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Abstract⎯Allergy is a common health problem worldwide, especially food allergy. Since B cell epitopes that
are recognized by the IgE antibodies act as antigenic determinants for allergy, they play a vital role in diag-
nostics. Hence, knowledge of an IgE binding epitope in a protein is of particular interest for identifying aller-
genic proteins. Though IgE epitopes may be conformational or linear, identification of the later is useful espe-
cially in food allergens that undergo processing or digestion. Very few computational tools are available for
the prediction of linear IgE epitopes. Here we report a prediction system that predicts the exact linear IgE
epitope. Since our earlier study on linear B-cell epitope prediction demonstrated the effectiveness of using an
exact epitope dataset (in contrast to epitope containing region datasets), the dataset in this study uses only
experimentally verified exact IgE, IgG, IgM and IgA epitopes. Models for Support Vector Machine (SVM)
and Random Forest (RF) were constructed adopting Dipeptide Deviation from the Expected mean (DDE)
feature vector. Extensive validation procedures including five-fold cross validation and two different indepen-
dent dataset tests have been performed to validate the proposed method, which achieved a balanced accuracy
ranging from 74 to 78% with area under receiver operator curve greater than 0.8. Performance of the proposed
method was observed to be better (accuracy difference of 16–28%) in comparison to the existing available
method. The proposed method is developed as a standalone tool that could be used for predicting IgE epi-
topes as well as to be incorporated into any allergen prediction toolhttps://github.com/brsaran/BCIgePred.
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INTRODUCTION

Incidences of food allergy are increasing world-
wide, especially among infants and children [1]. For
most of the food allergic responses, a portion of the
allergen protein (epitope) has to be recognized by the
immunoglobulin E antibodies (IgE). These epitopes
are termed as IgE epitopes [2]. Since the IgE antibod-
ies are the primary effectors in developing an immu-
nological response to food allergens, knowledge of the
IgE epitope in an allergen will aid in the design of
immunotherapeutic agents [3]. Two forms of B cell
epitopes, namely linear and conformational, are rec-
ognized by the IgE antibodies. A linear epitope is a
sequential epitope that contains a continuous stretch
of amino acids capable of being recognized by the
antibodies. A conformational epitope is the one which
contains generally non-continuous amino acids close
to each other in space. In other words, the three
dimensional structure of the allergen is recognized by
the antibodies [4]. Though the majority of IgE epi-

topes are conformational in nature, due to denatur-
ation/digestion during food processing, in diagnosis as
well as production of hypoallergenic foods linear epi-
topes play the key role [5, 6]. Methods that have been
used for the identification of B cell (including IgE) epi-
topes include enzymatic cleavage, peptide arrays, phage
display techniques, peptide microarray-based immu-
noassay, Nuclear magnetic resonance spectroscopy and
X-crystallography [7]. However, these methods are
considered expensive and time consuming [8].

