Skip to main content
Log in

Interfaces in Materials for Hydrogen Power Engineering

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Hydrogen power engineering is based on the production of hydrogen and subsequent oxidation of it to generate electrical energy. Using the example of ion-exchange membranes, catalysts for low-temperature fuel cells, and catalysts for alcohol steam reforming, the features of the transfer, catalysis, and electrocatalysis in hydrogen power engineering are discussed. Particular attention is paid to the role of interfaces. The occurrence of transport processes in ion-exchange membranes is determined by a system of pores and channels that are formed in the membranes owing to self-organization processes. The main selective transport of counterions occurs in a thin Debye layer at the interface between the polymer and the water solution that fills the pores. The transport of gases in these systems occurs through an electrically neutral solution localized in the center of the pores; it can be controlled by introducing nanoparticles into the pores. Catalytic processes in fuel cells occur at the interface between three phases, namely, the catalyst, the support, and the proton-conducting component. The role of the support in the stabilization and enhancement of the power of fuel cells is discussed. Despite the significant difference, the laws governing the catalytic processes of alcohol steam reforming are similar to those of fuel cells in many respects. The nature of metal catalysts is responsible for the preferred direction of the process, whereas the nature of the support largely determines the catalyst performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. A. Stenina, E. Yu. Safronova, A. V. Levchenko, et al., Teploenergetika, No. 6, 4 (2016).

    Google Scholar 

  2. O. S. Popel’, Energosberezhenie, No. 3, 70 (2006).

  3. A. M. Skundin, T. L. Kulova, and A. B. Yaroslavtsev, Russ. J. Electrochem. 54, 113 (2018).

    Article  CAS  Google Scholar 

  4. F. Barbir, PEM Fuel Cells: Theory and Practice (Elsevier (Amsterdam, 2013).

    Google Scholar 

  5. M. V. Tsodikov, S. S. Kurdyumov, G. I. Konstantinov, et al., Int. J. Hydrogen Energy 40, 2963 (2015).

    Article  CAS  Google Scholar 

  6. M. V. Tsodikov, A. S. Fedotov, D. O. Antonov, et al., Int. J. Hydrogen Energy 41, 2424 (2016).

    Article  CAS  Google Scholar 

  7. D. R. Palo, R. A. Dagle, and J. D. Holladay, Chem. Rev. 107, 3992 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. V. E. Fortov and O. S. Popel, Energy in Modern World (Intellekt, Dolgoprudnyi, 2011) [in Russian].

  9. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. V. V. Nikonenko, A. B. Yaroslavtsev, and G. Pourcelly, Ionic Interactions in Natural and Synthetic Macromolecules, Ed. by A. Ciferri and A. Perico (Wiley, New York, 2012), p. 267.

