Skip to main content
Log in

Geomagnetic and Ionospheric Responses to the Interplanetary Shock Wave of March 17, 2015

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The propagation of perturbation caused by the interplanetary shock wave of March 17, 2015 from the solar wind through the magnetosheath, magnetosphere, and ionosphere down to the Earth’s surface is analyzed. The onboard satellite measurements, global magnetometer network data, and records by the receivers of the global positioning system (GPS) providing the information about the total electron content (TEC) of the ionosphere are used for the analysis. By the example of this event, various aspects of the influence of the interplanetary shock wave on the near-Earth environment and ground-based engineering systems are considered. It is shown which effects of this influence are well described by the existing theoretical models and which ones need additional research. The formation of the fine structure of the magnetic impulse of the storm sudden commencement (SC)—the preliminary impulse (PI) and main impulse (MI)—is considered. The MI and compression of the magnetospheric magnetic field is observed by the GOES and RBSP satellites and on the geomagnetically conjugate stations; however, the PI was only noted on the Earth. The PI was detected in the afternoon sector practically simultaneously (within 1 min) with the shock wave impact on the magnetopause. The wave’s response to the SC includes the strongly decaying resonant oscillations of the magnetic shells and the magnetoacoustic cavity mode. This study supports the possibility of detecting the ionospheric response to the SC by the GPS method. The TEC response to the MI was detected in the auroral latitudes although not on every radio path. The TEC modulation can be associated with the precipitation of superthermal electrons into the lower ionosphere which is undetectable by riometers. The burst in the intensity of the geomagnetically induced currents caused by an interplanetary shock wave turns out to be higher than the currents during the storm’s commencement, although the SC’s amplitude is noticeably lower than the amplitude of the magnetic bay related to the substorm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich, E.L., Astafyeva, E.I., Demyanov, V.V., et al., A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena, J. Space Weather Space Clim., 2013, vol. 3, no. A27. doi 10.1051/swsc/2013049

    Google Scholar 

  • Alperovich, L.S. and Fedorov, E.N., Hydromagnetic Waves in the Magnetosphere and the Ionosphere, Astrophysics and Space Science Library Series, vol. 353, Dordrecht: Springer, 2007.

    Book  Google Scholar 

  • Amata, E., Pilipenko, V.A., Pokhotelov, O.A., Troitskaya, V.A., and Shchepetnov, R.V., Psc5 pulsations on geostationary orbit, Geomagn. Aeron., 1986, vol. 26, pp. 283–287.

    Google Scholar 

  • Araki, T., Global structure of geomagnetic sudden commencements, Planet. Space Sci., 1977, vol. 25, pp. 373–384.

    Article  Google Scholar 

  • Araki, T., A Physical Model of the Geomagnetic Sudden Commencement, Engebretson, M.J., Takahashi, K., and Scholer, M., Eds., Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves Ser., Washington, DC: AGU, 1994.

  • Belakhovsky, V., Pilipenko, V., Murr, D., Fedorov, E., and Kozlovsky, A., Modulation of the ionosphere by Pc5 waves observed simultaneously by GPS/TEC and EISCAT, Earth Planets Space, 2016, vol. 68, no. 102. doi 10.1186/s40623-016-0480-7

    Google Scholar 

  • Beland, J. and Small, K., Space weather effects on power transmission systems: the cases of Hydro-Quebec and Transpower New Zealand Ltd, in Effects of Space Weather on Technology Infrastructure, Eaglis, I.A., Ed., Dordrecht: Kluwer, 2004.

    Google Scholar 

  • Chi, P.J., Russell, C.T., Raeder, J., et al., Propagation of the preliminary reverse impulse of sudden commencements to low latitudes, J. Geophys. Res., 2001, vol. 106, pp. 18857–18864.

    Article  Google Scholar 

  • Chi, P.J., Lee, D.-H., and Russell, C.T., Tamao travel time of sudden impulses and its relationship to ionospheric convection vortices, J. Geophys. Res., 2006, vol. 111, A08205. doi 10.1029/2005JA011578

    Article  Google Scholar 

  • Curto, J.J., Araki, T., and Alberca, L.F., Evolution of the concept of sudden storm commencements and their operative identification, Earth Planets Space, 2007, vol. 59, doi 10.1186/BF03352059

  • Dessler, A.J., Francis, W.E., and Parker, E.N., Geomagnetic storm sudden commencement rise times, J. Geophys. Res., 1960, vol. 65, pp. 2715–2719.

