Skip to main content
Log in

Diagnostics of the Structural and Transport Properties of an Anion-Exchange Membrane MA-40 after Use in Electrodialysis of Mineralized Natural Waters

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Changes in the structural and transport characteristics of MA-40 anion-exchange membranes after operation in industrial electrodialysis apparatuses have been assessed. Causes for the deterioration of operational properties by the action of various factors in the process of demineralization and concentration of natural waters have been revealed. Samples of the anion-exchange membrane after long-term operation in the working stack of an electrodialysis concentrator, as well as samples taken out from the electrode compartment of the electrodialysis reversal apparatus, have been studied. The most significant change in the structure of the membrane taken out from the electrodialyzer concentrator is an increase in macroporosity, which is the main reason for the growth in the electrical conductivity and water content against the background of a loss of ion-exchange capacity and selectivity. The formation of poorly soluble carbonates and hydroxides both on the surface and in the bulk of a membrane from the electrode compartment of the reversal electrodialyzer leads to the blocking of the functional groups and transport channels, decrease in electrical conductivity, and complication of transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  2. V. I. Zabolotskii, N. P. Berezina, V. V. Nikonenko, V. A. Shaposhnik, A. A. Tskhai, Membr. Ser, Krit. Tekhnol., No. 4, 4 (1999).

  3. H.-J. Lee, M.-K. Hong, S.-D. Han, et al., Desalination 238, 60 (2009).

    Article  CAS  Google Scholar 

  4. M. Turek, Desalination 153, 371 (2002).

    Article  Google Scholar 

  5. J. M. Veza, B. Peñate, and F. Castellano, Desalination 160, 211 (2004).

    Article  CAS  Google Scholar 

  6. A. G. Pervov, V. A. Chukhin, and A. V. Mikhailin, Calculation, Design, and Use of Electrodialysis (Electromembrane) Water Demineralization Units (MGSU, Moscow, 2012) [in Russian].

    Google Scholar 

  7. N. Cifuentes-Araya, G. Pourcelly, and L. Bazinet, J. Colloid Interface Sci. 372, 217 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. C. Casademont, M. Araya-Farias, G. Pourcelly, and L. Bazinet, J. Membr. Sci. 325, 570 (2008).

    Article  CAS  Google Scholar 

  9. S. Mikhaylin and L. Bazinet, Adv. Colloid Interface Sci. 229, 34 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. L. Firdaous, J. P. Malériat, J. P. Schlumpf, and F. Quéméneur, Sep. Sci. Technol. 42, 931 (2007).

    Article  CAS  Google Scholar 

  11. T. Chen, A. Neville, and M. Yuan, Chem. Eng. Sci. 61, 5318 (2006).

    Article  CAS  Google Scholar 

  12. S. van Geluwe, L. Braeken, T. Robberecht, et al., Resources, Conserv. Recycl. 56, 34 (2011).

    Article  Google Scholar 

  13. M. A. Andreeva, V. V. Gil, N. D. Pismenskaya, et al., J. Membr. Sci. 540, 183 (2017).

    Article  CAS  Google Scholar 

  14. M. Asraf-Snir, J. Gilron, and Y. Oren, J. Membr. Sci. 520, 176 (2016).

    Article  CAS  Google Scholar 

  15. A. S. Kastyuchik and V. A. Shaposhnik, Sorbt. Khromatogr. Protsessy 9, 51 (2009).

    Google Scholar 

  16. O. V. Bobreshova and A. Ya. Shatalov, Zh. Fiz. Khim. 51, 203 (1977).

    CAS  Google Scholar 

  17. V. A. Shaposhnik, N. N. Zubets, I. P. Strygina, and B. E. Mill’, Russ. J. Appl. Chem. 74, 1653 (2001).

    Article  CAS  Google Scholar 

  18. V. I. Vasil’eva, E. M. Akberova, E. A. Goleva, A. M. Yatsev, A. A. Tskhai, J. Surf. Invest.; X-ray, Synchrotron, Neutron Tech. 11, 429 (2017).

    Article  Google Scholar 

  19. A. M. Yatsev, E. M. Akberova, E. A. Goleva, et al., Sorbt. Khromatogr. Protsessy 17, 313 (2017).

    CAS  Google Scholar 

  20. E. M. Akberova, A. M. Yatsev, E. A. Goleva, and V. I. Vasil’eva, Kondens. Sredy Mezhfazn. Granitsy 19, 451 (2017).

    CAS  Google Scholar 

  21. S. Y. Choi, J. W. Yu, and J. H. Kweon, Desalin. Water Treat. 51, 6230 (2013).

    Article  CAS  Google Scholar 

  22. N. Cifuentes-Araya, G. Pourcelly, and L. Bazinet, J. Colloid Interface Sci. 361, 79 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ch. Casademont, Ph. Sistat, B. Ruiz, et al., J. Membr. Sci. 328, 238 (2009).