Several algorithms for computational identification
of B cell epitopes (both liner and conformational) have
been reported [9‒12]. However, to our knowledge
there is only one tool reported in the literature for the
prediction of immunoglobulin E (IgE) class-specific
linear B-cell epitopes. This lack may be due to the lack
of experimentally verified class-specific B cell epi-
topes. The tool AlgPred [13], which is an allergen pre-
diction server, includes a module for predicting aller-
gens based on the presence of linear IgE epitopes. The
presence of a linear IgE epitope in AlgPred is pre-
dicted based on a similarity search against 183 epi-1 The article is published in the original.
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topes. AlgPred is designed to predict allergens and not
IgE epitopes, and the IgE similarity module in Alg-
Pred cannot be directly used to predict IgE epitopes.
AlgPred [13] attempted to predict linear IgE epitopes,
but achieved poor performance due to the lack of fixed
length experimentally verified IgE epitopes at the time
of development. The AlgPred server supports only
proteinsfor input (i.e. allows only proteinswith lengths
>10 to be submitted to the server) and not peptides.
The majority of independent datasets used in the pres-
ent study contain peptides of length <10. Thus, the
tool proposed in this paper cannot be directly com-
pared with AlgPred. The creation of experimentally
verified epitope databases, such as Immune Epitope
Database (IEDB) [14] allowed the development of
class-specific B cell epitope prediction tools. IgPred
[15] is one of such tools, which is a support vector
machine (SVM) based type-specific B cell epitope
predictor. It utilizes experimentally verified IgE, IgA,
IgG, and non-B-cell epitopes from IEDB for training
the model. It adopts a dipeptide composition based
feature vector for classification. Though the dataset
used in IgPred is experimentally verified, the training
dataset consisted of whole peptide regions that contain
the epitope, rather than the specifically identified epi-
tope alone andour earlier study [16] on linear B-cell
epitope prediction clearly indicated the underperfor-
mance of methods for exact epitope prediction that
used epitope containing peptide regions rather than
exact epitopes, in their training procedures. Also, we
found that Dipeptide Deviation from Expected Mean
(DDE) feature vector was better at classifying the
exact epitopes in comparison to other feature vectors
including amino acid composition, dipeptide compo-
sition, physiochemical parameters, and amino acid
pair propensity [16]. In the present study the main
objective was set to develop a tool that is capable of
predicting linear IgE-specific B cell epitopes (pre-
dominant for food allergy responses) focusing on use
of an exact epitope dataset and DDE feature vector for
enhancing the prediction accuracy. The proposed
method is a two-layer prediction system, where the
first layer predicts whether the peptide’s/protein’s
regions of interest are exact linear B-cell epitopes or
not via our previously developed LBEEP method [16]
and in the second layer, the regions predicted to be
exact linear epitopes are subjected to the prediction
model developed in this study for IgE specificity. The
validation results show an improvement in the predic-
tion performance in comparison to the existing method.
The proposed method is developed as a standalone tool
that could be used for predicting IgE epitopes as well as to
be incorporated into any allergen prediction tool:
https://github.com/brsaran/BCIgePred.

MATERIALS AND METHODS

Dataset and pre-processing. IEDB V3.0 [14], an
updated database on experimentally verified epitopes
and non-epitopes, was utilized to construct the dataset
used in this study. The assay data (as of January, 2016)
was accessed from the website (http://www.iedb.org/
learn_more_v3.php). Unlike IgPred [15], where all
experimentally verified class-specific epitopes are
used, in this study only experimentally verified exact
epitopes were used. (The reasons for using only exact
epitopes are elaborated in the “Discussion” section).
This was achieved by specifying “Exact epitopes” in
the “Structure defines” column of the database. From
such exact epitopes, the data was further refined to
positive assay by filtering the “Qualitative measure-
ment” column to positive, from which the IgE, immu-
noglobulin G (IgG), immunoglobulin A (IgA), and
immunoglobulin M (IgM) epitopes were partitioned
based on the “Assayed antibody heavy chain” column
of the data. In this study, the epitopes that are not
assigned IgE in the assayed antibody heavy chain col-
umn are grouped and collectively named as non-IgE
epitopes, which include IgG, IgA, and IgM heavy
chain types. Following the above mentioned proce-
dures, a total of 2020 exact IgE epitopes and 12.094
non-IgE epitopes were obtained. To remove redun-
dancy in the dataset, CD-HIT suite [17] was used with
an identity cut-off set to 0.6 (60%). The final dataset
contained 1414 IgE and 4695 non-IgE epitopes and was
named Nr_Dataset. Ninety percent of the Nr_Dataset,
that is 1273 IgE and 4226 non-IgE epitopes, were used
for training the model and named as Tr_Data. The
remaining10%of the data (141 IgE and 469 non-IgE)
were used for the independent set test and named as
Ind_Set_1. The data in the Ind_Set_1 was never
exposed to the model at any stage of the training pro-
cess. In order to compare the performance of pro-
posed method with the existing tool IgPred,
Ind_Set_1A was created from the Ind_Set_1, which
contained no data included for training the IgPred, as
well as the proposed method. To achieve this, peptides
in both Ind_Set_1 and all of the training data of
IgPred were compared and those that were identical
were excluded from the Ind_Set_1, which resulted in
60 IgE and 256 non-IgE epitopes. Another Indepen-
dent dataset, Ind_Set_2, was obtained from the
updated version of Allergen database for food safety
(February, 2016 updated version) [18], making sure
no data in the set had greater than 60% similarity
with the Tr_Data. The distribution of the datasets
used in this study is listed in Table 1. The datasets
constructed and used in this study are available as
Supplementary text 1 ((see Supplementary on the
web-site http://www.molecbio.ru/downloads/2018/2/
supp_VijayakumarSaravanan_engl.pdf).