    Article  Google Scholar 

  • Engebretson, M.J., Murr, D.L., Hughes, W.J., et al., A multipoint determination of the propagation velocity of a sudden commencement across the polar ionosphere, J. Geophys. Res., 1999, vol. 104, pp. 22433–22451.

    Article  Google Scholar 

  • Fiori, R.A.D., Boteler, D.H., and Gillies, D.M., Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible, Space Weather, 2014, vol. 12, pp. 76–91.

    Article  Google Scholar 

  • Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., and Itonaga, M., A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res., 2003a, vol. 108, p. 1416.

    Article  Google Scholar 

  • Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., and Itonaga, M., A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 2003b, vol. 108, p. 1417.

    Article  Google Scholar 

  • Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, A09213. doi 10.1029/2012JA017683

    Article  Google Scholar 

  • Gold, T., Discussion of shock waves in rarefied gases, in Gas Dynamics of Cosmic Clouds: A Symposium Held at Cambridge, England, July 6–11, 1953, Van de Hulst, H.C., Ed., Amsterdam: North-Holland, 1955, pp. 103–105.

    Google Scholar 

  • Guglielmi, A.V. and Troitskaya, V.A., Geomagnitnye pul’satsii i diagnostika magnitosfery (Geomagnetic Pulsations and Diagnostics of the Magnetosphere), Moscow: Nauka, 1973.

    Google Scholar 

  • Jayachandran, P.T., Watson, C., Rae, I.J., et al., High-latitude GPS TEC changes associated with a sudden magnetospheric compression, Geophys. Rev. Lett., 2011, vol. 38, L23104. GL050041. doi 10.1029/2011

    Article  Google Scholar 

  • Jin, Y., Zhou, X., Moen, J.I., and Hairston, M., The auroral ionosphere TEC response to an interplanetary shock, Geophys. Rev. Lett., 2016, vol. 43, pp. 1810–1818.

    Article  Google Scholar 

  • Kanekal, S.G., Baker, D.N., Fennell, J.F., et al., Prompt acceleration of magnetospheric electrons to ultra-relativistic energies by the 17 March 2015 interplanetary shock, J. Geophys. Res., 2016, vol. 121, pp. 7622–7635.

    Article  Google Scholar 

  • Kappenman, J.G., Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and mid-latitude locations, Space Weather, 2003, vol. 1, p. 1016. doi 10.1029/2003SW000009

    Google Scholar 

  • Kappenman, J.G., Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events—an analysis of observational evidence including the great storm of May 1921, Adv. Space Res., 2006, vol. 38, pp. 188–199.

    Article  Google Scholar 

  • Kikuchi, T., Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator, J. Geophys. Res., 2014, vol. 119, pp. 1131–1156.

    Article  Google Scholar 

  • Kikuchi, T. and Araki, T., Transient response of uniform ionosphere and preliminary reverse impulse of geomagnetic storm sudden commencement, J. Atmos. Terr. Phys., 1979, vol. 41, pp. 917–925.

    Article  Google Scholar 

  • Klibanova, Yu.Yu., Mishin, V.V., and Tsegmed, B., Specific features of daytime long-period pulsations observed during the solar wind impulse against a background of the substorm of August 1, 1998, Cosmic Res., 2014, vol. 52, no. 6, pp. 421–429.

    Article  Google Scholar 

  • Knipp, D.J., Synthesis of geomagnetically induced currents: commentary and research, Space Weather, 2015, vol. 13, pp. 727–729.

    Article  Google Scholar 

  • Kozyreva, O.V., Pilipenko, V.A., Engebretson, M.J., Klimushkin, D.Yu., and Mager, P.N., Correspondence between the ULF wave power distribution and auroral oval, Sol.-Terr. Phys., 2016, vol. 2, no. 2, pp. 46–65. doi 10.12737/20999

    Google Scholar 

  • Kurazhkovskaya, N.A. and Klain, B.I., Geomagnetic (MIE) and storm sudden commencement (SSC) impulse s in a high-latitude magnetosphere, Geomagn. Aeron., 2016, vol. 56, no. 1, pp. 30–41.

    Article  Google Scholar 

  • Lee, D.-H. and Hudson, M.K., Numerical studies on the propagation of sudden impulses in the dipole magnetosphere, J. Geophys. Res., 2001, vol. 106, pp. 8435–8446.

    Article  Google Scholar 

  • Lysak, R.L. and Lee D., The response of the dipole magnetosphere to pressure pulse, Geophys. Rev. Lett., 1992, vol. 19, pp. 937–940.

