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Abstract The yields of light elements (Z = 1, 2) obtained
from spontaneous ternary fission of 252Cf are treated within
a nonequilibrium approach, and the contribution of unstable
nuclei and excited bound states is taken into account. These
light cluster yields may be used to probe dense matter, and to
infer in-medium corrections such as Pauli blocking which is
determined by the nucleon density. Continuum correlations
are calculated from scattering phase shifts using the Beth-
Uhlenbeck formula, and the effect of medium modification
is estimated. The relevant distribution is reconstructed from
the measured yields of isotopes. This describes the state of the
nucleon system at scission and cluster formation, using only
three Lagrange parameters which are the nonequilibrium
counterparts of the temperature and chemical potentials, as
defined in thermodynamic equilibrium. We concluded that a
simple nuclear statistical equilibrium model neglecting con-
tinuum correlations and medium effects is not able to describe
the measured distribution of H and He isotopes. Moreover,
the freeze-out concept may serve as an important ingredient
to the nonequilibrium approach using the relevant statistical
operator concept.

1 Introduction

Thermal neutron induced and spontaneous ternary fission is
a process in which the emission of two medium-mass frag-
ments is accompanied by equatorially emitted light parti-
cles and clusters formed in the neck region at the time of
scission, see [1–3] and references therein. Data for cluster
yields obtained from ternary fission experiments with ther-
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mal neutrons are shown, e.g., in [4–6]. In particular, data for
the ternary fission yields of 241Pu(nth,f) are presented. An
interpretation of the Koester et al. data [4] was given in Ref.
[7], where a suppression of the yields of the larger clusters is
found, due to cluster formation kinetics. Also, ternary fission
has been observed from other actinides such as 239Pu, 233U,
235U, and 245Cm. For more recent work on ternary fission
see Refs. [8–13].

Different approaches have been employed to interpret
these data, see [5], and often a Boltzmann distribution has
been used. An interpolation formula has been presented in
[14] which describes the general behavior of the measured
yields but cannot explain the details of the observed distri-
butions. More fundamentally, the use of a Boltzmann dis-
tribution as known from thermodynamic equilibrium with
parameters temperature and chemical potentials remains
unfounded. However, the signatures of binding energies and
degeneracy of the isotopes according to the Boltzmann dis-
tribution are clearly seen in the observed yields.

In this paper we report on investigations of the yields of
equatorial emission of Z = 1, 2 isotopes during ternary spon-
taneous fission of 252Cf. We are interested in a better under-
standing of cluster formation and the fate of correlations in
low density, low-temperature, expanding nuclear matter. This
nonequilibrium evolution can be described using the method
of the nonequilibrium statistical operator (NSO) [15]. It is
based on information-theoretical concepts which is also the
basis of equilibrium statistical physics [16]. We include dif-
ferent processes which describe the dynamical evolution of
the system. In particular, we include the decay from other
unstable nuclei (feeding), the inclusion of excited states
(including continuum correlations), and medium effects. For
this, a quantum statistical approach is used.

Our main goal is to shed some more light into the prop-
erties of dense nuclear matter, namely, to understand how to
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improve the simple model of nuclear statistical equilibrium
(NSE) by including continuum correlations and in-medium
effects, and how well the nucleon density at the time of onset
of cluster formation can be determined. We discuss the appar-
ent suppression of yield for some exotic isotopes and the
relation to thermodynamic quantities.

The paper is organized as follows: in Sect. 2, we collect
available data on ternary spontaneous fission of 252Cf con-
cerning the production of the lightest elements H and He.
In Sect. 3, the theoretical formalism used in the work, based
on information theory, will be described. Section 4 analy-
ses different numerical calculations that go beyond the ideal
gas description considering continuum correlations and in-
medium effects. The use of a local density approximation is
discussed in Sect. 5, and finally in Sect. 6, some final remarks,
namely, the relation to thermodynamics, are drawn.

2 Experimental data

A number of experimental investigations of the spontaneous
fission of 252Cf have been performed by different groups, see
[6] and references given there. It has been demonstrated that
252Cf(sf) emits 3.2(1)×10−3 α-particles per fission [17,18].
The observed yields are denoted by the index ‘obs’: 3Hobs,
4Heobs, 6Heobs, 8Heobs are the isotopes seen by the detector.
Usually, the yields YA,Z of other light elements produced
from ternary fission are normalized to the final yield of 4He
(α), which is fixed to Y4Heobs = 10,000. More precisely, we
consider here the ratios of yields relative to the final yield of
α-particles.

In Ref. [19], the author performed a compilation of results
for ternary fission data, taken from the literature. There, con-
sistent experimental results are presented for the 1H (p) and
2H (d) yields, as well as for the 8He ones. However, the val-
ues for the yield of 3H (t), and also of 6He, are quite different.
These data have been used also in a more recent publication
[14], where the yields for the H isotopes are from Ref. [20],
and for the He isotopes, the yields are according Ref. [21].

In Table 1 we collect some experimental results denoted
as Y exp

A,Z . For 1H and 2H, we give the values of Ref. [20].

For 3H, 4He, 5He, 6He, 7He, 8He, we take the values from
Refs. [13,22,23] where also the errors are given. Note that
the long-living isotopes 6He and 8He which are unstable
with respect to β decay are stable with respect to strong
interaction and are observed in the experiments. In addi-
tion to the observed yields Y exp

A,Z seen in the experiments,
denoted by the superscript ‘obs’ at the stable nucleus, we give
also primary yields of short-living, particle unstable nuclei
which can contribute to the yields of the observed nuclei. The
observed yields are related to the primary yields as Y3Hobs =
Y3H + Y4H, Y4Heobs = Y4He + Y5He + 2Y8Be, Y6Heobs =

Y6He + Y7He, Y8Heobs = Y8He + Y9He. Analyzing the energy
spectra, for 252Cf(sf) the formation of 5He and 7He has
been determined [13], and the ratios of primary yields
Y5He/Y4He = 0.21(5) and Y7He/Y6He = 0.21(5) have been
reported. For 8Be, the value 10±6 was found for the primary
yield in Ref. [24]. Further exotic isotopes 5H, 6H, 7H, and
10He are not included because the yields are very small.