Feature vector and algorithm. Sequence derived
feature vectors like amino acid pair propensity [19],
dipeptide composition [20], amino acid string kernels
[21] and tri-peptide similarity score [22] have been
used in earlier studies for the prediction of linear B-
cell epitopes. However, our earlier study demonstrated
the efficiency of using the DDE (Dipeptide Deviation
MOLECULAR BIOLOGY  Vol. 52  No. 2  2018
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Table 1. Distribution of dataset constructed in this study*

* Nr—non-redundant; Tr—training; Ind—independent.
** Epitopes belonging to the class IgG, IgA, and IgM.

Dataset Class No. of instances

Original Dataset
IgE epitopes 2020
Non-IgE epitopes** 12094

Nr_Data
IgE epitopes 1414
Non-IgE epitopes** 4695

Tr_Data
IgE epitopes 1273
Non-IgE epitopes 4226

Ind_Set_1
IgE epitopes 141
Non-IgE epitopes** 469

Ind_Set_1A
IgE epitopes 60
Non-IgE epitopes** 256

Ind_Set_2 IgE epitopes 102
from Expected Mean) feature vector for the prediction
of linear B-cell epitopes [16]. We have used this feature
vector here for linear IgE specific B-cell epitope pre-
diction. DDE is a 60 dimensional feature vector con-
structed from three parameters viz. dipeptide compo-
sition measure, theoretical mean of dipeptides, and
theoretical variance of dipeptides. A detailed descrip-
tion of the procedure for the construction of DDE
from the amino acid sequence has been given in our
earlier paper [16].

The training data (Tr_Data) contains 1273 IgE epi-
topes and 4226 non-IgE epitopes. Since there is three
times less IgE epitope data than non-IgE data, the
dataset is imbalanced. In order to make the training
dataset balanced we adopted an under-sampling tech-
nique [23], in which the class with the larger amount
of data is reduced to approximately match the class
with the less data. This will result in loss of non-IgE
information due to under-sampling. To avoid this, in
this study we developed three different training data
sets. In each of the three sets, the IgE class contains
the 1273 IgE epitopes referred to above and the non-
IgE class contains 1409 (set 1), 1409 (set 2), and 1408
(set 3) non-IgE epitopes. The non-IgE epitopes were
partitioned into three sets by random sampling while
ensuring that the non-IgE data in each set is non-
redundant. With these three sets, three different mod-
els were created. The final prediction score was calcu-
lated as the average of the probability scores given by
each model. The models were trained using two widely
used machine learning classifiers—Support Vector
Machine (SVM) [24] and Random forest (RF) [25].
The number of trees for RF were set to 100, while for
SVM, radial basis function kernel was adopted with
the tuning parameters C and gamma set to 32 and
MOLECULAR BIOLOGY  Vol. 52  No. 2  2018
0.0078125, respectively. The architecture of the
method is shown in Fig. 1.

Validation measures. An independent dataset test
was used to validate the proposed method. In the inde-
pendent dataset test, the dataset that was never used in
any of the training procedures is tested against the
developed models. Two such independent datasets,
Ind_Set_1 and Ind_Set_2, were used to validate the
proposed method. The independent dataset test was
performed on the models trained through k-fold
cross-validation. For the k-fold cross-validation, k = 5
was chosen (5-CV). Tr_Data was used to perform the
5-CV, where the dataset was divided into 5-subsets
and in each mode of evaluation one subset was vali-
dated against the model constructed using the
remaining subsets, ensuring that each subset was val-
idated at least once. Sensitivity (Sn), Specificity (Sp),
Precision (P), Mathew’s correlation coefficient
(MCC), receiver operator characteristic curve (ROC),
area under ROC (AU_ROC), overall accuracy (OA),
and balanced accuracy (BA) were computed as follows
for validation.

