Skip to main content
Log in

The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 1. Structure

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The Monte Carlo method has been employed to study the effect of temperature on the structure and the mechanism of retaining condensed water phase nuclei on the surface of the basal face of a silver iodide crystal. Comparative calculations of spatial correlation functions and computer images of vapors being condensed at 260 and 320 K have indicated an increased stability of monomolecular water-film spots with respect to thermal fluctuations. The disturbances of the regular “honeycomb” structure have a collective character and occur according to the “domino principle”; i.e., the rupture of a hydrogen bond between neighboring molecules releases enhanced libration motions of the latter, which, in turn, provoke the rupture of bonds with other neighbors. In accordance with this scenario, the distortion of the hexagonal structure of the film under the action of thermal fluctuations develops with the formation of growing spots of destruction. The thermal fluctuations significantly affect the orientational molecular order and the degree of clustering on the surface. The positions of molecules relative to the ions of the surface crystallographic layer of a substrate weakly depend on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zalikhanov, M.Ch., Fedchenko, L.M., Ekba, Ya.A., Sviridenko, A.S., Kaplan, L.G., and Atabiev, M.D., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effects on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 11.

    Google Scholar 

  2. Zimin, B.I. and Shipilov, O.I., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effects on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 59.

    Google Scholar 

  3. Bakhsoliani, M.G., Bessonov, V.A., Grishin, Yu.P., Iordanskii, M.A., Kartsivadze, A.I., Nesmeyanov, P.A., Salukvadze, T.G., Simonov, A.Ya., Sutugin, A.G., and Tsitskishvili, M.S., Abstracts of Papers, Vsesoyuz. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Effects of Hail Processes and Prospects of Refining of Ice-Forming Reagents for Active Effect Practice”), Nal’chik, 1989, Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 136.

  4. Leskov, B.N., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effect on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 86.

    Google Scholar 

  5. Bruintjes, R., Bull. Am. Meteorol. Soc., 1999, vol. 80, p. 805.

    Article  Google Scholar 

  6. Pruppacher, H.R. and Klett, J.D., Microphysics of Clouds and Precipitation, Dordrecht: Kluwer Academic, 1997.

    Google Scholar 

  7. Hegg, D.A. and Baker, M.B., Rep. Prog. Phys., 2009, vol. 72, p. 056801.

    Article  Google Scholar 

  8. Deller, R.C., Vatish, M., Mitchell, D.A., and Gibson, M.I., Nat. Commun., 2014, vol. 5, p. 3244.

    Article  Google Scholar 

  9. Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., Kim, N.S., and Shkodkin, A.V., in Tr. UkrNIGMI, Bakhanova, R.A., and Osokina, I.N., Eds., Moscow: Gidrometeoizdat, 1991, no. 242, p. 102.