For 252Cf the multiplicity of protons emitted in ternary
fission is reported to be 6.086×10−5 [2]. This corresponds to
an experimental yield Y exp

1,1 ≈ 190.2 relative to the yield of α-
particles. Also prompt neutron emission has been measured,
for a recent work see Ref. [25]. The fractional percentage of
ternary fission ”scission” neutrons has been determined to be
7.6 ± 2.8% [26,27]. In Ref. [27] a temperature of Tsci = 1.2
MeV has been used. A very recent measurement of the total
neutron multiplicity in 252Cf fission is 3.81±0.05 [28]. This
leads to a scission neutron multiplicity of 0.290 ± 0.008 that
corresponds to an experimental yield Y exp

1,0 ≈ 0.29/(3.2 ×
10−3)×104 = 0.906×106 relative to the yield of α-particles.

As pointed out in Ref. [29], experimental studies at low
energy of ternary-particle-unstable nuclei producing α par-
ticles are still scarce, and the data are not very consis-
tent. The ratio 6Heobs/4Heobs was reconsidered in Ref. [29],
and a Gaussian fit above 9 MeV energy gives the value
Y6Heobs/Y4Heobs = 0.041(5).

An interpolation formula has been presented in Ref. [14]
and compared to measured data ([20] for H and [21] for
He isotopes). Parameter values for quantities similar to the
temperature (� = 1.25 MeV), the neutron chemical potential
(εn = 2.8 MeV) and the proton chemical potential (εp =
15.8 MeV) have been fitted, and are also shown in Table 1
together with the yields Y interp

A,Z [14], which are calculated
with the Valski interpolation formula. To explain the yields
observed from ternary fission of 252Cf(sf), Boltzmann-like
distributions are used. These contain the binding energy BA,Z

and the ground-state degeneracy gA,Z = 2 JA,Z +1 of nuclei
[30] which are also shown in Table 1, JA,Z is the total angular
momentum of the nucleus. The remaining columns will be
discussed in Sects. 3 and 4 below.

3 Information theoretical description of the distribution
of cluster yields

Information theory considers the problem of reconstructing a
distribution if some information about the ensemble is given.
In our case the distribution is described by the statistical oper-
ator ρ(t̂) which depends on time t̂ (we use t̂ to be different
from t for triton). The most probable distribution is obtained
from the maximum of information entropy SI = −Tr{ρ ln ρ}
if some averages of the system properties are given, see,
e.g., Ref. [16]. From the maximum of information entropy,
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a Gibbs distribution is obtained with Lagrange parameters
λi which are determined self-consistently, by describing the
averages. In this section we consider whether it is possible to
reconstruct the distribution of yields Y exp

A,Z with only a lim-
ited amount of information about the system. This approach
is well-known from equilibrium thermodynamics where the
averages of energy and particle numbers of the conserved
components are given to define the grand canonical ensem-
ble, and the Lagrange parameters β = 1/T, μn, μp occur-
ring in the equilibrium ensemble are related to the tempera-
ture and the chemical potentials.

Within the method of the nonequilibrium statistical oper-
ator (NSO) [15], at a given time t̂ the relevant statistical
operator ρrel(t̂) is constructed from this maximum entropy
principle, and the corresponding Lagrange parameters λi (t̂)
become functions of time. The statistical operator ρ(t̂)
describing the nonequilibrium evolution of the system fol-
lows as

ρ(t̂) = lim
ε→0

ε

∫ t̂

−∞
dt̂ ′e−ε(t̂−t̂ ′)e− i

h̄ H(t̂−t̂ ′)ρrel(t̂
′)e

i
h̄ H(t̂−t̂ ′)

(1)

which solves the Liouville–von Neumann equation, with H
the system Hamiltonian given in Eq. (2). Kinetic equations
as well as hydrodynamic equations can be derived within
this approach. The infinitesimal parameter ε is introduced to
select the retarded solution of the Liouville–von Neumann
equation [16].

We discuss the construction of the relevant statistical oper-
ator which is an ingredient to describe the nonequilibrium
process. As relevant observables, we consider the averages
of neutron number and proton number, as well as the Hamil-
tonian

H =
∑
τ,k

Eτ (k)a+
τ,kaτ,k +

∑
τ,k,k′

V ext
τ (k, k′)a+

τ,k′aτ,k

+ 1

2

∑
τ,τ ′,k1,k′

1k2,k′
2

V int
τ,τ ′(k1, k2; k′

1, k′
2)

× a+
τ ′,k′

2
a+
τ,k′

1
aτ,k1

aτ ′,k2
(2)

which describes the interaction of nucleons, τ = {n, p},
with an external potential V ext

τ (k, k′) and the nucleon-
nucleon interaction V int

τ,τ ′(k1, k2; k′
1, k′

2); the quantum num-
ber k denotes the wave vector and spin of the nucleon with
kinetic energy Eτ (k). Averages are going to be calculated
with the correspondent relevant operator

ρrel(t̂) = Z−1
rel (t̂)e−[H−λn(t̂)Nn−λp(t̂)Np]/λT (t̂) (3)

where Zrel(t̂) = Tr exp{−[H −λn(t̂)Nn −λp(t̂)Np]/λT (t̂)}
is the relevant partition function, Nτ denotes the particle
number of neutrons/protons, and the Lagrange multipliers

are going to be eliminated by the known informations, such
as internal energy and particle densities of the system. This
solution of the variational problem where the Lagrange mul-
tipliers are calculated as function of given averages is denoted
as the equations of state.

The solution of this many-particle problem to calculate
the equations of state is not simple and needs some approxi-
mations, such as replacing the Hamiltonian by a more simple
model which can be solved. Such simple model Hamiltonians
are the ideal nucleon gas or the mean-field approximation,
where the Hamiltonian describes a noninteracting system of
quasiparticles. We are interested in the formation of bound
states so that, in a first approximation, we consider the ideal
energy functional

H (0) =
∑

A,Z ,P

gA,Z

(
−BA,Z + h̄2 P2

2Am

)
(4)

with P the center of mass momentum for the cluster {A, Z},
P = |P|, and m is the average nucleon mass. This model
Hamiltonian describes the nucleon system as an ideal mix-
ture of non-interacting free nucleons and nuclei. We allow
for reactions between the different components {A, Z} so
that the number of each component is not conserved but only
the total number of neutrons and protons in the system. This
approximation can be applied in the low-density case where
the interaction between the constituents of the nuclear system
becomes weak. The Lagrange parameters in (3) calculated to
reproduce the observed distribution with the model Hamil-
tonian H (0) (4), are denoted by λ

(0)
T , λ

(0)
n , λ

(0)
p , respectively.