Sensitivity (Sn):

Specificity (Sp):

Precision (P):

Mathew’s correlation coefficient (MCC):

= ×
+n

TPS 100.
(TP FN)

= ×
+p

TNS 100.
(TN FP)

= ×
+

TPP 100.
(TP FP)
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Fig. 1. Architecture of BCIgEPred.
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Where, TP is true positives (IgE epitopes predicted as
IgE epitopes); TN is true negatives (non-IgE epitopes
predicted as non-IgE epitopes); FP is false positives
(non-IgE epitopes predicted as IgE epitopes); FN is
false negatives (IgE epitopes predicted as non-IgE epi-
topes).

RESULTS
Differentiation between IgE 

and non-IgE DDE Composition
DDE was computed for both IgE and non-IgE epi-

topes in Nr_Data. Discrepancy ratios between IgE
and non-IgE dipeptides were computed and those

with values greater than 10 were listed in Table 2. A
total of 24 dipeptides were found to have discrepancy a
ratio greater than 10. The highest discrepancy ratio
(94.93) was found to be with the dipeptide containing
residues Histidine (H) and Phenylalanine (F). Amino
acids Histidine (H), Aspartic acid (D), Glutamine
(Q), Alanine (A), and Leucine (L) were found to
appear more frequently (4 times) in the dipeptides
with high discrepancy ratios. The absolute discrep-
ancy ratios for all of the possible dipeptides of
20 amino acids (20 × 20 = 400) were listed as a matrix
in Supplementary Table 1 (see Supplementary on the
web-site http://www.molecbio.ru/downloads/2018/2/
supp_VijayakumarSaravanan_engl.pdf).

Cross-Validation of DDE Discriminating Ability
on Partitioned Dataset

Since the training set was partitioned into three dif-
ferent sets (set 1, set 2, and set 3), a cross-validation
test was performed on all three sets for inspecting
biases, if any, in the data. Cross-validation was per-
formed for both SVM and RF methods, the results are

× − ×=
+ × + × + × +

(TP TN) (FP FN)MCC .
(TP FP) (TP FN) (TN FP) (TN FN)

+= ×
+ + +

(TP TN)OA 100.
(TP TN FP FN)

+
= ×n pS S

BA 100.
2
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Table 2. TheDDE ratio between IgE exact epitopes and
non-IgE epitopes (other classes) that possess ratios greater
than 10

a Standard single letter amino acid code. b Absolute ratio between
DDE IgE epitopes and DDE non-IgE epitopes from Nr_dataset.

Dipeptidea DDE Ratiob

HF 94.93
DS 70.18
DL 57.23
EH 36.16
TD 29.71
QL 29.08
MT 23.09
WP 20.71
WL 19.06
FP 16.86
TM 15.92
DM 15.68
AF 15.02
SM 14.61
FY 14.54
QQ 13.74
GF 12.70
LQ 12.27
PT 12.06
HY 11.87
AM 11.14
HW 11.04
AT 10.41
AG 10.11
listed in Table 3. In RF, set 1 achieved highest OA and
BA, while in SVM, set 3 achieved highest OA and BA.
However, the margin of difference among the three
sets with respect to all validation measures seems to be
less (<2), in both RF and SVM. In comparison to RF,
SVM obtained marginally better averaged OA and BA.
The averaged sensitivity, specificity, and precision
among RF and SVM varied with a high percentage dif-
ference (≈>10%). The sensitivity of RF was better than
SVM, while the specificity of SVM was better than of
RF. Both RF and SVM had a positive MCC, with
marginal difference. On varied threshold, the area
under the receiver operator characteristic curve
(AU_ROC) of both RF and SVM was close to 1,
depicting that the predictions of both models were sig-
nificantly better than a random guess (Fig. 2). Overall,
only a mild variation (margin of difference <2) was
observed among validation measures within the three
sets on both RF and SVM, indicating no biases in the
partitioned set.