    Google Scholar 

  10. Sakong, S., Forster-Tonigold, K., and Groß, A., J. Chem. Phys., 2016, vol. 144, p. 19470.

    Article  Google Scholar 

  11. Naderian, M. and Groß, A., J. Chem. Phys., 2016, vol. 145, p. 094703.

    Article  Google Scholar 

  12. Zheng, T., Wu, C., Chen, M., Zhang, Y., and Cummings, P.T., J. Chem. Phys., 2016, vol. 145, p. 044702.

    Article  Google Scholar 

  13. Seenivasan, H. and Tiwari, A.K., J. Chem. Phys., 2014, vol. 140, p. 174704.

    Article  CAS  Google Scholar 

  14. Futera, Z. and English, N.J., J. Chem. Phys., 2016, vol. 145, p. 204706.

    Article  Google Scholar 

  15. Billman, C.R., Wang, Y., and Cheng, H.-P., J. Chem. Phys., 2016, vol. 144, p. 064701.

    Article  Google Scholar 

  16. Sosso, G.C., Tribello, G.A., Zen, A., Pedevilla, P., and Michaelides, A., J. Chem. Phys., 2016, vol. 145, p. 211927.

    Article  Google Scholar 

  17. Lupi, L., Peters, B., and Molinero, V., J. Chem. Phys., 2016, vol. 145, p. 211910.

    Article  Google Scholar 

  18. Lupi, L., Kastelowitz, N., and Molinero, V., J. Chem. Phys., 2014, vol. 141, p. C508.

    Article  Google Scholar 

  19. Ramirez, R., Singh, J.K., Müller-Plathe, F., and Böhm, M.C., J. Chem. Phys., 2014, vol. 141, p. 204701.

    Article  Google Scholar 

  20. Khan, S. and Singh, J.K., Mol. Simul., 2014, vol. 40, p. 458.

    Article  CAS  Google Scholar 

  21. Lupi, L., Hudait, A., and Molinero, V., J. Am. Chem. Soc., 2014, vol. 136, p. 3156.

    Article  CAS  Google Scholar 

  22. Lupi, L. and Molinero, V., J. Phys. Chem. A, 2014, vol. 118, p. 7330.

    Article  CAS  Google Scholar 

  23. Ho, T.A. and Striolo, A., Mol. Simul., 2014, vol. 40, p. 1190.

    Article  CAS  Google Scholar 

  24. Kobayashi, K., Liang, Y., Sakka, T., and Matsuoka, T., J. Chem. Phys., 2014, vol. 140, p. 144705.

    Article  Google Scholar 

  25. Shevkunov, S.V., Dokl., 2013, vol. 449, p. 402.

    Google Scholar 

  26. Shevkunov, S.V., Colloid J., 2013, vol. 75, p. 444.

    Article  CAS  Google Scholar 

  27. Fraux, G. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 216101.

    Article  Google Scholar 

  28. Glatz, B. and Sarupria, S., J. Chem. Phys., 2016, vol. 145, p. 211924.

    Article  Google Scholar 

  29. Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2015, vol. 119, p. 9049.

    Article  CAS  Google Scholar 

  30. Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2016, vol. 120, p. 2291.

    Article  CAS  Google Scholar 

  31. Shevkunov, S.V., Dokl., 2010, vol. 433, p. 761.

    Google Scholar 

  32. Shevkunov, S.V., JETP, 2009, vol. 109, p. 237.

    Article  CAS  Google Scholar 

  33. Shevkunov, S.V., JETP., 2009, vol. 135, p. 510.

    Google Scholar 

  34. Vonnegut, B., J. Appl. Phys., 1947, vol. 18, p. 593.

    Article  CAS  Google Scholar 

  35. Yu, H.S., Li, S.L., and Truhlar, D.G., J. Chem. Phys., 2016, vol. 145, p. 130901.

    Article  Google Scholar 

  36. Kolb, M.J., Calle-Vallejo, F., Juurlink, L.B.F., and Koper, M.T.M., J. Chem. Phys., 2014, vol. 140, p. 134708.

    Article  Google Scholar 

  37. Pedroza, L.S., Poissier, A., and Fernandez-Serra, M.-V., J. Chem. Phys., 2015, vol. 142, p. 034706.

    Article  Google Scholar 

  38. Jin, Y. and Bartlett, R.J., J. Chem. Phys., 2016, vol. 145, p. 034107.

    Article  Google Scholar 

  39. Wu, D.-Y., Duan, S., Liu, X.-M., Xu, Y.-C., Jiang, Y.-X., Ren, B., Xu, X., Lin, S.H., and Tian, Z.-Q., J. Phys. Chem. A, 2008, vol. 112, p. 1313.

    Article  CAS  Google Scholar 

  40. Fernandez-Serra, M.V., Ferlat, G., and Artacho, E., Mol. Simul., 2005, vol. 31, p. 361.

    Article  CAS  Google Scholar 

  41. Burke, K., Cancio, A., Gould, T., and Pittalis, S., J. Chem. Phys., 2016, vol. 145, p. 054112.

    Article  Google Scholar 

  42. Izadi, S. and Onufriev, A.V., J. Chem. Phys., 2016, vol. 145, p. 074501.

    Article  Google Scholar 

  43. Walton, J.R., J. Phys. Chem. A, 2016, vol. 120, p. 8347.

    Article  CAS  Google Scholar 

  44. Xu, W., Lan, Z., Peng, B.L., Wen, R.F., and Ma, X.H., J. Chem. Phys., 2015, vol. 142, p. 054701.

    Article  CAS  Google Scholar 

  45. Terranova, U. and De Leeuw, N.H., J. Chem. Phys., 2016, vol. 144, p. 094706.

    Article  Google Scholar 

  46. Bone, S.E., Bargar, J.R., and Sposito, G., Environ. Sci. Technol., 2014, vol. 48, p. 10681.

    Article  CAS  Google Scholar 

  47. Hyun, S.P., Davis, J.A., Sun, K., and Hayes, K.F., Environ. Sci. Technol., 2012, vol. 46, p. 3369.

    Article  CAS  Google Scholar 

  48. Wu, Y., Tepper, H.L., and Voth, G.A., J. Chem. Phys., 2006, vol. 124, p. 024503.

    Article  Google Scholar 

  49. Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.