The problem to eliminate the Lagrange multipliers by the
given averages of internal energy and particle number den-
sities is well known from statistical physics and leads to the
Fermi/Bose distribution. Before we discuss the correspond-
ing results, we emphasize that initially we are discussing only
the parametrization of the measured yields, using informa-
tion about the observed nuclei such as ground state binding
energy and degeneracy.

The obtained Lagrange parameters λ
(0)
i should not be

interpreted as thermodynamic quantities like temperature and
chemical potentials for several reasons:

(i) The energy functional (4) is only an approximation. The
full energy functional should also include excited states
and interactions. The full information about the Hamil-
tonian of the system leads to the quantum statistical
approach.

(ii) Fission is a nonequilibrium process and is not described
by an equilibrium distribution. We have to include also
the dynamical information which is described by the full
Hamiltonian and contains the information on the final
distribution measured in the experiment at time t̂ as well
as information of the distribution in the past t̂ ′ ≤ t̂ , see
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Eq. (1). This leads to the so-called relevant distribution
Y rel

A,Z (t̂) which depends on the time t̂ , and the evolution of
the distribution with time described by generalized reac-
tion kinetics [15]. We will not discuss how the evolution
of the system follows from the solution of (1) but use
instead the simple concept of the freeze-out approxima-
tion. This means that the relevant distribution is given
by thermodynamic equilibrium up to the freeze-out time.
After that, the relevant distribution evolves according to
reaction kinetics as described by the decay of excited
states. The different versions of Y rel

A,Z shown in Table 1
correspond to different model Hamiltonians as an approx-
imation to the nucleon Hamiltonian (2).

(iii) The system to be described is not homogeneous nuclear
matter as in thermodynamic equilibrium but is inhomoge-
neous. A local density approximation is problematic. In
addition, the relation between the Lagrange parameters
λi and the thermodynamic quantities, in particular the
densities nn(r, t̂), n p(r, t̂), is not the relation between
temperature, chemical potentials and density as known
from non-interacting, ideal quantum gases but is more
complex. Our aim is to find arguments to infer the den-
sity from the data.

The information of the properties of the observed nuclei,
see Table 1, leads to the Boltzmann-like distribution (classi-
cal limit, in general Fermi/Bose-like distributions)

Y (0)
A,Z ∝ n(0)

A,Z = gA,Z

(
2π h̄2

Amλ
(0)
T

)−3/2

e(BA,Z +(A−Z)λ
(0)
n +Zλ

(0)
p )/λ

(0)
T .

(5)

Because we don’t know the prefactor we consider only the
ratio YA,Z;α = YA,Z/Y4Heobs × 104, i.e., the isotope yield
relative to the observed yield of α particles. Following con-
vention, the observed yield of the α particles is fixed as
Y4Heobs;α = 10000.

We infer the Lagrange parameter values λ
(0)
i based on the

information about the observed nuclei by minimizing the sum
over the relative square deviation (Y (0)

A,Z;α−YA,Z;α)2/YA,Z;α .
For instance, considering the four lightest and most abun-
dant isotopes, i.e. the yield ratios of 3Hobs, 4Heobs, 6Heobs,
and 8Heobs, we determine the values of the three Lagrange
parameters λfinal

T = 0.8062 MeV, λfinal
n = −2.192 MeV,

λfinal
p = −17.702 MeV. The values for the corresponding

yields Y final
A,Z (we drop the index α) is shown in Table 1.

This approach is similar to that used in the Albergo deter-
mination of temperature and chemical potentials from the
observed yields of nucleons and nuclei from heavy ion colli-
sions [31]. However, we cannot identify the Lagrange param-
eters λ

(0)
i with the thermodynamic parameters temperature

and chemical potential of the nuclear system because, and

as stated above, the ideal energy functional (4) considers
only the ground states of the nuclei, and the interaction
between the nucleons/nuclei is neglected. In addition, the cor-
rect nonequilibrium distribution is given by ρ(t̂) (1) which
coincides with ρrel(t̂) only in thermodynamic equilibrium.

Evidently, our first approach which relates the observed
distribution to the binding energies of stable nuclei and their
degeneracies is not sufficient. There are further unstable
nuclei and excited states which should be taken into account.
In addition to the stable isotopes 1H, 2H, 3H, 3He, 4He we
have 6He and 8He which are unstable with respect to weak
processes (β-decay) but have a sufficiently long half-life so
that they are observed like stable nuclei. Other isotopes such
as 4H, 5He, 7He, 9He, 8Be are unstable with respect to the
strong interaction and decay immediately so that these pri-
mary nuclei are not detected as final yields. They should
appear in the relevant distribution if the model Hamiltonian
(4) contains the sum over all bound states. We have calculated
the expected yields Y final

A,Z of the unstable isotopes using the

Lagrange parameters λfinal
i . These are given in Table 1, col.

Y final
A,Z , in italic parentheses. We conclude that these unstable

nuclei may contribute to correlations in the nuclear system.
This problem, that also the formation of unstable nuclei are

expected, is solved by taking into account that the observed
distribution are not equilibrium distributions but the result
of a time evolution described by ρ(t̂) (1). To solve this in a
simple approximation, we assume a freeze-out scenario. Up
to the freeze-out time t̂ ′ = t̂freeze, only the information about
energy density and particle number density is sufficient to
describe the state of the system. The relevant distribution (3)
can be used to describe the system.

After this, a more detailed description of the system is nec-
essary where the occupation numbers of quasiparticle states
of the components are relevant, the corresponding Lagrange
parameters are the distribution functions. This stage of evolu-
tion is described by reaction kinetics, unstable nuclei decay
that feed the states of observed stable nuclei. The primary
distribution, described by the relevant statistical operator
ρrel(t̂freeze) and the yields Y rel

A,Z , is transformed to the yields
of detected nuclei YA,Zobs denoted as feeding in Section 2,
for instance Y3Hobs = Y3H + Y4H, etc.

Another consideration is the inclusion of excited states of
nuclei to characterize the relevant distribution, see the data
tables in Ref. [30]. Excited states contribute to the statisti-
cal weight of an isotope. For instance, the isotope 4H has
an excited state at 0.31 MeV with a degeneracy factor 3.
Assuming that this excited state is also populated at freeze-
out described by the relevant distribution, it decays and its
yield will be found in the corresponding final cluster state.
The statistical weight or intrinsic partition function of a spe-
cial channel characterized by {A, Z} contains not only the
bound states but also continuum correlations, see [32]. The
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threshold energy E thresh
A,Z denotes the edge of continuum states

and it is also shown in Table 1. In general, it is given by the
neutron separation energy Sn , but in some cases other decay
channels such as S2n (6He, 8He) or α-decay (8Be) determine
the edge of continuum states. At present, we neglect the con-
tribution of continuum correlations, but will discuss them
below in Sect. 4.1. The corresponding distribution is denoted
as Y rel,γ

A,Z . It includes excited bound states performing internal
transitions with emission of γ rays.

