracted gravitational waves based on the spacetime
data using both thorn Extract and (in combination) thorns
WeylScal 4 and Multipole from the Einstein Toolkit
[69]. The procedure was to read in metric data from our third
coarsest refinement level at the times we had checkpoint data,
run the wave extraction tools and finally use the formulae in
Appendix A.2 to calculate the strain as well as the radiated
energy and angular momentum. We used detectors at spheres
of coordinate radii 50, 100, 150, 200, 250 and 300. We see
very good agreement between the results from Extract
and WeylScal 4, but as the WeylScal 4 waveforms are
less noisy we only report on those results in the following.
In Fig. 9 we plot the radiated energy, ΔE , and z-component
of the angular momentum, ΔJz , as function of time for the
system with two 1.4 M� neutron stars and Γ = 2.75. The
quantities are plotted as percentages of the initial ADM val-
ues of the spacetime, E0 and Jz0. We can clearly not yet claim
convergence of these results as the rate of energy and angu-
lar momentum emission after merger increases significantly
from the medium to high resolution runs and the behavior
of the low resolution run is substantially different showing a
decreasing rate of emission at late times.

In Table 3, we list the final radiated energy at the end of our
simulations, ΔE , andz-component of the angular momen-
tum, ΔJz , again as percentages of the initial ADM energy
E0 and angular momentum ΔJ 0

z of the spacetime for a sam-
ple of our simulations. Note that in the simulations listed, the
merger remnant has not yet collapsed to a black hole, hence
the systems are still emitting strong gravitational waves. In
addition, as we cannot claim that the quantities are converged,
we can are unable to perform a conclusive comparison with,
for example, the results of [95], but for now we can only state
that our simulations appear to be consistent.

In Fig. 10 we show a comparison of the maximal strain
amplitude extracted using either the quadrupole formula or
the Weyl scalar Ψ4. Here the strain from Ψ4 is the sum of
spin weight −2 spherical harmonic modes from � = 2 to 4
evaluated on the z-axis (θ = 0 and φ = π/2 to match the
observer orientation) and then shifted in time (by about 1.54
ms) to account for the signal travel time to the detector. As can
be seen, the quadrupole formula consistently underestimates

123



Eur. Phys. J. A (2022) 58 :74 Page 15 of 28 74

Fig. 6 Density evolution of the simulations (top to bottom) HR_2x1.3_G2.00, HR_2x1.3_G2.75, HR_2x1.4_G2.00 and
HR_2x1.4_G2.75, see Table 2 for the corresponding parameters
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Fig. 7 Evolution of the maximum density and the minimum lapse value for the HR-runs

Table 3 Percentage of radiated energy, ΔE , and z-component of angu-
lar momentum, ΔJz , with respect to the initial ADM energy, E0, and
ADM angular momentum, J 0

z for a sample of our simulations. As all

simulations were not run for the same amount of time, we also list the
simulation duration, tend

Name tend (ms) ΔE/E0 (%) ΔJz/ΔJ 0
z (%)

LR_2x1.3_G2.00 14.78 1.7 19.6

MR_2x1.3_G2.00 14.78 1.3 17.4

LR_2x1.3_G2.75 14.78 1.7 20.8

MR_2x1.3_G2.75 14.78 1.7 20.9

LR_2x1.4_G2.75 14.78 2.5 26.9

MR_2x1.4_G2.75 14.78 2.6 28.0

HR_2x1.4_G2.75 12.46 2.6 29.5

the amplitude (especially after the merger; less so during the
inspiral). This is in agreement with [96] where it was found
that the amplitudes could be over- or underestimated by more
than 50% depending on the definition of density used. On the
other hand, also in agreement with [96], the frequencies are
well captured by the quadrupole formula.