    Google Scholar 

  11. D. V. Golubenko, E. Yu. Safronova, A. B. Ilyin, et al., Mendeleev Commun. 27, 380 (2017).

    Article  CAS  Google Scholar 

  12. Z. Zakaria, S. K. Kamarudin, and S. N. Timmiati, Appl. Energy 163, 334 (2016).

    Article  CAS  Google Scholar 

  13. V. Parthiban, S. Akula, and A. K. Sahu, J. Membr. Sci. 541, 127 (2017).

    Article  CAS  Google Scholar 

  14. A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).

    Article  Google Scholar 

  15. J. -H. Kim, S.-K. Kim, K. Nam, and D.-W. Kim, J. Membr. Sci. 415–416, 696 (2012).

    Article  CAS  Google Scholar 

  16. A. H. Haghighi, M. Tohidian, A. Ghaderian, and S. E. Shakeri, J. Macromol. Sci., Part B: Phys. 56, 383 (2017).

    Article  CAS  Google Scholar 

  17. A. B. Yaroslavtsev, I. A. Stenina, E. Yu. Voropaeva, and A. A. Ilyina, Polym. Adv. Technol. 20, 566 (2009).

    Article  CAS  Google Scholar 

  18. E. Bakangura, L. Wu, L. Ge, et al., Prog. Polym. Sci. 57, 103 (2016).

    Article  CAS  Google Scholar 

  19. Y. Devrim and A. Albostan, Int. J. Hydrogen Energy 40, 15328 (2015).

    Article  CAS  Google Scholar 

  20. F. Ahmad Zakil, S. K. Kamarudin, and S. Basri, Renew. Sust. Energy Rev. 65, 841 (2016).

    Article  CAS  Google Scholar 

  21. I. A. Prikhno, K. A. Ivanova, G. M. Don, and A. B. Yaroslavtsev, Mendeleev Commun. 28, 657 (2018).

    Article  CAS  Google Scholar 

  22. E. Gerasimova, E. Safronova, A. Ukshe, et al., Chem. Eng. J. 305, 121 (2016).

    Article  CAS  Google Scholar 

  23. A. B. Yaroslavtsev, Yu. A. Dobrovolsky, N. S. Shaglaeva, et al., Russ. Chem. Rev. 81, 191 (2012).

    Article  CAS  Google Scholar 

  24. N. Wagner, W. Schnurnberger, B. Mueller, and M. Lang, Electrochim. Acta 43, 3785 (1998).

    Article  CAS  Google Scholar 

  25. K. Bergamaski, A. L. Pinheiro, E. Teixeira-Neto, and F. C. Nart, J. Phys. Chem. B 110, 19271.

  26. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Ed. by J. Zhang (Springer, London, 2008).

    Google Scholar 

  27. J. Perez, V. A. Paganin, and E. Antolini, Electroanal. Chem. Interfacial Electrochem. 654, 108 (2011).

    CAS  Google Scholar 

  28. I. N. Leontyev, B. Dkhil, S. V. Belenov, et al., J. Phys. Chem. C 115, 5429 (2011).

    Article  CAS  Google Scholar 

  29. A. A. Alekseenko, V. E. Guterman, V. A. Volochaev, and S. V. Belenov, Inorg. Mater. 51, 1258 (2015).

    Article  CAS  Google Scholar 

  30. G. A. Tritsaris, J. Greeley, J. Rossmeisl, and J. K. Norskov, Catal. Lett. 141, 909 (2011).

    Article  CAS  Google Scholar 

  31. F. J. Peres-Alonso, D. N. McCarthy, A. Nierhoff, et al., Angew. Chem. 124, 4719 (2012).

    Article  Google Scholar 

  32. V. I. Pavlov, E. V. Gerasimova, E. V. Zolotukhina, et al., Nanotechnol. Russ. 11, 743 (2016).

    Article  CAS  Google Scholar 

  33. J. C. Meier, C. Galeano, I. Katsounaros, et al., Beilstein J. Nanotechnol. 5, 44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Ota, Y. Nakagawa, and M. Takahashi, J. Electroanal. Chem. 179, 179 (1984).