The account of excited states can be realized introducing
in Eq. (5), which considers only the ground state with lowest
energy, the prefactor Rγ

A,Z (λT ),

Rγ

A,Z (λT ) = 1 +
exc∑
i

gA,Z ,i

gA,Z
e−E A,Z ,i /λT , (6)

which is related to the intrinsic partition function, so that
Y γ

A,Z = Rγ

A,Z Y (0)
A,Z . The summation is performed over

all excited states, excitation energy E A,Z ,i and degener-
acy gA,Z ,i [30] , which decay to the ground state. The
result Y rel,γ

A,Z shown in Table 1 was obtained with the factor

Rγ
4,1(λT ) = 1 + 3/5e−0.31 MeV/λT for 4H, and Rγ

8,4(λT ) =
1 + 5e−3.03 MeV/λT for 8Be. No excited states below the
continuum edge are known for the other bound nuclei so
that the remaining factors Rγ

A,Z (T ) are unity. Assuming that

the unstable nucleus 4H feeds the measured yield of 3Hobs,
that 5He and 8Be feed 4Heobs, 7He feeds 6Heobs, and 9He
feeds 8Heobs, the optimization with respect to the measured
yields Y exp

A,Z using the least squares method gives the values

of the three Lagrange parameters λ
rel,γ
T = 1.2802 MeV,

λ
rel,γ
n = −3.1874 MeV, and λ

rel,γ
p = −16.5882 MeV.

The inferred yields Y rel,γ
A,Z for the final distribution repro-

duce nicely the measured values Y exp
A,Z for 2H, 3Hobs, and

6Heobs in relation to 4Heobs. It seems that 6Heobs is overesti-
mated, and 8Heobs is underestimated. Notably, the yields of
the unstable nuclei 5He and 7He which have been inferred
from the energy spectra of emitted α particles [13] are also
overestimated by the relevant distribution Y rel,γ

A,Z . The prompt
emission of protons and neutrons will be discussed below.

4 Relevant distribution derived from the full
Hamiltonian

The estimate Y rel,γ
A,Z should be improved taking into account

different effects to be discussed in the following.

(i) It is not consistent to consider only the excited bound
states below the edge of continuum states and to neglect
correlations in the continuum. In particular, 4H, 5He, 7He,

9He, and 8Be are not bound but appear as correlations in
the continuum. Continuum correlations should be also
considered for other, weakly bound nuclei such as 2H,
6He. We need a systematic treatment of the contribu-
tion of continuum correlations. This is possible with the
help of the generalized Beth-Uhlenbeck formula [33].
The corresponding relations are denoted as virial equa-
tions.

(ii) Instead of the approximation (4) where interaction
between nucleons and nuclei is neglected, we have to
consider in-medium effects if we treat the full Hamilto-
nian (2).

(iii) The nuclear system is not homogeneous. We should con-
sider the mean field near the scission point where both
main fragments are close together, and the nucleons form-
ing the neck region are not correctly described by a
homogeneous gas. This means that the full Hamiltonian
contains in addition to the interaction between the con-
stituents also the mean field V ext

τ (k, k′) of the main frag-
ments of scission.

4.1 Continuum correlations

A comprehensive discussion of the contribution of contin-
uum correlations in the case of 4H, 5He has been given in
[32] based on the generalized Beth-Uhlenbeck formula. For
2H extended discussions have been given earlier, see refer-
ences given in [32], and for 8Be, see also [34]. The model
calculations are compared to measured phase shift data. The
account of continuum correlations leads to the virial expan-
sion, which is represented by the prefactor Rvir

A,Z (λT ). The
virial expansion for the deuteron channel d (A = 2, Z = 1)
is obtained from the Beth-Uhlenbeck expression

Rvir
d (λT ) = 1 − e−E thresh

d /λT

+e−E thresh
d /λT

1

πλT

∫ ∞

0
d Ee−E/λT δd(E) (7)

where E denotes the c.m. energy of the n− p system describ-
ing the correlations of the deuteron channel above the contin-
uum edge. The scattering phase shifts are denoted as δd(E).
From the known values of these scattering phase shifts, see
[34], we have for instance the value Rvir

d (1.3 MeV) = 0.98,
see Appendix A .

The 4H channel is treated similarly. Because there is no
bound state, only the last term in (7) with the integral over
the scattering phase shifts in the t − n channel remains. The
corresponding virial coefficient in the t −n channel has been
calculated in [32] and parametrized introducing an effective
energy Eeff

t,n(T, nn) so that the value of the multiplier

Rvir
4,1(λT ) = e−Eeff

t,n(λT ,0)/λT +E thresh
4,1 /λT (8)

123



Eur. Phys. J. A (2020) 56 :238 Page 7 of 13 238

follows as Rvir
4,1(1.3 MeV) = 0.06064 for the neutron density

nn = 0.
For the 5He channel, the virial coefficient using the α − n

scattering phase shifts is calculated, see [32,34]. For the
reduction factor of 5He we find from the relation similar to
(8), and using the parametrization Eeff

α,n(λT , 0) given in [32],
the value Rvir

5,2(1.3 MeV) = 0.70441. For 8Be, the virial coef-
ficient using the α − α scattering phase shifts is calculated,
see [32,34].

It is not easy to calculate the continuum correlations for
arbitrary clusters {A, Z}. It seems that continuum correla-
tions are important for weakly bound states, so that the edge
of the continuum E thresh

A,Z is of relevance. Therefore we intro-
duce an interpolation formula, in units of MeV,

Rvir
A,Z (λT ) = 1

e−(E thresh
A,Z +1.129)/0.204 + 1

1

e−(E thresh
A,Z +2.45)/λT + 1

(9)

which reproduces the values given above for 2H, 4H, and 5He
at λT = 1.3 MeV.