We also want to briefly illustrate a major advantage of our
methodology: the treatment of the neutron star surface. Con-
trary to traditional Eulerian approaches, the sharp transition
between the high-density neutron star and the surrounding
vacuum does not pose any challenge for our method and no
special treatment such as an “artificial atmosphere” repre-
senting vacuum is needed. The particles merely adjust their
positions according to the balance of gravity and pressure
gradients to find their true numerical equilibrium and vacuum
simply corresponds to the absence of particles. Throughout
the inspiral, the neutron star surface remains smooth and
well-behaved without any “outliers,” see Fig. 11. This illus-
trates the quality of both the evolution code and the initial
particle setup, see Sect. 2.2.2.

At the interface where the two neutron stars come into
contact, a Kelvin–Helmholtz unstable shear layer forms.
Although we are presently not modelling magnetic fields,

it is worth pointing out that this shear layer is important
for magnetic field amplification. In the resulting Kelvin–
Helmholtz vortices initially present magnetic fields can be
efficiently amplified beyond magnetar field strength [97–
100], which obviously has a large astrophysical relevance
for potentially increasing the maximum remnant mass, mag-
netically ejecting matter and for launching GRBs. Tradi-
tional SPH-approaches have been found to be challenged
in resolving weakly triggered Kelvin–Helmholtz instabili-
ties [101,102], but these problems are absent in the mod-
ern high-accuracy SPH-approach that is implemented in
SPHINCS_BSSN, mostly due to the reconstruction proce-
dure in the dissipative terms and to the much more accu-
rate gradients than those used in “old school SPH.” 9 To
illustrate the Kelvin–Helmholtz instabilities that emerge in
our SPHINCS_BSSN simulations, we show the density near
the shear interface between the two stars for our simulation
HR_2x1.4_G2.75 in Fig. 12. In this simulation four vor-
tices are initially triggered, that subsequently move inwards

9 See Sec. 3.5 in the paper describing the MAGMA2-code [53] for
a detailed discussion of Kelvin–Helmholtz instabilities within high-
accuracy SPH.
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Fig. 8 Gravitational wave
amplitudes computed with the
quadrupole formula, see
Appendix A, for the simulations
(top to bottom)
HR_2x1.3_G2.00,
HR_2x1.3_G2.75,
HR_2x1.4_G2.00 and
HR_2x1.4_G2.75, see Table
2. The quantity Dobs is the
distance to the observer in code
units, and hmax is the maximal
amplitude for an observer
located on the z axis

and finally merge. While the initial stages show an almost
perfect symmetry, see Fig. 12, tiny asymmetries, seeded by
the numerics, are amplified by the Kelvin–Helmholtz insta-
bility and finally lead to a breaking of exact symmetry. It goes
without saying that such a breaking of perfect symmetry will
also occur in nature.

The Kelvin–Helmholtz instability also seeds physical odd-
m instabilities in the merger remnant. In fact, [103] found, in a
dedicated study, that several odd-m modes are seeded, among

which the m = 1 is the most pronounced one. These modes
grow exponentially and saturate on a time scale of ∼ 10 ms.
The study concluded that the appearance of the m = 1 one-
armed spiral instability is a generic outcome of a neutron
star merger for both “soft” and “stiff” equations of state.
They found, however, the instability to be very pronounced
for their stiff EOS (MS1b [104]) and hardly noticeable for
their soft EOS (SLy [105]). These findings are consistent
with our results shown in Fig. 6, where the Γ = 2.75 cases
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Fig. 9 The accumulated radiated energy, ΔE (left plot), and z-
component of the angular momentum, ΔJz (right plot) in percent of
the initial values, E0 and Jz0 for the system with two 1.4 M� neutron

stars and Γ = 2.75 extracted at the detector at coordinate radius R
= 300. In both plots the green, orange, black curves are for the low,
medium and high resolution runs, respectively

Fig. 10 Comparison of the maximal strain amplitude as calculated by
the extraction of Ψ4 (black) and the quadrupole formula (QF, orange)
for the simulations with two 1.4M� neutron stars and Γ = 2.75. The
strain from Ψ4 is the sum of spin-weight −2 modes from � = 2 to 4

evaluated on the z-axis (θ = 0) and shifted in time by 1.54 ms in order
to align it with the quadrupole waveform. The quantity Dobs is the dis-
tance to the observer (code units), and hmax is the maximum amplitude
for an observer located on the z axis

show noticeable deviations from perfect symmetry, whereas
the Γ = 2.00 cases show no obvious deviations.

