Skip to main content
Log in

Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A., Robust Stochastic Approximation Approach to Stochastic Programming, SIAM J. Optim., 2009, vol. 19, no. 4, pp. 1574–1609.

    Article  MathSciNet  MATH  Google Scholar 

  2. Juditsky, A. and Nesterov, Y., Deterministic and Stochastic Primal-Dual Subgradient Algorithms for Uniformly Convex Minimization, Stoch. Syst., 2014, vol. 4, no. 1, pp. 44–80.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghadimi, S. and Lan, G., Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization I: A Generic Algorithmic Framework, SIAM J. Optim., 2012, vol. 22, no. 4, pp. 1469–1492.

    Article  MathSciNet  MATH  Google Scholar 

  4. Tukey, J.W., A Survey of Sampling from Contaminated Distributions, in Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, Olkin, I., et al., Eds., Palo Alto: Stanford Univ. Press, 1960, pp. 448–485.

    Google Scholar 

  5. Huber, P.J., Robust Estimation of a Location Parameter, Ann. Math. Statist., 1964, vol. 35, no. 1, pp. 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  6. Huber, P.J., Robust Statistics: A Review, Ann. Math. Statist., 1972, vol. 43, no. 4, pp. 1041–1067.

    Article  MathSciNet  MATH  Google Scholar 

  7. Huber, P.J., Robust Statistics, New York: Wiley, 1981.

    Book  MATH  Google Scholar 

  8. Martin, R. and Masreliez, C., Robust Estimation via Stochastic Approximation, IEEE Trans. Inf. Theory, 1975, vol. 21, no. 3, pp. 263–271.

    Article  MathSciNet  MATH  Google Scholar 

  9. Polyak, B.T. and Tsypkin, Ya.Z., Adaptive Estimation Algorithms: Convergence, Optimality, Stability, Autom. Remote Control, 1979, vol. 40, no. 3, pp. 378–389.

    MathSciNet  MATH  Google Scholar 

  10. Polyak, B.T. and Tsypkin, Ya.Z., Robust Pseudogradient Adaptation Algorithms, Autom. Remote Control, 1981, vol. 41, no. 10, pp. 1404–1409.

    MATH  Google Scholar 

  11. Polyak, B. and Tsypkin, J.Z., Robust Identification, Automatica, 1980, vol. 16, no. 1, pp. 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  12. Price, E. and VandeLinde, V., Robust Estimation Using the Robbins-Monro Stochastic Approximation Algorithm, IEEE Trans. Inf. Theory, 1979, vol. 25, no. 6, pp. 698–704.

    Article  MathSciNet  MATH  Google Scholar 

  13. Stankovi´c, S.S. and Kovaˇcevi´c, B.D., Analysis of Robust Stochastic Approximation Algorithms for Process Identification, Automatica, 1986, vol. 22, no. 4, pp. 483–488.

    Article  Google Scholar 

  14. Chen, H.-F., Guo, L., and Gao, A.J., Convergence and Robustness of the Robbins-Monro Algorithm Truncated at Randomly Varying Bounds, Stoch. Proc. Appl., 1987, vol. 27, pp. 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, H.-F. and Gao, A.J., Robustness Analysis for Stochastic Approximation Algorithms, Stochast. Stochast. Rep., 1989, vol. 26, no. 1, pp. 3–20.

    Article  MathSciNet  MATH  Google Scholar 

  16. Nazin, A.V., Polyak, B.T., and Tsybakov, A.B., Optimal and Robust Kernel Algorithms for Passive Stochastic Approximation, IEEE Trans. Inf. Theory, 1992, vol. 38, no. 5, pp. 1577–1583.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsypkin, Ya.Z., Osnovy Informatsionnoi Teorii Identifikatsii (On the Foundations of Information and Identification Theory), Moscow: Nauka, 1984.

    MATH  Google Scholar 

  18. Tsypkin, Ya.Z., Informatsionnaya Teoriya Identifikatsii (Information Identification Theory), Moscow: Nauka, 1995.

    MATH  Google Scholar 

  19. Kwon, J., Lecu´e, G., and Lerasle, M., Median of Means Principle as a Divide-and-Conquer Procedure for Robustness, Sub-Sampling and Hyper-parameters Tuning, 2018, arXiv:1812.02435.

    Google Scholar 

  20. Chinot, G., Lecu´e, G., and Lerasle, M., Statistical Learning with Lipschitz and Convex Loss Functions, 2018, arXiv preprint arXiv:1810.01090.

    Google Scholar 

  21. Lecu´e, G. and Lerasle, M., Robust Machine Learning by Median-of-Means: Theory and Practice, 2017, arXiv preprint arXiv:1711.10306v2. Annals of Stat., to appear.

    Google Scholar 

  22. Lecu´e, G., Lerasle, M., and Mathieu, T., Robust Classification via MOM Minimization, 2018, arXiv preprint arXiv:1808.03106.