We used this interpolation formula to infer the reduction
factor Rvir

A,Z (λT ) for the remaining isotopes as given in Table

1. It replaces Rγ

A,Z (6) so that Y rel,vir
A,Z = Rvir

A,Z Y (0)
A,Z . The

measured yields Y exp
A,Z are better reproduced, in particular

the results for 4H, 5He and 7He are significantly modified.
However, even with the account of continuum correlations
the yield of 6He is overestimated as before, and 8He and 8Be
remain underestimated. We have to consider other effects
which are of relevance to calculate the relevant distribution.

4.2 Pauli blocking

Another interesting effect is the account of medium modifica-
tions, that should be considered within a quantum statistical
approach of the nuclear Hamiltonian (2), treating the interac-
tion between the components. In lowest order, we have self-
energy shift and Pauli blocking, see [32] and references given
there. If we neglect the momentum dependence of the single-
nucleon self-energy shift (rigid shift approximation), the self-
energy shifts of bound and scattering states are identical so
that the binding energy is not changed. Then, it can be incor-
porated in a shift of the parameters λn, λp. The Pauli blocking
leads to a decrease of the binding energy (we denote the dis-
appearance of the binding energy as the Mott effect). Because
it is related to the occupation of single-particle nucleon states
by the medium, it is sensitive to the nucleon densities nn, n p,
or the total nucleon density nB = nn + n p and the proton
fraction.

The effect of Pauli blocking is expected to lead to dissolu-
tion of weakly bound states which are shifted to the contin-
uum. The Pauli blocking has been considered for the bound
states in former publications, see [32], where also the effect

of Pauli blocking for 4H and 5He is calculated. To evaluate
the Pauli blocking shifts we use the results given in [32]. For
the unstable nuclei 4H, 5He we use the Pauli blocking shifts
of the constituent cluster t, α, respectively, and the density-
dependent contribution of scattering phase shifts according
to the generalized Beth-Uhlenbeck formula.

Now we infer the effective prefactor Reff
A,Z (λT ) for the dif-

ferent components {A, Z} of the relevant distribution, which
are needed to reproduce the observed yields, and suppose
that density effects are responsible for these inferred val-
ues. Because density effects become more visible for weakly
bound systems, we consider the reduction factor Reff

6,2(λT )

for 6He as an unknown quantity to be determined from the
fitting of the parameters (the threshold energy for the contin-
uum states E thresh

6He
= 0.975 MeV is small compared also to

the deuteron case where it amounts to 2.225 MeV). The pref-
actors for 2H, 3H, 4H, 3He, 4He, 8He, 9He, and 8Be remain
unchanged and coincide with Rvir

A,Z (λT ), see Table 1, but for
5He, 6He, and 7He, Reff

A,Z is very different from Rvir
A,Z . We

know the yields of 5He, Y5,2/Y4,2 = 0.21 [13] and the yield
of 7He, Y7,2/Y6,2 = 0.21 [13]. We also know the final yield
of 6He which is given in Ref. [13] as 270, see Table 1. We can
infer the effective reduction factors Reff

A,Z (λT ) that reproduce
these values. The values shown in Table 1 are constructed this
way. They are lower than the values Rvir

A,Z (λT ). This means

that Y rel,eff
A,Z for 5He, 6He, and 7He was calculated by using the

experimental values of the yields to calculate Reff
A,Z and then

with that, we calculated Y rel,eff
A,Z = Y exp

A,Z for these three iso-

topes. Yields for the isotopes 4H, 3He are not observed so that
we have only the predictions Y rel,eff

A,Z for these isotopes, also

for 8Be we give only predictions because the experimental
errors are quite large.

We remember that taking into account only the virial
expansion, i.e., the contribution of continuum correlations,
6He is overestimated, 8He is underestimated. A possible
explanation may be the small binding energy 0.975 MeV
below the continuum edge for 6He which makes this state
more sensitive to medium shifts so that the Pauli blocking
is stronger. Note that an alternative explanation could be the
formation of tetraneutron correlations in neutron matter [35].
In the effective approximation Y rel,eff

A,Z only 2H, 3H, 4He, and
8He have been used to determine the Lagrange parameters,
because the threshold energy for the continuum is larger.
The measured contributions of 5He, 7He have been adopted,
values for 9He are assumed. The multipliers Reff

A,Z (λT ) are

determined from the measured yields of 5He, 6He, 7He. It is
found that the inferred values Reff

A,Z (λT ) are smaller than the

values Rvir
A,Z (λT ) for these isotopes.

We conclude that the result Y rel,vir
A,Z , in which continuum

correlations are taken into account as virial coefficients, but
medium corrections are neglected, has some deficits.
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(i) The yield of 6He is overestimated. Because of the weak
binding of this isotope (given by the small threshold
energy for the continuum edge), compared to others
including 8He, the dissolution of the bound state in dense
matter may be of relevance. Instead of a calculated pref-
actor Rvir

6,2(λT ) = 0.9453 for 6He, the data give the

observed prefactor Reff
6,2(λT ) = 0.69608.

(ii) The yield of 5He, 7He is also overestimated. For 5He,
instead of the calculated prefactor Rvir

5,2(λT ) = 0.7044

the value Reff
5,2(λT ) = 0.65957 follows from the data. For

7He, the calculated virial value Rvir
7,2(λT ) = 0.821 for the

prefactor is replaced by the empirical value Reff
7,2(λT ) =

0.3988, see Table 1. Note that the values have large error
bars. Having calculated the empirical values Reff

A,Z of the
reduction factor of the light nuclei, after the subtraction of
the effect of continuum correlations, the remaining part
contains the in-medium effects. From this, we estimate
the neutron density of the medium at freeze-out time.
From the 5He values and the results given in the paper
[32], the value nn = 0.000254 fm−3 is obtained if a
relation similar to Eq. (8) is used. The density dependence
of Eeff

α,n(λT , nn) is given in [32].

For 6He, the inferred prefactor Reff
6,2(λT ) = 0.6961

inserted in Eq. (9) gives a shift of E of about 1.7 MeV.
The Pauli blocking shift according to [32] is 4 × 532.0
e−0.051T/MeVnn MeV fm3 (separation of two neutrons,
FA,Z = 2(Nnn + Zn p)/(AnB) ≈ 2 for small Yp = n p/nB)
so that the value nn = 0.0007988 fm−3 is obtained. The pref-
actor for 7He is about 0.5. Such values are obtained for 4H at
a density of about nn = 0.002 fm−3. Note that the measured
values have large errors, and also the treatment of medium
effects should be improved.