Last, but not least, we show in Fig. 13 the Hamiltonian con-
straint along the x-axis for representative simulations (two
1.3 M� stars with the Γ = 2.0 equation of state) at 4 dif-
ferent times: shortly after the start of the simulations, after
half an orbit, a full orbit (shortly before the neutron stars
touch) and a significant time after the merger. In each plot 3
resolutions are shown, scaled for 2nd order convergence. In
the top left plot (early in the simulations) the accuracy of the
initial data limits the convergence for |x | > 50 km. In the
three remaining plots, it is clear that the constraint violations
are largest where the matter is located, but remain low in the

exterior and converge at about 2nd order. See Appendix C
for the computation of the constraint violations for the initial
data.

4 Summary and outlook

In this paper, we have described the current status of our
freshly developed general-relativistic, Lagrangian hydrody-
namics code SPHINCS_BSSN. Since the focus of our orig-
inal paper [31] was to demonstrate the ability to accurately
handle fully dynamical, general relativistic single stars, our
main focus here is on those new methodological elements that
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Fig. 11 Particle positions (within |z| < 1 km) in run
HR_2x1.4_G2.75, see Table 2, prior to merger. Modelling the
transition between the neutron star matter and vacuum represents a
serious numerical challenge for Eulerian hydrodynamic approaches. In
our approach, however, the stellar surface does not require any special
treatment and it remains smooth and well-behaved during the inspiral
without any “outlier particles”

are needed to simulate relativistic binary neutron star merg-
ers. These elements include, in particular, a structured mesh
(“fixed mesh refinement”; see Sec 2.1.2) on which we evolve
the spacetime. This, in turn, requires improvements to the
particle–mesh coupling, as explained in detail in Sect. 2.1.3.
Finally, we describe a new method to accurately set up SPH
particles based on the results from initial data solvers such
as LORENE, see Sect. 2.2. The method is implemented in a
new code called SPHINCS_ID.

Given the central role of Numerical Relativity for relativis-
tic astrophysics and for gravitational wave astronomy, we
consider this (to the best of our knowledge) first Lagrangian
hydrodynamics approach that solves the full set of Einstein
equations, as an important step forward. It will allow to val-
idate both Eulerian Numerical Relativity approaches as well
as Lagrangian ones that use only approximate strong-field
gravity.

Despite this progress, it is clear that our current code ver-
sion only contains the most basic physics ingredients, that

is, relativistic hydrodynamics, dynamical evolution of the
spacetime and simple equations of state. The first detec-
tion of a binary neutron star merger [3,4], however, has
impressively underlined the multi-physics nature of neu-
tron star merger events. It has demonstrated in particular
that neutron star mergers are, as it had been expected for
some time [14–16,106], prolific sources of r-process ele-
ments [9,17,18,107]. The detection of the early blue kilo-
nova component [108] and the identification of strontium
[109], a very light r-process element that is only synthesized
for moderately large electron fractions, have emphasized that
weak interactions play a crucial role in shaping the observ-
able features of a neutron star merger event. Moreover, the
short GRB following GW170817 demonstrated that (at least
some) neutron star mergers are able to launch relativistic
jets. Taken together, these observations suggest that at least
nuclear matter properties, neutrino physics and likely mag-
netic fields are major actors in a neutron star merger event.