    Google Scholar 

  23. Lerasle, M. and Oliveira, R.I., Robust Empirical Mean Estimators, 2011, arXiv preprint arXiv:1112.3914.

    Google Scholar 

  24. Lugosi, G. and Mendelson, S., Risk Minimization by Median-of-Means Tournaments, 2016, arXiv preprint arXiv:1608.00757.

    Google Scholar 

  25. Lugosi, G. and Mendelson, S., Regularization, Sparse Recovery, and Median-of-Means Tournaments, 2017, arXiv preprint arXiv:1701.04112.

    Google Scholar 

  26. Lugosi, G. and Mendelson, S., Near-Optimal Mean Estimators with Respect to General Norms, 2018, arXiv preprint arXiv:1806.06233.

    Google Scholar 

  27. Hsu, D. and Sabato, S., Loss Minimization and Parameter Estimation with Heavy Tails, J. Machine Learning Res., 2016, vol. 17, no. 1, pp. 543–582.

    MathSciNet  MATH  Google Scholar 

  28. Bubeck, S., Cesa-Bianchi, N., and Lugosi, G., Bandits with Heavy Tail, IEEE Trans. Inf. Theory, 2013, vol. 59, no. 11, pp. 7711–7717.

    Article  MathSciNet  MATH  Google Scholar 

  29. Devroye, L., Lerasle, M., Lugosi, G., and Oliveira, R.I., Sub-Gaussian Mean Estimators, Ann. Stat., 2016, vol. 44, no. 6, pp. 2695–2725.

    Article  MathSciNet  MATH  Google Scholar 

  30. Nemirovskii, A.S. and Yudin, D.B., Slozhnost’ zadach i effektivnost’ metodov optimizatsii, Moscow: Nauka, 1979. Translated under the title Problem Complexity and Method Efficiency in Optimization, Chichester: Wiley, 1983.

    Google Scholar 

  31. Lugosi, G. and Mendelson, S., Sub-Gaussian Estimators of the Mean of a Random Vector, Ann. Stat., 2019, vol. 47, no. 2, pp. 783–794.

    Article  MathSciNet  MATH  Google Scholar 

  32. Catoni, O., Challenging the Empirical Mean and Empirical Variance: A Deviation Study, Ann. IHP: Probab. Stat., 2012, vol. 48, no. 4, pp. 1148–1185.

    MathSciNet  MATH  Google Scholar 

  33. Audibert, J.-Y. and Catoni, O., Robust Linear Least Squares Regression, Ann. Stat., 2011, vol. 39, no. 5, pp. 2766–2794.

    Article  MathSciNet  MATH  Google Scholar 

  34. Minsker, S., Geometric Median and Robust Estimation in Banach Spaces, Bernoulli, 2015, vol. 21, no. 4, pp. 2308–2335.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, X. and Minsker, S., Estimation of the Covariance Structure of Heavy-Tailed Distributions, in Advances in Neural Information Processing Systems, 2017, pp. 2859–2868.

    Google Scholar 

  36. Chen, Y., Su, L., and Xu, J., Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent, Proc. ACM Measur. Analys. Comput. Syst., 2017, vol. 1, no. 2, article no. 44.

    Google Scholar 

  37. Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P., Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates, 2018, arXiv preprint arXiv:1803.01498.

    Google Scholar 

  38. Cardot, H., C´enac, P., and Chaouch, M., Stochastic Approximation for Multivariate and Functional Median, in Proc. COMPSTAT’2010, Springer, 2010, pp. 421–428.

    Google Scholar 

  39. Cardot, H., C´enac, P., and Godichon-Baggioni, A., Online Estimation of the Geometric Median in Hilbert Spaces: Nonasymptotic Confidence Balls, Ann. Stat., 2017, vol. 45, no. 2, pp. 591–614.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lan, G., An Optimal Method for Stochastic Composite Optimization, Math. Program., 2012, vol. 133, nos. 1–2, pp. 365–397.

    Article  MathSciNet  MATH  Google Scholar 

  41. Necoara, I., Nesterov, Y., and Glineur, F., Linear Convergence of First Order Methods for Non-Strongly Convex Optimization, Math. Program., 2018, pp. 1–39.

    Google Scholar 

  42. Juditsky, A. and Nemirovski, A., First Order Methods for Nonsmooth Convex Large-Scale Optimization, I: General Purpose Methods, in Optimization for Machine Learning, Sra, S., Nowozin, S., and Wright, S.J., Eds., Boston: MIT Press, 2011, pp. 121–148.

    MATH  Google Scholar 

  43. Freedman, D.A., On Tail Probabilities for Martingales, Ann. Probab., 1975, vol. 3, no. 1, pp. 100–118.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, G. and Teboulle, M., Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions, SIAM J. Optim., 1993, vol. 3, no. 3, pp. 538–543.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Nazin, A. S. Nemirovsky, A. B. Tsybakov or A. B. Juditsky.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 9, pp. 64–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazin, A.V., Nemirovsky, A.S., Tsybakov, A.B. et al. Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method. Autom Remote Control 80, 1607–1627 (2019). https://doi.org/10.1134/S0005117919090042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919090042

Keywords

Navigation