A more recent analysis of experimental data has been per-
formed in Ref. [29]. Instead of the ratio 6He/4He = 0.031(2)
given in [13], a value 0.041(5) has been presented. A higher
value of 6He/4He would also give a higher value of the prefac-
tor Reff

6,2(λT ) = 0.9206 which corresponds to the E = −0.50
MeV according to Eq. (9) so that the Pauli blocking shift
is only 0.475 MeV. The corresponding density follows as
nn = 0.000223 fm−3, in better agreement with the former
result nn = 0.000254 fm−3.

The measured value Y8,4 = 10(6) for 8Be [24] also under-
lines the better fit using the distribution Y rel,eff

A,Z .

5 External mean-field potential

A further improvement of the treatment of the nuclear Hamil-
tonian (2) is to take into account the interaction with the two
large fragments after scission. This can be done introduc-

ing a mean field, produced by the strong nucleon–nucleon
interaction as well as by the Coulomb interaction.

The neck region where clusters are formed is influenced
by the larger fission fragments. There is the Coulomb field
which determines the kinetic energy of the emitted particles,
but also the strong interaction described, e.g., by the pion-
exchange potential. These interactions should be added to
the Hamiltonian as external fields V ext

τ , Eq. (2). Obviously,
the use of results such as the yields of the isotopes which
are obtained for homogeneous systems, is only possible in
the local density approximation (LDA), but demands further
discussions. The bound state clusters are compact objects,
the wave functions are extended over a region of some few
fm. A local density approximation may be possible. In con-
trast, the Fermi wave number corresponding to baryon den-
sity nB follows as kF = (3π2nB/4)1/3 (symmetric matter).
For nB = 0.0004 fm−3, the value kF = 0.144 fm−1 follows.
The wave function of neutrons is rather extended so that a
LDA approach is not justified.

We assume that the relevant fragment distribution, includ-
ing the two large fragments as well as the light clusters or
correlations, are already formed at the scission point, as also
known from the scission point yield (SPY) model, see, e.g.,
[36–40] for recent related work. Hartree–Fock–Bogoliubov
and related mean-field calculations have been performed for
fission. To describe cluster formation, one has to go beyond a
mean-field approach. A similar problem arises when describ-
ing the α decay of heavy nuclei where a quartetting wave
function approach has been proposed to describe the prefor-
mation of α-like correlations [41,42].

As a simple estimate we consider the superposition of two
Woods-Saxon potentials at distance R1 + R2 + dsc. For sim-
plicity we assume the symmetric case where 252Cf decays
into two fragments approximately 124

48 Cd (in general, asym-
metric decays occur. Experimentally, for 252Cf, the highest
yield values were found for 4He + 101Zr + 147Ba, see [37]) and
calculate the Woods-Saxon mean-field potentials according
to [43]

V mf,WS
n/p (r) = −52.06

1 ∓ 0.639(N − Z)/A

1 + e(r/fm−1.26A1/3)/0.662
MeV (10)

for neutrons (upper sign). For protons (lower sign) we have
to add the Coulomb potential of both fragments

V Coul(r) = Ze2

{
3R2

A − r2

2R3
A

, r ≤ RA,
1

r
, r > RA

}

(11)

with the fragment radius RA = 1.26A1/3 fm [43], A = 124.
The parameter dsc for the scission point is under discus-

sion, a recent estimate [44] gives the range 4–6.5 fm and a
proposed value of 5.7 fm. The distance between the fragment
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Fig. 1 Mean-field (Woods-Saxon plus Coulomb) potentials of two
nuclei 124

48 Cd at distance 2RA + dsc, RA = 6.28 fm, dsc = 5.7 fm.
Neutrons (blue) and protons (red)

center of mass points is 2RA+dsc = 18.26 fm, and the mean-
field potential of the neck region is given by the superposition
of the mean field of both fission fragments at position z =
±(RA + dsc/2). The mean-field (mf) potentials for neutrons
and protons along the symmetry line z is shown in Fig. 1. The
values at the scission point z = 0 are V mf,WS

n (0) = −1.1867
MeV, V mf,WS

p (0) + V Coul(0) = 13.549 MeV. Larger esti-
mates of the scission parameter dsc are reported for ternary
fission with larger clusters such as 50Ca [45,46] which will
not be discussed here.

It is possible to estimate the neutron density at the scission
point and to understand whether the density values derived
from the Pauli blocking estimates are reasonable. For an
exploratory calculation, we use the parametrization of neu-
tron/proton densities in nuclei

nn/p(r) = n0,n/p

1 + e(r−Rn/p)/an/p
(12)

with Rn = (0.953N 1/3 + 0.015Z + 0.774) fm, Rp =
(1.322Z1/3 + 0.007N + 0.0224) fm, and diffusivities an =
(0.446 + 0.072N/Z) fm, ap = (0.449 + 0.071Z/N ) fm
[47]. The neutron density at distance dsc/2 = 2.85 fm from
the surface is nn = 0.0005965 fm−3 for each 124

48 Cd nucleus
so that the value of the neutron density in the neck region
is about nn(z = 0) = nscission

n ≈ 0.0012 fm−3. The pro-
ton density at this distance is estimated as n p(z = 0) =
nscission

p ≈ 0.000315 fm−3. If the distance dsc for scission is
larger, dsc/2 = 4 fm, the corresponding densities are smaller,
nscission

n ≈ 0.000154 fm−3, nscission
p ≈ 0.000029 fm−3.

At this point we emphasize that the treatment of the full
Hamiltonian including the external mean-field potential leads
to the result that the cluster distributions, including the for-
mation of light nuclei, happens at scales of the rms radii
which are of the order 1–3 fm. The center-of-mass (c.m.)

motion of the cluster is determined by the external poten-
tial, whereas the intrinsic properties are determined locally.
Intrinsic energy, but also excitations of nuclei and their dis-
tribution, are determined by the local properties. The wave
function of the c.m. motion is also extended but may be
approximated by a quasi-classical approximation. This is not
possible for the protons and neutrons which are described
by extended states. We cannot treat them like plane waves
describing free particles but have to use, e.g., quasiparticle
states in the mean-field potential known from HFB calcula-
tions.

As a consequence, single-particle modifications of the in-
medium few-particle Schrödinger equation like the Hartree-
Fock self-energy or the Pauli blocking should be expressed in
terms of the quasiparticle wave function and the occupation
numbers of these quasiparticle states. It is possible to intro-
duce Wigner functions and to perform a local approximation,
but it has to be noted that Pauli blocking and exchange inter-
action are nonlocal.