    Article  CAS  Google Scholar 

  35. C. Lamy, A. Lima, V. LeRhun, et al., J. Power Sources 105, 283 (2002).

    Article  CAS  Google Scholar 

  36. V. E. Guterman, A. A. Alekseenko, V. A. Volochaev, and N. Yu. Tabachkova, Inorg. Mater. 52, 23 (2016).

    Article  CAS  Google Scholar 

  37. A. A. Alekseenko, S. V. Belenov, V. S. Menshikov, and V. E. Guterman, Russ. J. Electrochem. 54, 415 (2018).

    Article  CAS  Google Scholar 

  38. V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, et al., J. Phys. Chem. C 119, 3217 (2015).

    Article  CAS  Google Scholar 

  39. V. E. Guterman, A. Y. Pakharev, E. B. Mikheykina, et al., Int. J. Hydrogen Energy 41, 1609 (2016).

    Article  CAS  Google Scholar 

  40. V. A. Bogdanovskaya, M. R. Tarasevich, and O. V. Lozovaya, Russ. J. Electrochem. 47, 846 (2011).

    Article  CAS  Google Scholar 

  41. K. Wang, H. A. Gasteiger, N. M. Markovi, and P. N. Ross, Electrochim. Acta 41, 2587 (1996).

    Article  CAS  Google Scholar 

  42. M. R. Tarasevich, V. A. Bogdanovskaya, B. M. Grafov, et al., Russ. J. Electrochem. 41, 746 (2005).

    Article  CAS  Google Scholar 

  43. M. Watanabe, M. Uchida, and S. Motoo, J. Electroanal. Chem. 229, 349 (1987).

    Article  Google Scholar 

  44. C. Zhiming, L. Changpeng, L. Jianhui, and X. Wei, Electrochim. Acta 53, 7807 (2008).

    Article  CAS  Google Scholar 

  45. D.-J. Guo, L. Zhao, and X.-P. Qiu, J. Power Sources 177, 334 (2008).

    Article  CAS  Google Scholar 

  46. Materials for Low-Temperature Fuel Cells, Ed. by B. Ladewig, S. P. Jiang, and Y. Yan (Wiley–VCH, Weinheim, (2015)).

    Google Scholar 

  47. T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, J. Electrochem. Soc. 146, 3750 (1999).

    Article  CAS  Google Scholar 

  48. M. Goetz and H. Wendt, J. Appl. Electrochem. 31, 811 (2001).

    Article  CAS  Google Scholar 

  49. A. Lima, C. Coutanceau, J. M. Liger, and C. Lamy, J. Appl. Electrochem. 31, 379 (2001).

    Article  CAS  Google Scholar 

  50. T. Toda, H. Igarashi, and M. Watanabe, J. Electrochem. Soc. 145, 4185 (1998).

    Article  CAS  Google Scholar 

  51. K. C. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, J. Power Sources 186, 261 (2009).

    Article  CAS  Google Scholar 

  52. A. V. Guterman, E. B. Pakhomova, V. E. Guterman, et al., Inorg. Mater. 45, 767 (2009).

    Article  CAS  Google Scholar 

  53. C. Lu, C. Rice, R. I. Masel, et al., J. Phys. Chem. B 106, 9581 (2002).

    Article  CAS  Google Scholar 

  54. M. Arenz, V. Stamenkovic, P. N. Ross, and N. M. Markovi, Electrochem. Commun. 5, 809 (2003).

    Article  CAS  Google Scholar 

  55. W.-Z. Hunga, W.-H. Chunga, D.-S. Tsai, and D. P. Wilkinson, Electrochim. Acta 55, 2116 (2010).

    Article  CAS  Google Scholar 

  56. G. A. Camara, E. A. Ticianelli, S. Mukerjee, et al., J. Electrochem. Soc. 149, A748 (2002).

    Article  CAS  Google Scholar 

  57. P. Liu, A. Logadottir, and J. K. Norskov, Electrochim. Acta 48, 3731 (2003).

    Article  CAS  Google Scholar 

  58. S.-J. Liao, H.-Y. Liu, and H. Meng, J. Power Sources 171, 471 (2007).

    Article  CAS  Google Scholar 

  59. A. Halder, S. Sharma, M. S. Hegde, and N. Ravishankar, J. Phys. Chem. C 113, 1466 (2009).

    Article  CAS  Google Scholar 

  60. P. J. Kulesza, K. Miecznikowski, B. Baranowska, et al., Electrochem. Commun. 8, 904 (2006).

    Article  CAS  Google Scholar 

  61. S. Maass, F. Finsterwalder, G. Frank, et al., J. Power Sources 176, 444 (2008).

    Article  CAS  Google Scholar 

  62. X. Wang, W. Li, Z. Chen, et al., J. Power Sources 158, 154 (2006).

    Article  CAS  Google Scholar 

  63. J. Jung, B. Park, and J. Kim, Nanoscale Res. Lett. 7, 34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. W. S. Baker, J. J. Pietron, M. E. Teliska, et al., J. Electrochem. Soc. 153, A1702 (2006).

    Article  CAS  Google Scholar 

  65. K. Sasaki, L. Zhang, and R. R. Adzic, Phys. Chem. Chem. Phys. 10, 159 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. N. R. Elezovic, B. M. Babic, V. R. Radmilovic, et al., Electrochim. Acta 54, 2404 (2009).

    Article  CAS  Google Scholar 

  67. H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc. 156, B1232 (2009).

    Article  CAS  Google Scholar 

  68. M. Gustavsson, H. Ekstrom, P. Hanarp, et al., J. Power Sources 163, 671 (2007).

    Article  CAS  Google Scholar 

  69. X.-Y. Xie, Z.-F. Ma, X. Wu, et al., Electrochim. Acta 52, 2091 (2007).

    Article  CAS  Google Scholar 

  70. S. von Kraemer, K. Wikander, G. Lindbergh, et al., J. Power Sources 180, 185 (2008).

    Article  CAS  Google Scholar 

  71. M. S. Saha, M. N. Banis, Y. Zhang, et al., J. Power Sources 192, 330 (2009).

    Article  CAS  Google Scholar 

  72. Q. Lu, B. Yang, L. Zhuang, and J. Lu, J. Phys. Chem. B 109, 1715 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. L. Jang, L. Colmenares, Z. Jusys, et al., Electrochim. Acta 53, 377 (2007).