Our next SPHINCS_BSSN development steps will be
geared towards both further technical improvements and
towards more realistic micro-physics. On the technical side,
for example, we expect that the amount of dissipation that is
applied in the hydrodynamic evolution can be further reduced
and we aim at further increasing the code’s computational
performance. In the current stage, both (artificial) dissipation
and finite resolution likely still leave a noticeable imprint on
the simulation outcome. On the micro-physical side, we con-
sider the implementation of realistic nuclear matter equations
of state as they are provided in the CompOSE database as an
important and natural step forward. In addition to increasing
the physical accuracy of the matter description, this ingredi-
ent is also indispensable to follow the electron fraction Ye of
the ejecta and to implement (any kind of) neutrino physics.
CompOSE equations of state can be used in LORENE but, in
its present form, SPHINCS_BSSN does not yet support tab-
ulated EOSs. The implementation of tabulated equations of
state requires changes in the very core of our hydrodynamics
scheme; in particular, we have to change the algorithm for
the conversion from conserved to primitive variables. This
has, of course, been successfully done in Eulerian contexts
[110,111], and is certainly also doable for our equation set,
but it will require some dedicated effort. Once this has been
achieved, we will tackle the implementation of a fast, yet rea-
sonably accurate neutrino treatment such as the Advanced
Spectral Leakage Scheme (ASL) [112–114]. These issues
will be addressed in future work.
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Fig. 12 Evolution of the Kelvin–Helmholtz vortices in simulation HR_2x1.4_G2.75, see Table 2

Fig. 13 The Hamiltonian constraint along the x-axis scaled for 2nd

order convergence for the runs with two 1.3 M� stars and the soft equa-
tion of state (Γ = 2.00) at different times in the simulations. We have
only plotted the three finest refinement levels and have indicated the
boundaries between refinement levels with vertical thin lines. The top
left plot is at t = 0.05 ms, that is, shortly after the beginning of the
simulation. The top right plot is at the t = 1.81 ms (low resolution),

t = 1.84 ms (medium resolution) and t = 1.87 ms (high resolution),
when the neutron stars have returned to the x-axis after half an orbit.
The bottom left plot is at t = 3.13 ms (low resolution), T = 3.23 ms
(medium resolution) and t = 3.33 ms (high resolution), when the stars
have again returned to the x-axis after having completed a full orbit. The
final bottom right plot is at a t = 13.1 ms, that is, a time significantly
after the merger
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Appendix A: Gravitational wave extraction

At this early stage of our new code, we can extract gravi-
tational waves in two different ways. We can either use the
quadrupole approximation directly while the simulation is
running or we can post process data afterwards using the
Einstein Toolkit. In the following we describe both methods.

Appendix A.1: The quadrupole approximation

The “standard Einstein–Landau–Lifshitz quadrupole for-
mula” [46,86] reads

hi j (t, �x) = 2G

c4r
Pi jkl(�n)

d2

dt2
-I kl(t − r/c). (A.1)

Here Pi jkl is the transverse traceless projection operator

Pi jkl(�n) ≡ (δik − nink)(δ jl − n jnl) (A.2)

−1

2
(δi j − nin j )(δkl − nknl) (A.3)

= Pk
i P

l
j − 1

2
Pi j P

kl (A.4)

with Pk
i = δki − nink , r = |�x | = (δi j x i x j )1/2, �n = �x/r

and -I i j = I jk − 1
3δi j

∑
k Ikk is the reduced quadrupole

moment. The amplitude becomes maximal, hmax, for an
observer located on the z-axis [Cartesian coordinates; see
[55], Eq. (1.47)]:

hmax = G

c4

1

Dobs

(
Ïxx − Ïyy

)
, (A.5)

where Dobs is the distance to the observer. The total energy
radiated in gravitational waves is given by

EGW = 1

5

G

c5

∫ ∞

−∞
...
-I i j

...
-I i j dt. (A.6)

There is no unique way, in General Relativity, to define
the quadrupole moment Ii j . One could try to follow post-
Newtonian (PN) approaches, but they are sometimes ill-
defined in the strong gravity regime and adding further PN-
corrections does not necessarily improve the result. Shi-
bata and Sekiguchi [115] find the quadrupole approximation
rather useful even in strong-field gravity, they quote accura-
cies of O(C) (C being the compactness) for the amplitudes,
that is, in practice ∼ 20%, and much better accuracies for
the phase evolutions.