Independent Dataset Test

Procedures including sub-sampling, jack-knife,
and independent dataset test are generally performed
for validating a prediction model [26]. However, inde-
pendent dataset test was considered to be optimal
method to validate the generalization of the proposed
model [27]. In an independent dataset test, the data
that was never exposed to the model during the train-
ing procedures will be tested. In this study, three dif-
ferent independent dataset were created (Table 1).
Ind_Set_1 is completely independent for the proposed
method, whereas Ind_Set_1A and Ind_Set_2 are
independent to both the proposed method and
IgPred. Independent test results for Ind_Set_1 on
proposed method (both SVM and RF) are listed in
Table 4. Set_1, Set_2, and Set_3 are the outputs from
partitioned model and the “Merged” is the combined
score of partitioned models as explained in the “Fea-
ture Vector and Algorithm” section of this article. The
results of the independent set test on Ind_Set_1A and
Ind_Set_2 are listed in Table 5 and 6 respectively.
Since the Ind_Set_2 was obtained from the Allergen
database for food safety, which contains only the IgE
epitopes, non-IgE epitopes from other sources are not
included.

Performance Comparison of RF and SVM on Ind_Set_1

It is observed that there is no high variations (<4%)
in the overall accuracy between the three sets on both
RF and SVM. Also, no other validation measures
exceeded a difference of >4% between the three sets on
both RF and SVM. However, sensitivity of Set_2 on
RF had a difference of 6.4% in comparison to Set_3.
Similarly, precision of Set_2 on SVM had a difference
of 8% in comparison to Set_3. Except sensitivity, all
other score-merged validation measures (Row tagged
MOLECULAR BIOLOGY  Vol. 52  No. 2  2018
“Merged” under RF and SVM of Table 4) of RF was
found to be enhanced with respect to the individual
validation measures of Set_1, Set_2, and Set_3 mod-
els. Similarly, in SVM, except BA and AU_ROC, all
other validation measures were found to be enhanced.
Beside this, the score-merged results on both SVM
and RF was better in most of the validation aspects
(considered in this study) than the majority voting
scheme (Row tagged “Majority” under RF and SVM
of Table 4). This indicates that the employed score
merging strategy of partitioned balanced models was
effective. Hence, in this section the comparison of RF
and SVM was made with respect to the “Merged”
results. Also, for further independent test result valida-
tion (Ind_Set_1A and Ind_Set_2 dataset) and for the
proposed tool, BCIgEPred, only the score-merge
strategy was adopted.

The sensitivity of RF was ≈10% greater than of
SVM, while the specificity of SVM was ≈14% greater
than that of RF. The precision was observed to be bet-
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Table 3. Five-fold cross-validation results on Tr_Dataset*

* Hereinafter: Sn—sensitivity; Sp—specificity; P—precision; MCC—Mathews correlation coefficient; AU_ROC—area under receiver
operator characteristic curve; and OA—overall accuracy; BA—balanced accuracy.

Model Sn, % Sp, % P, % MCC AU_ROC OA, % BA, %

RF
Set_1 72.9 76.1 73.4 0.49 0.833 74.5 74.5
Set_2 72.9 75.3 72.7 0.48 0.827 74.1 74.1
Set_3 72.0 76.2 73.2 0.48 0.837 74.3 74.1

Average 72.6 75.8 73.1 0.48 0.833 74.3 74.2
SVM

Set_1 59.2 90.2 84.5 0.52 0.791 75.5 74.7
Set_2 59.3 88.0 82.7 0.50 0.780 74.7 73.6
Set_3 60.6 89.3 83.6 0.52 0.793 75.6 74.9

Average 59.7 89.1 83.6 0.51 0.788 75.2 74.4
ter in SVM with a percentage difference of ≈22% from
RF. SVM outperformed RF in MCC and OA, however
AU_ROC of RF was marginally greater than SVM.
AU_ROC of both RF and SVM was close to 1, signi-
fying the near perfect prediction, and the ROC graph
(Fig. 3) of both RF and SVM indicate that the predic-
tions made are far better than a random guess by vary-
ing threshold. Though the overall accuracy of SVM
was higher than the RF, balanced accuracy is the mea-
sure that validates the balance between both the sensi-
tivity and specificity, which was almost equal in both
cases. Hence, in order to compare the performance,
both models were subjected to the Ind_Set_1A and
Ind_Set_2 independent dataset test along with the
existing method IgPred.