    Article  CAS  Google Scholar 

  24. S. Mikhaylin, V. Nikonenko, G. Pourcelly, and L. Bazinet, J. Membr. Sci. 468, 389 (2014).

    Article  CAS  Google Scholar 

  25. V. D. Grebenyuk, B. K. Veisov, R. D. Chebotareva, et al., Zh. Prikl. Khim., No. 4, 912 (1986).

  26. V. D. Grebenyuk, N. P. Strizhak, and G. P. Slavinskaya, Khim. Tekhnol. Vody 9, 524 (1987).

    CAS  Google Scholar 

  27. V. D. Grebenyuk and A. A. Mazo, Water Desalination with Ion-Exchange Resins (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  28. G. Lopatkova, O. Basova, N. Pismenskaya, et al., in Proceedings of International Workshop “Environmental Problems and Ecological Safety”, Wiesbaden, 2004, p. 145.

  29. G. K. Saldadze, in Ion-Selective Membranes and Electromembrane Processes (NIITEKhim, Moscow, 1986), p. 18 [in Russian].

  30. N. P. Berezina, O. P. Ivina, and D. V. Rubinina, Diagnostics of Ion-Exchange Membranes after Actual Electrodialysis (Kubanskii Gosudarstvennyi Univ., Krasnodar, 1990) [in Russian].

    Google Scholar 

  31. N. D. Pismenskaya, V. V. Nikonenko, N. A. Mel’nik, and K. A. Shevtsova, Pet. Chem. 51, 610 (2011).

    Article  CAS  Google Scholar 

  32. R. Ghalloussi, W. Garcia-Vasquez, N. Bellakhal, et al., Sep. Purif. Technol. 80, 270 (2011).

    Article  CAS  Google Scholar 

  33. R. Ghalloussi, W. Garcia-Vasquez, L. Chaabane, et al., J. Membr. Sci. 436, 68 (2013).

    Article  CAS  Google Scholar 

  34. W. Garcia-Vasquez, L. Dammak, C. Larchet, et al., J. Membr. Sci. 446, 255 (2013).

    Article  CAS  Google Scholar 

  35. R. Ghalloussi, L. Chaabane, C. Larchet, et al., Sep. Purif. Technol. 123, 229 (2014).

    Article  CAS  Google Scholar 

  36. M. V. Porozhnyy, V. V. Sarapulova, N. D. Pismenskaya, et al., Pet. Chem. 57, 511 (2017).

    Article  CAS  Google Scholar 

  37. E. E. Nevakshenova, V. V. Sarapulova, V. V. Nikonenko, and N. D. Pismenskaya, Membr. Membr. Technol. 1, 14 (2019).

    Article  Google Scholar 

  38. M. Bdiri, L. Dammak, L. Chaabane, et al., Sep. Purif. Technol. 199, 114 (2018).

    Article  CAS  Google Scholar 

  39. Nefedova, G.Z., Klimova, Z.V., and Sapozhnikova, G.S., Ion-Exchange Membranes, Granular Materials, and Powders, Ed. by A. B. Pashkov (NIITEKhim, Moscow, 1977) [in Russian].

  40. N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov, Physicochemical Properties of Ion-Exchange Materials (Kubanskii Gosudarstvennyi Univ., Krasnodar, 1999) [in Russian].

    Google Scholar 

  41. http://www.mtca.kz. Accessed November 26, 2018.

  42. A. A. Tskhai, E. E. Ergozhin, and V. S. Sherstobitov, KZ Patent No. 422 (1994).

  43. C. Larchet, G. Eigenberger, A. Tskhay, et al., Desalination 149, 383 (2002).

    Article  CAS  Google Scholar 

  44. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. V. A. Shaposhnik, D. E. Emel’yanov, and I. V. Drobysheva, Kolloid. Zh. 46, 820 (1984).

    CAS  Google Scholar 

  46. V. I. Vasil’eva, E. M. Akberova, V. A. Shaposhnik, and M. D. Malykhin, Russ. J. Electrochem. 50, 789 (2014).

    Article  CAS  Google Scholar 

  47. V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).

    Article  CAS  Google Scholar 

  48. O. A. Demina, N. A. Kononenko, and I. V. Falina, Pet. Chem. 54, 515 (2014).

    Article  CAS  Google Scholar 

  49. N. D. Pis’menskaya, E. E. Nevakshenova, and V. V. Nikonenko, Pet. Chem. 58, 465 (2018).

    Article  Google Scholar 

  50. N. P. Gnusin and N. P. Berezina, Electromembrane Methods for Separation and purification of Solutions (Kubanskii Gosudarstvennyi Univ., Krasnodar, 1986) [in Russian].

    Google Scholar 

  51. V. I. Vasil’eva, E. M. Akberova, A. V. Zhiltsova, et al., J. Surf. Invest.; X-ray, Synchrotron, Neutron Tech. 7, 833 (2013).