Following [46,115] we calculate the quadrupole moment
via the conserved rest-mass density,

ρ∗ ≡ √−g U 0ρrest, (A.7)

with the rest-mass density,

ρrest = n m0. (A.8)

The quantity ρ∗ is related to our density variable N (Eq. 7)
by

ρ∗ = m0N . (A.9)

The major advantage of this approach is that the first time
derivative can be expressed analytically as

d Ii j
dt

=
∫

d3x ρ∗(vi x j + v j x i ). (A.10)

For the SPH representation, we transform the integral into a
sum using the particles’ volume elements Vb = νb/Nb,

d Ii j
dt

= m0

∑

b

νb(v
i
bx

j
b + v

j
b x

i
b). (A.11)

To obtain the second and third time derivatives of Ii j , we
monitor d Ii j/dt at a set of instances in time, calculate a least
square fit to them and take the analytical time derivatives of
the approximating least square polynomial.
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Appendix A.2: Extraction from the spacetime via the
Einstein Toolkit

During the evolution we regularly write checkpoint files in
order to be able to restart the simulation. There is one such
checkpoint file for the particle (matter) data and another one
for the grid (spacetime/BSSN) data. We have written a file
reader that can read one complete refinement level of BSSN
data from the checkpoint file into Cactus and thereby run the
gravitational wave extraction tools available in the Einstein
Toolkit. This consists of the thorns Extract, WeylScal
4 and Multipole. In Extract one, or several, extrac-
tion surfaces can be set up and the thorn will then esti-
mate a suitable background metric and extract the Regge–
Wheeler–Zerilli gauge invariant even Q+

�m and odd Q×
�m

parity master functions. Thorn WeylScal 4 calculates the
Newman–Penrose Weyl scalar Ψ4 everywhere on the grid.
Thorn Multipole is then used to decompose Ψ4 into spin-
weighted spherical harmonics modes Ψ �m

4 on a set of defined
coordinate spheres.

Conveniently, [27] has collected all the necessary formu-
lae for recovering the strain and to calculate the radiated
energy and angular momentum (as well as linear momen-
tum, but that is not needed here). For completeness we list
these formulae here.

With the definition

P×
�m :=

∫ t

−∞
Q×

�mdt
′, (A.12)

the strain can be recovered from Q+
�m and P×

�m as

h+ + ih× = 1√
2r

∑

�,m

[
Q+

�m − i P×
�m

]
−2Y �m, (A.13)

where r is the distance from the source and −2Y �m is the
spin-weight −2 spherical harmonic and the sum is over all
possible � and m. The radiated energy can be calculated as

dE

dt
= lim

r→∞
1

32π

∑

�,m

(∣∣Q̇+
�m

∣∣2 + ∣∣Q×
�m

∣∣2
)

, (A.14)

where a dot indicates the time derivative. The radiated angu-
lar momentum in the z-direction is

d Jz
dt

= lim
r→∞

i

32π

∑

�,m

m
(
Q̄+

�m Q̇
+
�m + P̄×

�mQ
×
�m

)
, (A.15)

where an overbar means a complex conjugate.
Starting from the Ψ �m

4 modes, the strain can be recovered
as

h+ + ih× = −
∫ t

−∞

∫ t ′

−∞

∑

�,m

Ψ �m
4 −2Y �m dt ′′ dt ′. (A.16)

The radiated energy can also be calculated from the Ψ4 modes
as

dE

dt
= lim

r→∞
r2

16π

∑

�,m

∣∣∣∣

∫ t

−∞
Ψ �m

4 dt ′
∣∣∣∣

2

(A.17)

and the radiated z-component of the angular momentum as

d Jz
dt

= − lim
r→∞

ir2

16π
�

⎡

⎣
∑
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m
∫ t

−∞

∫ t ′

−∞
Ψ �m

4 dt ′ dt ′′

×
∫ t

−∞
Ψ̄ �m

4

]
. (A.18)

The analysis of the extracted modes from the Cactus simu-
lation has been performed using kuibit [116].