Performance Comparison of Proposed Method 
with Existing Methods

IgPred [15] is the only existing tool, to the best of
the authors’ knowledge, that predicts class specific
Fig. 2. Receiver operator graph of cross-validation results. A—
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linear B-cell epitopes and hence, the proposed
method could be directly compared only with IgPred.
Since only the IgE data has been used in the
Ind_Set_1A and Ind_Set_2 and IgPred is capable of
reporting class specific types, all results reported by
IgPred (for the two datasets Ind_Set_1A and
Ind_Set_2) as IgG, IgA, and non- B-cell epitope were
considered as false predictions. All settings of IgPred
were set to default values.

On Ind_Set_1A (Table 5), RF outperformed SVM
and IgPred in sensitivity, AU_ROC and BA. The
specificity of IgPred was perfect (100%), however, the
sensitivity was lower than that of RF and SVM. This
was also reflected in the balanced accuracy, where the
accuracy ofRF was more than 6% greater than that of
IgPred. The ROC graph (Fig. 4) for Ind_Set_1A indi-
cates that on varied threshold the RF performance was
better than SVM, IgPred, and random guess. In addi-
tion, the area under ROC (Table 5) of RF was signifi-
cantly greater than that of IgPred and SVM, indicating
MOLECULAR BIOLOGY  Vol. 52  No. 2  2018
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Table 4. Independent dataset test result on Ind_Set_1*

Model Sn, % Sp, % P, % MCC AU_ROC OA, % BA, %

RF
Set_1 74.5 78.0 50.5 0.46 0.857 77.21 76.25
Set_2 78.0 78.3 51.9 0.49 0.863 78.19 78.15
Set_3 71.6 76.8 48.1 0.42 0.842 75.57 74.20

Majority 73.0 80.8 53.3 0.48 0.860 79.01 76.92
Merged 75.8 80.8 54.3 0.51 0.868 79.67 78.34

SVM
Set_1 63.1 91.3 68.5 0.56 0.822 84.75 77.20
Set_2 64.5 94.0 76.5 0.62 0.830 87.21 79.25
Set_3 64.5 92.5 72.2 0.59 0.835 86.06 78.50

Majority 62.4 93.8 75.2 0.60 0.830 86.55 78.11
Merged 64.5 94.4 77.0 0.63 0.829 87.54 78.31

Table 5. Independent dataset test result on Ind_Set_1A

* Models developed in this study.

Model Sn, % Sp, % MCC AU_ROC OA, % BA, %

RF* 68.33 84.76 0.51 0.85 81.64 76.54
SVM* 43.33 94.14 0.43 0.75 84.49 68.73
IgPred 40.00 100.00 0.59 0.78 88.60 70.00

Table 6. Independent dataset results comparison of existing
and proposed method on Ind_Set_2

* Acc = (No. correctly predicted/No. of IgE) × 100.
** Models developed in this study.

Model No. of IgE No. Correctly 
predicted Acc*, %

RF** 102 80 78.43
SVM** 102 28 27.45
IgPred 102 64 62.74
that RF performance was balanced and better on dif-
ferent threshold in comparison to SVM and IgPred.

Similarly on Ind_Set_2, RF outperformed SVM
and IgPred, by having an accuracy difference of ≈15%
with IgPred and over 50% with SVM. Comparison of
SVM and IgPred results suggest that SVM produced
only a marginally better result on Ind_Set_1A and a
poorer result on Ind_Set_2. These results suggest that
the proposed method (RF model) was significantly
better (>10% accuracy difference on different inde-
pendent datasets) than the existing method. The poor
performance of SVM suggests that though SVM per-
formance was equally well (and in some case better)
than RF on cross-validation and independent dataset
tests (Ind_Set_1) it suffers to maintain balance in pre-
diction on Ind_Set_1A and Ind_Set_2. In contrast,
RF performance was consistent on all validation pro-
cedures and performed better than IgPred, indicating
that the proposed RF model may be preferred for
exact linear IgE epitope prediction.