    Article  Google Scholar 

  • Marsal, S., Torta, J.M., Segarra, A., and Araki, T., Use of spherical elementary currents to map the polar current systems associated with the geomagnetic sudden commencements on 2013 and 2015 St patrick’s Day storms, J. Geophys. Res., 2017, vol. 122, pp. 194–211.

    Article  Google Scholar 

  • Nakariakov, V.M., Pilipenko, V.A., Heilig, B., et al., Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding, Space Sci. Rev., 2016, vol. 200, pp. 75–203.

    Article  Google Scholar 

  • Nishida, A., Ionospheric screening effect and storm sudden commencement, J. Geophys. Res., 1964, vol. 69, pp. 1861–1874.

    Article  Google Scholar 

  • Nishimura, Y., Kikuchi, T., Ebihara, Y., Yoshikawa, A., Imajo, S., Li, W., and Utada, H., Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations, Earth, Planets Space, 2016, vol. 68, p. 144. doi 10.1186/s40623-016-0517-y

    Article  Google Scholar 

  • Oliveira, D.M. and Raeder, J., Impact angle control of interplanetary shock geoeffectiveness, J. Geophys. Res., 2014, vol. 119, pp. 8188–8201.

    Article  Google Scholar 

  • Pallocchia, G., Samsonov, A.A., Bavassano Cattaneo, M.B., et al., Interplanetary shock transmitted into the Earth’s magnetosheath: cluster and double star observations, Ann. Geophys., 2010, vol. 28, pp. 1141–1156.

    Article  Google Scholar 

  • Parkhomov, V.A., Oscillatory structure of the preliminary burst of storm sudden commencement, Geomagn. Aeron., 1990, vol. 30, pp. 210–215.

    Google Scholar 

  • Parkhomov, V.A., Borodkova, N.L., Yakhnin, A.G., et al., Global impulse burst of geomagnetic pulsations in the frequency range 0.2–5 Hz as a precursor of sudden commencement of St. Patrick’s Day 2015 geomagnetic storm, Cosmic Res., 2017, vol. 55, no. 5, pp. 307–317.

    Article  Google Scholar 

  • Piersanti, M., Cesaroni, C., Spogli, L., et al., Validation of the inferred ionospheric currents during a Sudden Impulse with GNSS TEC data over Italy, Proc. EGU General Assembly, 2016, p. 1451.

    Google Scholar 

  • Pilipenko, V., Belakhovsky, V., Murr, D., Fedorov, E., and Engebretson, M., Modulation of TEC/GPS by ULF Pc5 waves, Proc. XXXVI Annual Seminar “Physics of Auroral Phenomena,” Apatity, 2013, pp. 77–80.

    Google Scholar 

  • Ridley, A.J., Zeeuw, D.L., Manchester, W.B., and Hansen, K.C., The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection, Adv. Space Res., 2006, vol. 38, pp. 263–272.

    Article  Google Scholar 

  • Rodger, C.J., Clilverd, M.A., Kavanagh, A.J., Watt, C.E.J., Verronen, P.T., and Raita, T., Contrasting the responses of three different ground-based instruments to energetic electron precipitation, Radio Sci., 2012, vol. 47. doi 10.1029/2011RS004971

  • Safargaleev, V., Kozlovsky, A., Honary, F., Voronin, A., and Turunen, T., Geomagnetic disturbances on ground associated with particle precipitation during SC, Ann. Geophys., 2010, vol. 28, pp. 247–265.

    Article  Google Scholar 

  • Safrankova, J., Nemecek, Z., Prech, L., Samsonov, A.A., Koval, A., and Andreeova, K., Modification of interplanetary shocks near the bow shock and through the magnetosheath, J. Geophys. Res., 2007, vol. 112, A08212. doi 10.1029/2007JA012503

    Google Scholar 

  • Sakharov, Ya.A., Danilin, A.N., Ostafiychuk, R.M., Katkalov, Yu.V., and Kudryashova, N.V., Geomagnetically induced currents in the power systems of the Kola peninsula at solar minimum. Proc. 8th Int. Symp. on Electromagnetic Compatibility and Electromagnetic Ecology, St-Petersburg, 2009, pp. 237–238.