Appendix B: Details on the Artificial Pressure Method

Appendix B.1: The initial particle distribution on spherical
surfaces

The aim is to find an as-good-as-possible representation of
the LORENE density distribution by means of a finite num-
ber of (close to) equal-mass SPH particles. We start with a
trial particle distribution and perform iterative APM improve-
ments on it until an optimal configuration has been found.
Obviously, the better the initial particle distribution, the fewer
APM iterations will be needed to reach the final goal. We had
experimented with placing particles on cubic lattices as ini-
tial positions, but starting from spherical surfaces delivered
(a) a slightly better density accuracy and (b) resulted in a
locally isotropic particle distribution while in the cubic lat-
tice case preferred directions were still visible. Our method
of choice therefore starts with particles placed on spherical
surfaces and is described in more detail below.

We describe the method for one star only, since it is applied
separately and independently for each star. First, we compute
the “desired particle mass” as

mp = Mb

ndes
, (B.19)

where Mb is the baryon mass of the star given by LORENE,
and ndes “desired particle number” for the star, specified by
the user. Second, we integrate the baryon mass density of the
star ρb(r, θ, φ) given by LORENE, over (r, θ, φ) and extract
the radial baryon mass profile Mb(r). Notice that, since the
star is not spherically symmetric, and we place particles on
the spherical surfaces uniformly, we lose the density informa-
tion over (θ, φ) in this step. Third, in order to set the number

123



Eur. Phys. J. A (2022) 58 :74 Page 23 of 28 74

of spherical surfaces inside the stars, we estimate the “radial
particle profile” as

par(r):=
∫ r

0

(
ρb(ξ)

mp

)1/3

dξ, (B.20)

Thus, we define the number of spherical surfaces as

ns:=�par(R)�, (B.21)

where �·� is the “ceiling” function, and R the larger radius
of the star—the equatorial radius on the x axis towards the
companion. Fourth, we need to set the radii of the spherical
surfaces. We would like to have a larger density of surfaces
where the baryon mass density is larger, and a lower density
of surfaces where the baryon mass density is lower. There-
fore, we place the first spherical surface at a radius given
by

r1 =
(

ρcenter
b

mp

)−1/3

, (B.22)

and the others at radii10

ri = ri−1 +
(

ρb(ri−1)

mp

)−1/3

, i ∈ {2, . . . , ns}. (B.23)

The density in (B.23) is evaluated along the larger equatorial
radius (i.e., along the x axis in the direction of the compan-
ion). If, for some i < ns, ri falls outside of the star, we rescale
all the radii by the same factor i/ns < 1. It can still happen
that the last surface falls outside of the star, hence we let
the location of the last surface, rlast, to be specified by the
user. Note that this choice does affect how many particles are
placed close to the surface and where. We found that placing
the last surface at rlast ∈ [0.95R, 0.99R] allows us to place
enough particles close to the surface without allowing for
very low-mass particles. Hence, when we know all the radii,
we rescale them as

ri → rlast

rns

ri , (B.24)

so that rns → rlast. At this point, we assign to each spherical
surface a baryon mass given by

Mi = Mb(ri ) − Mb(ri−1), i ∈ {1, ..., ns − 1}. (B.25)

where i is the surface index and r0 = 0 (center of the star).
For the last surface, the baryon mass is assigned as

Mlast = Mb(R) − Mb(rns−1), (B.26)

10 One might think that defining ns in (B.21) is redundant, since we
can just place the surfaces according to (B.22), (B.23). However, it is
necessary to decide when to stop placing surfaces, that is, to compute
ns in some sensible way. We thought that (B.21) was sensible enough
to be tried out; since the resulting particle distributions are satisfying to
us, we have kept it.