    Article  CAS  Google Scholar 

  74. A. V. Grigorieva, E. A. Goodilin, L. E. Derlyukova, et al., Appl. Catal., A 362, 20 (2009).

  75. P. Justin and G. Ranga Rao, Int. J. Hydrogen Energy 36, 5875 (2011).

    Article  CAS  Google Scholar 

  76. C.-S. Chen and F.-M. Pan, Appl. Catal., B 91, 663 (2009).

    Article  CAS  Google Scholar 

  77. D.-S. Kim, E. F. A. Zeid, and Y.-T. Kim, Electrochim. Acta 55, 3628 (2010).

    Article  CAS  Google Scholar 

  78. P. Xiao, H. Song, X. Qiu, et al., Appl. Catal., B 97, 204 (2010).

    Article  CAS  Google Scholar 

  79. L. Xing, J. Jia, Y. Wang, et al., Int. J. Hydrogen Energy 35, 12169 (2010).

    Article  CAS  Google Scholar 

  80. X. He and C. Hu, J. Power Sources 196, 3119 (2011).

    Article  CAS  Google Scholar 

  81. S. Shanmugam and A. Gedanken, Small 3, 1189 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. S. Lj. Gojković, B. M. Babić, V. R. Radmilović, and N. V. Krstajić, J. Electroanal. Chem. 639, 161 (2010).