    Article  Google Scholar 

  50. Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184705.

    Article  Google Scholar 

  51. Shevkunov, S.V., Russ. J. Phys. Chem., 2007, vol. 81, p. 2047.

    Article  CAS  Google Scholar 

  52. Shevkunov, S.V., Dokl., 2011, vol. 438, p. 752.

    Google Scholar 

  53. Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 589.

    Article  CAS  Google Scholar 

  54. Shevkunov, S.V., Russ. J. Phys. Chem., 2013, vol. 87, p. 1654.

    Article  CAS  Google Scholar 

  55. Shevkunov, S.V., Zh. Fiz. Khim., 2005, vol. 79, p. 1860.

    Google Scholar 

  56. Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 370.

    Article  CAS  Google Scholar 

  57. Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 380.

    Google Scholar 

  58. Shevkunov, S.V., JETP, 2008, vol. 107, p. 965.

    Article  CAS  Google Scholar 

  59. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.

    Article  CAS  Google Scholar 

  60. Shevkunov, S.V., High Temp., 2015, vol. 53, p. 259.

    Article  CAS  Google Scholar 

  61. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 240.

    Article  CAS  Google Scholar 

  62. Hu, X.L. and Michaelides, A., Surf. Sci., 2008, vol. 602, p. 960.

    Article  CAS  Google Scholar 

  63. Reinhardt, A. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 084501.

    Article  Google Scholar 

  64. Moustafa, S.G., Schultz, A.J., and Kofke, D.A., J. Chem. Phys., 2013, vol. 139, p. 084105.

    Article  Google Scholar 

  65. Abascal, J.L.F. and Vega, C., J. Chem. Phys., 2005, vol. 123, p. 234505.

    Article  CAS  Google Scholar 

  66. Parrinello, M., Rahman, A., and Vashishta, P., Phys. Rev. Lett., 1983, vol. 50, p. 1073.

    Article  CAS  Google Scholar 

  67. Abascal, J.L.F., Sanz, E., Fernandez, G.R., and Vega, C., J. Chem. Phys., 2005, vol. 122, p. 234511.

    Article  CAS  Google Scholar 

  68. Hale, B.N. and Kiefer, J., J. Chem. Phys., 1980, vol. 73, p. 923.

    Article  CAS  Google Scholar 

  69. Xu, W., Lan, Z., Peng, B.L., Wen, R.F., and Ma, X.H., J. Chem. Phys., 2015, vol. 142, p. 054701.

    Article  CAS  Google Scholar 

  70. Wang, C., Lu, H., Wang, Z., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.

    Article  Google Scholar 

  71. Meloni, S., Giacomello, A., and Casciola, C.M., J. Chem. Phys., 2016, vol. 145, p. 211802.

    Article  Google Scholar 

  72. Svoboda, M., Malijevsky, A., and Lisal, M., J. Chem. Phys., 2015, vol. 143, p. 104701.

    Article  Google Scholar 

  73. Murray, B., O’Sullivan, D., Atkinson, J., and Webb, M., Chem. Soc. Rev., 2012, vol. 41, p. 6519.

    Article  CAS  Google Scholar 

  74. Sanz, E., Vega, C., Espinosa, J.R., Caballero-Bernal, R., Abascal, J.L.F., and Valeriani, C., J. Am. Chem. Soc., 2013, vol. 135, p. 15008.

    Article  CAS  Google Scholar 

  75. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, C., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  76. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  77. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 121.

    Article  CAS  Google Scholar 

  78. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 497.

    Article  CAS  Google Scholar 

  79. Shevkunov, S.V., Colloid. J., 2006, vol. 68, p. 357.

    Article  CAS  Google Scholar 

  80. Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 632.

    Article  CAS  Google Scholar 

  81. Shevkunov, S.V., Russ. J. Phys. Chem., 2006, vol. 80, p. 769.

    Article  CAS  Google Scholar 

  82. Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., and Batishcheva, K.A., Colloid J., 2016, vol. 78, p. 335.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2018, published in Kolloidnyi Zhurnal, 2018, Vol. 80, No. 2, pp. 224–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 1. Structure. Colloid J 80, 214–228 (2018). https://doi.org/10.1134/S1061933X18020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18020096

Navigation