In the last step, we place ni particles on each surface, where

ni = �Mi/mp�, (B.27)

where �x� returns the nearest integer to x .
The particles are placed uniformly, avoiding their cluster-

ing around the poles, according to the algorithm described
in [117]. This consists of placing particles uniformly in
the azimuth φ and ν, with ν ∈ (0, 1) and colatitude θ =
arccos(2ν − 1). We place the same number of particles on
each meridian and each parallel, such that each quarter of
meridian (parallel) contains the same number of particles. In
other words, the number of particles ncircle on each meridian
and parallel is a multiple of 4. Consider the part of a meridian
spanned from θ = 0 to θ = π/2. The number of particles
on this curve is ncircle/4 by construction. Then, the number
of particles over the entire northern hemisphere is n2

circle/4.
The total number of particles on the spherical surface is then

ns = n2
circle

2
. (B.28)

In practice, ns is set by (B.27), and ncircle is computed by
inverting (B.28),

ncircle = �√2ns�. (B.29)

Note that ncircle has to be a multiple of 4, so we correct
it before using it. After correcting ncircle, we consistently
recompute ns and place the particles at the desired positions,
as described above. At each of these positions, we check that
the LORENE mass density is positive, and we place a particle
only if it is.

We highlight that this algorithm keeps the same mass for
particles on the same surface, but due to the described round-
ing to integers, the particle mass changes a little between
surfaces. In addition, for a spherical shell close to the sur-
face of the star, some positions have a zero density since
the star is not spherically symmetric. Such positions are not
promoted to be particles, hence the final number of particles
on the spherical surface changes (i.e., it is not ns anymore).
Thus, the particle mass on the spherical surface changes,
since the mass of the surface in (B.25), (B.26) is kept the
same. Since we would like to have (almost) equal mass parti-
cles, the change in particle mass between the surfaces should
be small enough. To address this issue, we set up an iteration.
The iteration replaces the particles on each surface, with the
exception of the first surface considered, so that the particle
mass on a surface is not too much different than the particle
mass on the previous surface. The tolerance is specified by
the user, and we found that a 2.5% difference is reasonable.11

11 It can happen that, since the particle number is an integer and the
mass of a surface is a real, it’s not possible to achieve a 2.5% difference.
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Fig. 14 Rescaled absolute value of the Hamiltonian constraint vio-
lations on x ∈ [−44.3, 44.3] km, computed using 3 different mesh
resolutions. In the left panels, the full LORENE ID (spacetime and
hydro) on the mesh (with one refinement level) is used; in the right
panels, the computation uses the spacetime LORENE ID on the mesh
(with one refinement level) and the stress–energy tensor computed at
the particle positions and mapped to the mesh. The ID is the one for
the run LR_2x1.3_G2.00. The coarse resolution (red) has 553 grid
points and Δ � 1.64 km; the medium resolution (green) has 733 grid
points and Δ � 1.23 km; the fine resolution (blue) has 973 grid points
and Δ � 923 m. The ratio between the grid spacings is 4/3, hence
the Hamiltonian constraint violations on the medium resolution are
divided by (4/3)FDO, and the one on the coarse resolution are divided

by (4/3)2FDO. In the panels, from top to bottom, the FDO is 2, 4, 6.
The 3 rescaled Hamiltonian constraint violations in each panel should
overlap to show convergence; this is seen only when FDO=2 since, for
higher FDO, the error produced by LORENE is larger than the error
produced by the finite difference approximation. Note that increasing
the mesh resolution would decrease the finite differencing error too, the
LORENE error would dominate, and there would be no convergence.
Compared to the constraints violations computed using the ID on the
mesh (left panels), those computed using the mapping (right panels) are
larger at the surfaces of the stars, but comparable inside the stars. See
text for more details. The lengths on the x axis are given in units of the
solar mass in geometrized units

Note that since we impose nstar 1
des /nstar 2

des = M1
b/M2

b , and
since the particle number obtained at the end of the iteration
is close to the desired particle number, the particle numbers
on the stars will have a ratio very close to the binary mass
ratio. Thus, the particle mass ratio across the stars will be
similar to the particle mass ratio within each star, the latter
being small thanks to the iteration on the spherical surfaces
and, more importantly, to the APM iteration described in
Sect. 2.2.2.

Finally, since the particles on spherical surfaces have very
similar masses, it is well-justified to assume them to be equal-
mass (assumption that the APM uses) and use them as initial
condition for the APM iteration.

When this happens, we allow for a larger difference if convergence is
not achieved after a certain number of iterations, usually 100. However,
we chose the 2.5% difference because it is possible to achieve it for
most of the surfaces.