BCIgEPred usage and Features

The standalone version of BCIgEPred was developed
using PERL V5.18.4 (Practical Extract Report Lan-
guage). The complete source code and dependencies are
available at https://github.com/brsaran/BCIgePred and
free to download. The details of command line options
MOLECULAR BIOLOGY  Vol. 52  No. 2  2018
and their detailed usage may be found in a readme file
available at https://github.com/brsaran/BCIgePred.

DISCUSSION

In the presented linear IgE epitope prediction tool,
a new dataset containing experimentally verified exact
IgE and non-IgE (IgA, IgG and IgM) epitopes was
created and utilized for creating models. Initial analy-
sis of IgE and non-IgE with a DDE feature vector
revealed that amino acids Histidine (H), Aspartic acid
(D), Glutamine (Q), Alanine (A), and Leucine (L)
were more frequently present in dipeptides with high
discrepancy ratios. This was in accordance to an ear-
lier study [15] where in IgE epitope dipeptides con-
taining amino acids Q, L and A were highly preferred.
A total of 24 dipeptides had high (>10) DDE discrep-
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Fig. 3. Receiver operator graph of Independent dataset test
results.
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Fig. 4. Receiver operator graph of Independent dataset
(Ind_Set_1A) test results.
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ancy ratios between the IgE and non-IgE epitopes,
suggesting the feature vector’s discriminating ability
between the epitope classes. To avoid misbalance
between the classes and loss of information in the data,
the dataset was partitioned into three subsets and a
model was developed using each set; and predictions
of each models were taken into consideration for this
study. Only mild variations in the cross-validation
results on different sets indicate no bias in the parti-
tioned datasets and the same models could be utilized
for prediction. The independent dataset test
(Ind_Set_1) results (Table 4) suggest that both RF and
SVM models, developed with the DDE feature vector,
were equally well in predicting IgE and non-IgE epi-
topes. Also, the same results suggest that use of score
merge strategy (refer to the methodology section)
improved the overall prediction results in contrast to
the majority voting scheme (which is often used in
prediction systems with multiple models). Indepen-
dent dataset test (Ind_Set_1A and Ind_Set_2)
between the proposed method and IgPred clearly indi-
cates the superior performance of the proposed
method (RF model) over the existing method IgPred.
Though both RF and SVM models developed in this
study performed equally well on different validation
tests, independent dataset test (Ind_Set_1A and
Ind_Set_2) indicates that the RF model is more stable
and balanced in predicting linear IgE epitopes than
the SVM model. However, the developed tool
includes the feature of selecting the model by the user
for their prediction. The proposed method is a two-
layer prediction system, which includes our previously
developed method LBEEP [16] for the first layer pre-
diction and the model developed in this study for the
second layer prediction that predicts whether the pep-
tide possesses IgE specificity or not. The results of our
earlier study [16] and those from this one suggest that
the DDE feature vector and the use of exact epitopes
(rather than epitope contacting regions) are more
effective in predicting linear B-cell and IgE epitopes.
Since both peptide and protein may be provided as an
input to the developed tool, this prediction system
could be practically used as a module in a hybrid aller-
gen prediction system.

CONCLUSION

This study proposed a two-layer prediction system
for predicting linear IgE epitopes, by utilizing the
DDE feature vector. An exact experimentally verified
class specific epitope dataset was constructed. Exten-
sive validation procedures were carried out to validate
the proposed method. The results suggest that with the
DDE feature vector the RF model developed in this
study was efficient in predicting the linear exact IgE
epitopes. The performance of the proposed method
was also compared with the existing tool and found to
be better in predicting linear IgE epitopes. B-cell epi-
topes that are recognized by the IgE antibodies act as
an antigenic determinants for allergy, especially in
food allergy. Hence, we believe that the proposed tool
could be effectively utilized to predict IgE binding epi-
topes in proteins or to predict a peptide’s efficiency as
a linear IgE epitope, which on further validation could
be used as a diagnostic tool as well as in production of
hypoallergenic foods.
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