For the yields we conclude that all bound states of the light
isotopes may be described approximately by local parame-
ters, in particular the local density approximation with the
mean field at the scission point z = 0. The corresponding
relevant distribution evolves to the final yields and unsta-
ble states feed the corresponding stable nuclei seen in the
experiment. The distribution of neutrons and protons is not
described by a local density approximation but by quasi-
particle states obtained from the HFB calculation or other
approaches to solve the in-medium Schrödinger equation for
a nucleon moving in an external, mean-field potential. For
the relevant distribution, the neck densities nrel

n , nrel
p at the

scission point appear as new parameters. The partial densi-
ties nrel

n , nrel
p are not described by the Lagrange parameter

λi as in a local density distribution, but need the solution of
the Schrödinger equation with an position dependent exter-
nal potential. The relevant distribution of quasiparticle states
evolve also to the final distribution which is not described
here, but have been discussed extensively in the literature
(e.g., Boltzmann equations). At the moment, we consider
nrel

n , nrel
p as additional parameters characterizing the distri-

bution of clusters.

6 Conclusions: relation to thermodynamics

The ternary fission, considered in this work, is a nonequi-
librium process. A fundamental approach, for instance the
method of the nonequilibrium statistical operator [15], is
required for a systematic treatment. An indispensable req-
uisite is the introduction of the relevant statistical opera-
tor reflecting the informations we have about the evolving
system. In heavy-ion collisions the hot and dense nuclear
matter evolves like a fireball, described by local thermo-
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dynamic equilibrium. In the case of spontaneous fission,
the concept of a fireball is hard to accept if one assumes
that the nucleus before fission is described as a pure quan-
tum state. The freeze-out concept is very successful in
describing the formation of clusters and the measured yields,
but appears presently as a semi-empirical approach which
requires more sophisticated reasoning within a fundamen-
tal nonequilibrium approach. We use here a information-
theoretical approach which does not require the concept of
equilibrium.

We have introduced Lagrange parameters λi to character-
ize the state of the system, in particular the distribution func-
tion for the different components of nuclear matter. Only in
thermodynamic equilibrium are these parameters equivalent
to the thermodynamic quantities T, μn, μp. This is not valid
in the fission process considered here. We have a nonequi-
librium situation. However, the Lagrange parameter λi may
be considered as the nonequilibrium generalization of these
thermodynamic parameters. For instance, the large difference
λn − λp ≈ 13.6 MeV may be compared with the difference
12.4 MeV of the mean-field potentials shown in Fig. 1 at
z = 0.

The neck region of the fission process is not homogeneous
but exhibits strong gradients in the density distribution, the
nuclear mean-field potential and the Coulomb potential. This
has to be taken into account if statistical models are used to
explain the observed yields. In our approach, the construction
of the relevant statistical operator ρrel has to be improved
considering the full Hamiltonian, which contains the position
dependent external potential. A mean-field (Hartree-Fock)
calculation can provide us with more realistic single-particle
orbitals. A local-density approximation where in equilibrium
λτ is interpreted as chemical potential μτ to calculate the
neutron/proton density within the ideal Fermi gas model is
not valid. In contrast to the cluster states which are localized
in the range of few fm, the single-nucleon states are extended
and have to be calculated for the mean-field potential V mf

τ (r)
as function of the position r.

Within this work, we have discussed the information-
theoretical approach which leads, in the simplest approxi-
mation, to a Boltzmann-like distribution. We improved the
treatment of the Hamiltonian of the nucleon system taking
the formation of excited, unstable states into account, as well
as their decay. In addition, we considered correlations in the
continuum and in-medium effects. This way we put forward
a quantum statistical treatment of the many-nucleon system.
Obviously, the excited states and the resonances should be
treated in a manner similar to the stable bound states observed
in the final distribution. The inclusion of correlations in the
continuum has to be considered, for instance, using the scat-
tering phase shifts as shown by the Beth–Uhlenbeck formula.
This improves the treatment of very short-living excitations,
but such broad resonances cannot be treated like stable, well-

defined bound states as done in a simple nuclear statistical
equilibrium calculation.

Of particular importance are in-medium modifications
which lead to a modification of the quasiparticle energy and
possibly the dissolution of bound states (Mott effect). This
is of special significance for the weakly bound, neutron-rich
exotic nuclei which are strongly influenced by the medium.
They may be used as a sonde to probe the environment. The
strong reduction of the yield of the exotic nuclei, observed in
many ternary fission experiments, may be explained as a den-
sity effect. It gives information about the state of the nucleon
system at the time instant where the chemical composition
freezes out.

Further considerations such as the formation of heavier
nuclei like droplet condensation [7] have to be included, treat-
ing nucleation as a nonequilibrium process. Future work, in
particular the treatment of the external mean-field potential,
may give a more detailed description of the nonequilibrium
properties and the evolution of cluster distribution in ternary
fission processes.

Acknowledgements This work was supported by the German Research
Foundation (DFG), Grant # RO905/38-1, the United States Depart-
ment of Energy under Grant # DE-FG03-93ER40773, the FCT (Por-
tugal) Projects No. UID/FIS/04564/2019 and UID/FIS/04564/2020,
and POCI-01-0145-FEDER-029912, and by PHAROS COST Action
CA16214. H.P. acknowledges the Grant CEECIND/03092/2017 (FCT,
Portugal).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data Availibility Statement This manuscript has associated data in a
data repository. [Authors’ comment: The data of this publication are
enlisted in Tables 1–3.].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Virial expansion

Instead of considering unbound systems (resonances) as
bound states, we can calculate their contribution to the
density (continuum correlation) according to the Beth-
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Table 2 Effective bound state energy and virial correction expressed by the multiplying factor Reff
d (T ) in the n − p channel containing the deuteron

as bound state

T [MeV] bpn(T ) [34] Eeff
d (T ) [MeV] Reff

d (T ) Ea,r0
d (T ) [MeV] Ra,r0

d (T ) Ẽa,r0
d (T ) [MeV] R̃a,r0

d (T )