    Article  CAS  Google Scholar 

  83. B. L. Garcia, R. Fuentes, and J. W. Weidner, Electrochem. Solid State Lett. 10, B108 (2007).

    Article  CAS  Google Scholar 

  84. D.-J. Guo, X.-P. Qiu, L.-Q. Chen, and W.-T. Zhu, Carbon 47, 1680 (2009).

    Article  CAS  Google Scholar 

  85. H. Song, P. Xiao, X. Qiu, and W. Zhu, J. Power Sources 195, 1610 (2010).

    Article  CAS  Google Scholar 

  86. T. Okanishi, T. Matsui, T. Takeguchi, et al., Appl. Catal., A 298, 181 (2006).

  87. A. L. Santos, D. Profeti, and P. Olivi, Electrochim. Acta 50, 2615 (2005).

    Article  CAS  Google Scholar 

  88. Z. Liu, B. Guo, L. Hong, and T. H. Lim, Electrochem. Commun. 8, 83 (2006).

    Article  CAS  Google Scholar 

  89. I. Saadeddin, B. Pecquenard, J. P. Manaud, et al., Appl. Surf. Sci. 253, 5240 (2007).

    Article  CAS  Google Scholar 

  90. A. T. Marshall and R. G. Haverkamp, Electrochim. Acta 55, 1978 (2010).

    Article  CAS  Google Scholar 

  91. D. J. You, K. Kwon, C. Pak, and H. Chang, Catal. Today 146, 15 (2009).

    Article  CAS  Google Scholar 

  92. C. Pan, Y. Li, Y. Ma, et al., J. Power Sources 196, 6228 (2011).

    Article  CAS  Google Scholar 

  93. L. A. Frolova, Yu. A. Dobrovolsky, and N. G. Bukun, Russ. J. Electrochem. 47, 697 (2011).

    Article  CAS  Google Scholar 

  94. B.-K. Kim, D. Seo, J. Y. Lee, et al., Electrochem. Commun. 12, 1442 (2010).

    Article  CAS  Google Scholar 

  95. Y. Song, Y. Ma, Y. Wang, et al., Electrochim. Acta 55, 4909 (2010).

    Article  CAS  Google Scholar 

  96. V. Ganesh, D. L. Maheswari, and S. Berchmans, Electrochim. Acta 56, 1197 (2011).

    Article  CAS  Google Scholar 

  97. R. Berenguer, C. Quijada, and E. Morallon, Electrochim. Acta 54, 5230 (2009).

    Article  CAS  Google Scholar 

  98. J.-M. Lee, S.-B. Han, Y.-W. Lee, et al., J. Alloys Compd. 506, 57 (2010).

    Article  CAS  Google Scholar 

  99. H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc. 154, B533 (2007).

    Article  CAS  Google Scholar 

  100. Z. H. Zhou, W. S. Li, Z. Fu, and X. D. Xiang, Int. J. Hydrogen Energy 35, 936 (2010).

    Article  CAS  Google Scholar 

  101. Z. Cui, L. Feng, C. Liu, and W. Xing, J. Power Sources 196, 2621 (2011).

    Article  CAS  Google Scholar 

  102. Y. Suzuki, A. Ishihara, S. Mitsushima, et al., Electrochem. Solid State Lett. 10, B105 (2007).

    Article  CAS  Google Scholar 

  103. B. Yuxia, W. Jianjun, Q. Xinping, et al., Appl. Catal., B 73, 144 (2007).

    Article  CAS  Google Scholar 

  104. B. Seger, A. Kongkanand, K. Vinodgopal, and P. V. Kamat, J. Electroanal. Chem. 621, 198 (2008).

    Article  CAS  Google Scholar 

  105. T. Ioroi, T. Akita, S. Yamazaki, et al., Electrochim. Acta 52, 491 (2006).

    Article  CAS  Google Scholar 

  106. L. P. R. Profeti, D. Profeti, and P. Olivi, Int. J. Hydrogen Energy 34, 2747 (2009).

    Article  CAS  Google Scholar 

  107. E. C. G. Rufino and P. Olivi, Int. J. Hydrogen Energy 35, 13298 (2010).

    Article  CAS  Google Scholar 

  108. E. Tsuji, A. Imanishi, K.-I. Fukui, and Y. Nakato, Electrochim. Acta 56, 2009 (2011).

    Article  CAS  Google Scholar 

  109. A. T. Marshall, S. Sunde, M. Tsypkin, and R. Tunold, Int. J. Hydrogen Energy 32, 2320 (2007).

    Article  CAS  Google Scholar 

  110. J. A. Sawicki, K. Marcinkowska, and F. E. Wagner, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 2544 (2010).

    CAS  Google Scholar 

  111. F. Ye, J. Li, X. Wang, et al., Int. J. Hydrogen Energy 35, 8049 (2010).

    Article  CAS  Google Scholar 

  112. T. Maiyalagan and B. Viswanathan, J. Power Sources 175, 789 (2008).

    Article  CAS  Google Scholar 

  113. J. Y. Kim, T.-K. Oh, Y. Shin, et al., Int. J. Hydrogen Energy 36, 4557 (2011).

    Article  CAS  Google Scholar 

  114. K. Lee, L. Zhang, and J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Ed by J. Zhang (Springer, London, 2008), p. 715.

    Google Scholar 

  115. L. G. Santos, K. S. Freitas, and E. A. Ticianelli, J. Solid State Electrochem. 11, 1541 (2007).

    Article  CAS  Google Scholar 

  116. E. C. Weigert, A. L. Stottlemyer, M. B. Zellner, and J. G. Chen, J. Phys. Chem. C 111, 14617 (2007).

    Article  CAS  Google Scholar 

  117. L. Guojin, J. S. Cooper, and P. J. McGinn, J. Power Sources 161, 106 (2006).

    Article  CAS  Google Scholar 

  118. H. Fengping, G. F. Cui, Z. D. Wei, and P. K. Shen, Electrochem. Commun. 10, 1303 (2008).

    Article  CAS  Google Scholar 

  119. H. Chhina, S. Campbell, and O. Kesler, J. Power Sources 164, 431 (2007).

    Article  CAS  Google Scholar 

  120. A. A. Lytkina, N. V. Orekhova, and A. B. Yaroslavtsev, Inorg. Mater. 54, 1315 (2018).

    Article  CAS  Google Scholar 

  121. Q. Liu, L.-C. Wang, M. Chen, et al., Catal. Lett. 121, 144 (2008).

    Article  CAS  Google Scholar 

  122. G. Aguila, J. Jimenez, S. Guerrero, et al., Appl. Catal., A 360, 98 (2009).

  123. Y. Wang, J. Zhang, H. Xu, and X. Bai, Chin. J. Catal. 28, 234 (2007).

    Article  Google Scholar 

  124. A. M. Karim, T. Conant, and A. K. Datye, Phys. Chem. Chem. Phys. 10, 5584 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. M. Krumpelt, T. Krause, J. Carter, et al., Catal. Today 77, 3 (2002).