    Article  CAS  Google Scholar 

  52. V. I. Vasil’eva, N. D. Pismenskaya, E. M. Akberova, and K. A. Nebavskaya, Russ. J. Phys. Chem. 88, 1293 (2014).

    Article  CAS  Google Scholar 

  53. E. A. Sirota, N. A. Kranina, V. I. Vasil’eva, et al., Vestn. Voronezhsk. Gos. Univ., Ser. Khim. Biol. Farm., No. 2, 53 (2011).

  54. V. I. Vasil’eva, N. A. Kranina, M. D. Malykhin, et al., J. Surf. Invest.; X-ray, Synchrotron, Neutron Tech. 7, 144 (2013).

    Article  CAS  Google Scholar 

  55. A. N. Smagunova and O. M. Karpukova, Methods of Mathematical Statistics in Analytical Chemistry: A Tutorial (Feniks, Rostov-on-Don, 2012) [in Russian].

    Google Scholar 

  56. P. E. Tulupov and N. G. Polyanskii, Russ. Chem. Rev. 42, 754 (1973).

    Article  Google Scholar 

  57. N. I. Petrova and M. A. Potapova, Zh. Prikl. Khim. 42, 120 (1969).

    Google Scholar 

  58. B. Bauer, H. Strathmann, and F. Effenberger, Desalination 79, 125 (1990).

    Article  CAS  Google Scholar 

  59. C. E. Harland, Ion Exchange: Theory and Practice (Royal Society of Chemistry, Cambridge, 1994).

    Google Scholar 

  60. V. D. Kopylova, N. V. Portnykh, L. V. Karimova, and L. N. Shabanova, Zh. Prikl. Khim. 52, 533 (1979).

    CAS  Google Scholar 

  61. Yu. M. Vol’fkovich, Elektrokhimiya 20, 665 (1984).

    Google Scholar 

  62. N. P. Gnusin, N. P. Berezina, O. A. Demina, and N. A. Kononenko, Russ. J. Electrochem. 32, 154 (1996).

    CAS  Google Scholar 

  63. E. Volodina, N. Pismenskaya, V. Nikonenko, et al., J. Colloid Interface Sci. 285, 247 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Yu. Yu. Lur’e, Analytical Chemistry Handbook (Al’yans, Moscow, 1989) [in Russian].

    Google Scholar 

  65. V. N. Smagin, Electrodialysis Water Treatment (Stroiizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  66. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  67. G. Yu. Lopatkova, E. I. Volodina, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 42, 847 (2006).

    Article  CAS  Google Scholar 

  68. V. I. Vasil’eva, A. V. Zhil’tsova, M. D. Malykhin, et al., Russ. J. Electrochem. 50, 120 (2014).

    Article  CAS  Google Scholar 

  69. S. Mikhaylin and L. Bazinet, Adv. Colloid Interface Sci. 229, 34 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Ch. Casademont, G. Pourcelly, and L. Bazinet, J. Colloid Interface Sci. 322, 215 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Chemist’s Handbook, vol. 3: Chemical Equilibrium and Kinetics, Properties of Solutions, Electrode Reactions, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1965) [in Russian].

    Google Scholar 

  72. V. V. Gil, M. A. Andreeva, N. D. Pismenskaya, et al., Pet. Chem. 56, 440 (2016).

    Article  CAS  Google Scholar 

  73. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths, London, 1959).

    Google Scholar 

  74. A. Pérez, L. J. Andrés, R. Alvarez, et al., J. Food Process. Eng. 17, 177 (1994).

    Article  Google Scholar 

  75. V. P. Greben’ and I. G. Rodzik, Russ. J. Electrochem 41, 888 (2005).

  76. V. L. Gutsanu and V. A. Gafiichuk, Zh. Fiz. Khim. 60, 1824 (1986).

    CAS  Google Scholar 

  77. V. L. Gutsanu, K. I. Turge, and R. A. Stukan, Zh. Fiz. Khim. 59, 693 (1985).

    CAS  Google Scholar 

  78. Fundamentals of Analytical Chemistry: A Textbook, in two volumes, Ed. by Yu. A. Zolotov (Vysshaya Shkola, Moscow, 2014), vol. 2 [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the President of the Russian Federation, grant MK-925.2018.3. The micrographs and AFM images of the surface of the membranes were obtained using the equipment of the Collective Use Center of Voronezh State University (URL: http://ckp.vsu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasil’eva.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, V.I., Akberova, E.M., Kostylev, D.V. et al. Diagnostics of the Structural and Transport Properties of an Anion-Exchange Membrane MA-40 after Use in Electrodialysis of Mineralized Natural Waters. Membr. Membr. Technol. 1, 153–167 (2019). https://doi.org/10.1134/S2517751619030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619030077

Keywords:

Navigation