1 19.4 –2.2132 0.9883 –2.1953 0.97074 –2.2089 0.98403

2 6.10 –2.1125 0.9453 –1.9856 0.88718 –2.0541 0.91808

3 4.01 –1.9103 0.9004 –1.6102 0.81469 –1.7262 0.84683

4 3.19 –1.6319 0.8622 –1.1112 0.75695 –1.2486 0.78341

5 2.74 –1.2796 0.8277 –0.5085 0.70942 –0.6404 0.72839

6 2.46 –0.8887 0.8003 0.1891 0.66875 0.0852 0.68043

7 2.26 –0.4433 0.7753 0.9762 0.63298 0.9180 0.63826

8 2.11 0.0428 0.7532 1.8489 0.60095 1.8498 0.60088

9 2.00 0.5300 0.7363 2.8030 0.57197 2.8735 0.56751

10 1.91 1.0493 0.7208 3.8348 0.54554 3.9826 0.53753

Table 3 Effective bound state energy and virial correction expressed by the multiplying factor Reff
n (T ) in the n − n channel

T [MeV] bn(T ) [34] Eeff
n (T ) [MeV] Ea,r0

n (T ) [MeV] Ra,r0
n (T ) Ẽa,r0

n (T ) [MeV] R̃a,r0
n (T )

1 0.288 1.1128 1.0594 0.34666 1.5096 0.22099

2 0.303 2.1620 2.1200 0.34645 3.0388 0.21884

3 0.306 3.2243 3.2355 0.34010 4.6913 0.20935

4 0.307 4.2908 4.4108 0.33197 6.4569 0.19905

5 0.308 5.3532 5.6559 0.32265 8.3301 0.18899

6 0.308 6.3532 6.9792 0.31248 10.3071 0.17945

7 0.308 7.3532 8.3845 0.30186 12.3835 0.17049

8 0.309 8.5486 9.8724 0.29111 14.5542 0.16214

9 0.310 9.5987 11.4413 0.28048 16.8142 0.15439

10 0.311 10.6447 13.0883 0.27014 19.1583 0.14722

Uhlenbeck formula. In particular, for 2H, deuteron channel,
we have (c.f. [33,34])

bpn(T ) = 3

21/2

[
e2.225 MeV/T − 1 + 1

πT

∫ ∞

0
d Ee−E/T δp,n(E)

]

(A1)

(sum of all phase shifts in c.m. system). The prefactor follows
as

Rvir
d (T ) = 21/2

3
bpn(T )e−2.225 MeV/T . (A2)

Using the values given in [34] we find Rvir
d (1 MeV) =

0.9883, Rvir
d (2 MeV) = 0.9453, Rvir

d (3 MeV) = 0.9004,
see also Table 2. The effective binding energy follows as

Beff
d (T ) = −Eeff

d (T ) = −T ln

[
21/2

3
bpn(T )

]
. (A3)

Using the n −n scattering data, the values for bn(T ) (full)
are given in Ref. [34],

bn(T ) = 21/2

πT

∫ ∞

0
d Ee−E/T δn,n(E) − 1

25/2
. (A4)

The effective binding energy follows as

Beff
n (T ) = −Eeff

n (T ) = −T ln

[
1

21/2

(
bn(T ) + 1

25/2

)]

(A5)

and the prefactor

Rvir
n (T ) = 1

πT

∫ ∞

0
d Ee−E/T δn,n(E). (A6)

Values are shown in Tables 2, 3. The superscripts a, r0

denotes scattering phase shifts taken from the scattering
length and the effective range. The tildes values are calcu-
lated with the quasiparticle correction − sin[2δ(E)]/2, see
[32].

For 5He we consider

bα,n(T ) =
(

5

4

)3/2 1

πT

∫ ∞

0
d Ee−E/T δα,n(E) (A7)

(c.m. system) also considered in [34]. The prefactor is

123



238 Page 12 of 13 Eur. Phys. J. A (2020) 56 :238

Rvir
5He(T ) =

(
4

5

)3/2 1

4
bα,n(T ) e28.3 MeV/T −27.56 MeV/T

(A8)

(the degeneracy factor 1/4 follows from the degeneracy fac-
tor in the phase shifts). This is the factor to multiply the
NSE ground state contribution. Using the values given in
[34] we find Rvir

5He
(1 MeV) = 0.5661, Rvir

5He
(2 MeV) =

0.5853, Rvir
5He

(3 MeV) = 0.5883.

For 8Be we consider

bα(T ) = 23/2 1

πT

∫ ∞

0
d Ee−E/T δα(E) + 1

25/2
(A9)

(c.m. system) also considered in [34]. The prefactor is

Rvir
8Be(T ) =

(
1

2

)3/2 [
bα(T ) − 1

25/2

]
e56.6 MeV/T −56.496 MeV/T .

(A10)

Using the values given in [34] we find Rvir
8Be

(1 MeV) =
0.9894, Rvir

8Be
(2 MeV) = 1.46855, Rvir

8Be
(3 MeV) = 1.9997.

Calculations based on a separable potential approach have
been performed in [32]. Using the expressions given there,
the reduction factor for 4H is 0.0654. Considering only the
P3/2 channel of the α − n scattering, the prefactor for 5He is
0.70716.

The calculation of the contribution of the continuum is
more complex for the remaining isotopes. Calculations with
separable potentials are possible, but the potential param-
eters must be fitted to scattering data. We assume that the
situation with 7He and 9He is comparable to 5He and take
a similar reduction factor. Because these isotopes give only
small contributions, a rough estimate is sufficient.

We have also to estimate the contribution of scattering
states for isotopes with stable (with respect to strong inter-
action) ground states, as familiar from the virial expansion.
This is known for 2H where we can use the result for the virial
expansion Rvir

d (1.4) = 0.9711 given above. For 4He, but also
for 3H, 3He, the scattering state contributions are irrelevant
because the continuum threshold (Sn) is high. For 6He, 8He,
where we have also a considerable reduction Rγ

A,Z , we expect
a significant contribution from continuum correlations. We
consider

Rvir
A,Z (T ) = 1 − e−Sn/T

[
1 − 1

πT

∫ ∞

0
d Ee−E/T δA,Z (E)

]

(A11)

with scattering phase shifts δA,Z (E) as function of the energy
E in the c.m. system. We can adapt phase shifts from other
cases such as n−p or α−n scattering, or perform calculations
with a separable potential (e.g. 6He, with γ = 1.791 fm−1 as
for 5He, but λ = 788.9 instead of 670 MeV fm3 to reproduce
the bound state energy, see Ref. [32], Eq. (B1) for the intro-
duction of separable potentials and the parameters λ, γ ) to

estimate this contribution. The phase shifts are only weakly
decreasing in the low-energy region ≈ 1 MeV of relevance,
we obtain Rvir

6He
(1.2 MeV) = 0.9419, Rvir

8He
(1.2 MeV) =

0.9841.
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