    Article  CAS  Google Scholar 

  126. A. Iulianelli, T. Longo, S. Liguori, et al., Int. J. Hydrogen Energy 34, 8558 (2009).

    Article  CAS  Google Scholar 

  127. I. A. Carbajal Ramos, T. Montini, B. Lorenzut, et al., Catal. Today 180, 96 (2012).

    Article  CAS  Google Scholar 

  128. U. Amjad, A. Vita, C. Galletti, et al., Ind. Eng. Chem. Res. 52, 15428 (2013).

    Article  CAS  Google Scholar 

  129. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Catal. Today 268, 60 (2016).

    Article  CAS  Google Scholar 

  130. A. A. Lytkina, N. A. Zhilyaeva, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 9677 (2015).

    Article  CAS  Google Scholar 

  131. I. Eswaramoorthi and A. K. Dalai, Int. J. Hydrogen Energy 34, 2580 (2009).

    Article  CAS  Google Scholar 

  132. R. Y. Abrokwah, V. G. Deshmane, and D. Kuila, J. Mol. Catal. A: Chem. 425, 10 (2016).

    Article  CAS  Google Scholar 

  133. G. L. Chiarelloa, M. H. Aguirreb, and E. Selli, J. Catal. 273, 182 (2010).

    Article  CAS  Google Scholar 

  134. X. E. Verykios, Appl. Catal., B 46, 249 (2014).

    Google Scholar 

  135. V. G. Deshmane, S. L. Owen, R. Y. Abrokwah, and D. Kuila, J. Mol. Catal. A: Chem. 408, 202 (2015).

    Article  CAS  Google Scholar 

  136. G. Xia, J. D. Holladay, R. A. Dagle, E. O. Jones, Y. Wang, Chem. Eng. Technol. 28, 515 (2005).

    Article  CAS  Google Scholar 

  137. X. Guangwei, L. Laitao, L. Changquan, and Y. Xiaomao, Energy Fuels 23, 1342 (2009).

    Article  CAS  Google Scholar 

  138. A. Houteit, H. Mahzoul, P. Ehrburger, et al., Appl. Catal., A 306, 22 (2006).

  139. P. Clancy, J. P. Breen, and J. R. H. Ross, Catal. Today 127, 291 (2007).

    Article  CAS  Google Scholar 

  140. J. He, Z. Yang, L. Zhang, et al., Int. J. Hydrogen Energy 42, 9930 (2017).

    Article  CAS  Google Scholar 

  141. G. Zhou, L. Barrio, S. Agnoli, et al., Angew. Chem. 122, 9874 (2010).

    Article  Google Scholar 

  142. K. Sato, K. Kawano, A. Ito, et al., Chem. Sus. Chem. 3, 1364 (2010).

    Article  CAS  Google Scholar 

  143. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, and A. B. Yaroslavtsev, Int. J. Hydrogen Energy 43, 198 (2018).

    Article  CAS  Google Scholar 

  144. L. Yang, G.-D. Lin, and H.-B. Zhang, Appl. Catal., A 455, 137 (2013).

  145. X. Sun, R. Wang, and D. Su, Chin. J. Catal. 34, 508 (2013).

    Article  CAS  Google Scholar 

  146. E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, et al., Catal. Today 236, 64 (2014).

    Article  CAS  Google Scholar 

  147. M. J. Lazaro, S. Ascaso, S. Perez-Rodriguez, et al., C. R. Chim. 18, 1229 (2015).

    Article  CAS  Google Scholar 

  148. E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 3557 (2015).

    Article  CAS  Google Scholar 

  149. G. N. Bondarenko, M. M. Ermilova, M. N. Efimov, et al., Nanotechnol. Russ. 12, 315 (2017).

    Article  CAS  Google Scholar 

  150. A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, Renew. Sust. Energy Rev. 29, 355 (2014).

    Article  CAS  Google Scholar 

  151. N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, Russ. Chem. Rev. 82, 352 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Yaroslavtsev, A.B. Interfaces in Materials for Hydrogen Power Engineering. Membr. Membr. Technol. 1, 137–144 (2019). https://doi.org/10.1134/S2517751619030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619030065

Keywords:

Navigation