    Google Scholar 

  • Samsonov, A.A., Sibeck, D.G., and Imber, J., MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere, J. Geophys. Res., 2007, vol. 112, A12220. doi 10.1029/2007JA012627

    Article  Google Scholar 

  • Samsonov, A.A., Sibeck, D.G., and Yu, Y., Transient changes in magnetospheric-ionospheric currents caused by the passage of an interplanetary shock: northward interplanetary magnetic field case, J. Geophys. Res., 2010, A05207. doi 10.1029/2009JA014751

    Google Scholar 

  • Samsonov, A.A., Sibeck, D.G., Zolotova, N.V., Biernat, H.K., Chen, S.-H., Rastaetter, L., Singer, H.J., and Baumjohann, W., Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations, J. Geophys. Res., 2011, vol. 116, A10216. doi 10.1029/2011JA016706

    Article  Google Scholar 

  • Seemala, G.K. and Valladares, C.E., Statistics of total electron content depletions observed over the South American continent for the year 2008, Radio Sci., 2011, vol. 46, RS5019. doi 10.1029/2011RS004722

    Article  Google Scholar 

  • Sun, T.R., Wang, C., Li, H., and Guo, X.C., Nightside geosynchronous magnetic field response to interplanetary shocks: model results, J. Geophys. Res., 2011, vol. 116, A04216. doi 10.1029/2010JA016074

    Article  Google Scholar 

  • Sun, T.R., Wang, C., Zhang, J.J., Pilipenko, V.A., Wang, Y., and Wang, J.Y., The chain response of the magnetospheric and ground magnetic field to interplanetary shocks, J. Geophys. Res., 2015, vol. 120, pp. 157–165.

    Article  Google Scholar 

  • Tamao, T., The structure of three-dimensional hydromagnetic waves in a uniform cold plasma, J. Geomagn. Geoelectr., 1964, vol. 16, pp. 89–114.

    Article  Google Scholar 

  • Vorontsova, E., Pilipenko, V., Fedorov, E., Sinha, A.K., and Vichare, G., Modulation of total electron content by global Pc5 waves at low latitudes, Adv. Space Res., 2016, vol. 57, pp. 309–319.

    Article  Google Scholar 

  • Wang, Y., et al., On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015, J. Geophys. Res., 2016, vol. 121, pp. 7423–7434.

    Article  Google Scholar 

  • Waters, C.L. and Cox, S.P., ULF wave effects on high frequency signal propagation through the ionosphere, Ann. Geophys., 2009, vol. 27, pp. 2779–2788.

    Article  Google Scholar 

  • Watson, C., Jayachandran, P.T., Singer, H.J., Redmon, R.J., and Danskin, D., Large-amplitude GPS TEC variations associated with Pc5–6 magnetic field variations observed on the ground and at geosynchronous orbit, J. Geophys. Res., 2015, vol. 120. doi 10.1002/2015JA021517

  • Wedeken, U., Voelker, H., Knott, K., and Lester, M., Sscexcited pulsations recorded near noon on GEOS-2 and on the ground (CDAW 6), J. Geophys. Res., 1986, vol. 91, pp. 3089–3100.

    Article  Google Scholar 

  • Yumoto, K., Isono, A., Shiokawa, K., Matsuoka, H., Tanaka, Y., Menk, F.W., and Fraser, B.J., Global cavity mode-like and localized field-line Pc3–4 oscillations stimulated by interplanetary impulses (SI/SC): initial results from the 210° MM magnetic observations, in Solar Wind Sources of Magnetospheric ULF Waves, Engebretson, M. J., Takahashi, K., and Scholer, M. Eds., AGU, 1994, pp. 335–344.

    Google Scholar 

  • Yumoto, K., Pilipenko, V., Fedorov, E., Kurneva, N.De., and Lauretis, M., Magnetospheric ULF wave phenomena stimulated by SSC, J. Geomagn. Geoelectr., 1997, vol. 49, pp. 1179–1195.

    Article  Google Scholar 

  • Zhang, J.J., Wang, C., Sun, T.R., Liu, C.M., and Wang, K.R., GIC due to storm sudden commencement in low-latitude high-voltage power network in China: observation and simulation, Space Weather, 2015, vol. 13, pp. 643–655.

    Article  Google Scholar 

  • Zou, S., Ozturk, D., Varney, R., and Reimer, A., Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation, Geophys. Rev. Lett., 2017, vol. 44. doi 10.1002/2017GL072678

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pilipenko.

Additional information

Original Russian Text © V.A. Pilipenko, M. Bravo, N.V. Romanova, O.V. Kozyreva, S.N. Samsonov, Ya.A. Sakharov, 2018, published in Fizika Zemli, 2018, No. 5, pp. 61–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilipenko, V.A., Bravo, M., Romanova, N.V. et al. Geomagnetic and Ionospheric Responses to the Interplanetary Shock Wave of March 17, 2015. Izv., Phys. Solid Earth 54, 721–740 (2018). https://doi.org/10.1134/S1069351318050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318050129

Navigation