Appendix B.2: Placing ghost particles for BNS

We place the ghost particles on a cubic lattice around each
star if two conditions are satisfied: the baryon mass density
given by LORENE at that point is 0—so we are outside the
star—and the position is between two ellipsoidal surfaces.
The semi-axes of the innermost ellipsoidal surface are

ξx = R + δ (B.30a)

ξy = Ry + δ (B.30b)

ξz = Rz + δ (B.30c)

, with R being the equatorial radius towards the companion,
Ry , Rz the radii in the y and z direction (given by LORENE),
and series δ = 0.3km being a constant whose purpose is
described next. The semi-axes of the innermost ellipsoidal
surface are placed a little outside of the surface of the star—
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this is achieved by adding δ in (B.30)—to allow for the real
particles to move towards the surface of the star if the arti-
ficial pressures of their neighbours push them there. If the
ghost particles were placed exactly on the surface, then the
real particles would not move towards it due to the high pres-
sure gradient they would feel. The actual value of δ was
determined empirically.

Appendix C: Constraint violations and convergence for
the BNS ID

After setting up the SPH and BSSN ID, we check that
they satisfy the constraint equations using a subroutine from
the Einstein Toolkit, which is adapted to our framework in
SPHINCS_BSSN.

We compute the Hamiltonian and momentum constraints
in two ways. First, using the full (spacetime and hydro)
LORENE ID on the refined mesh, we compute the stress–
energy tensor and finally the constraints. This method does
not involve the SPH ID in any way. Second, we use the SPH
ID on the particles and the BSSN ID on the refined mesh. We
compute the stress–energy tensor at the particle positions,
which needs the metric to be mapped to the particles (M2P
step), and we map the stress–energy tensor to the refined
mesh (P2M step). The interpolated stress–energy tensor on
the mesh is then used together with the BSSN ID to com-
pute the constraints. The two methods provide us also with
another way to test the accuracy of the mapping routines.

We perform local convergence tests [27, Sec. 9.11] with
the constraints computed in both ways, to test the robustness
of our codes.12 Note that we do not recompute the entire ID
with a different resolution when performing the convergence
tests, since this is not possible in our framework. Even if we
change the grid resolution, the LORENE spectral ID will stay
the same; namely, it does not improve its accuracy. Hence,
we expect to see convergence only if the finite error when
computing spatial derivatives is larger than the error in the
spectral solution from LORENE.

We found that keeping low finite difference order (FDO),
and to a minor extent, keeping a low mesh resolution, is
crucial to keep the finite differencing error larger than the
spectral error. With FDO = 2, we see convergence for
some sequences of resolutions {Δ, Δ/r , Δ/r2}, with r ∈
{4/3, 3/2, 2} (same resolution on each Cartesian axis). With
FDO = 4, 6, the LORENE error dominates and it is harder to
see convergence since the constraint violations change little,
or not at all, when changing the resolution.

12 Even if this is all at the level of the ID, SPHINCS_ID uses routines
from SPHINCS_BSSN, so the convergence tests also test the robustness
of some parts of SPHINCS_BSSN.

Figure 14 shows the rescaled absolute value of the Hamil-
tonian constraint violations on the x axis for a sequence of
resolutions with r = 4/3, computed with the two meth-
ods described above, for the LR_2x1.3_G2.75 ID. In the
examples shown in the figures, we see convergence only
when FDO = 2. Comparing the left and right panels of the
figure, we note that the constraint violations are larger at the
surfaces of the stars when mapping the metric from the mesh
to the particles, and then the stress–energy tensor from the
particles to the mesh, rather than just importing the LORENE
ID on the mesh. This means that the error introduced by the
mapping is a lot larger at the surfaces of the stars, compared
to inside the stars. Specifically, in Figure 14, the mapping
induces constraint violations of order between 10−4 and 10−3

at the surface of the star, irrespective of the FDO order and
the mesh resolution. Lastly, even though we see convergence
with FDO = 2 only, it is evident from the figures that using a
larger FDO leads to lower constraint violations.
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