Skip to main content
Log in

Townsend coefficient, escape curve, and efficiency of runaway-electron beam formation in argon

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The ionization and drift characteristics of electrons in argon are simulated by the method of multi-particle dynamics. It is shown that, in argon (as well as in other gases studied earlier), the Townsend regime of ionization sets in even in strong fields if the electrode distance is much larger than the reciprocal Townsend coefficient. The dependences of the basic ionization and drift characteristics on the reduced field intensity are obtained, and an escape curve is constructed separating the region of effective electron multiplication from the region where the electrons leave the discharge gap having no time to multiply. The formation efficiency of a runaway-electron beam is calculated. It is shown that the dependence of the electrode voltage generating a given fraction of runaway electrons on the product of the pressure by the electrode distance has a form that qualitatively agrees with the runaway curve. When the efficiency is not too high (≤20%), the runaway curves virtually coincide with isoefficiency curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Éksp. Teor. Fiz. 77, 264 (2003) [JETP Lett. 77, 221 (2003)].

    Google Scholar 

  2. A. N. Tkachev, A. A. Fedenev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(4), 60 (2005) [Tech. Phys. 50, 447 (2005)].

    Google Scholar 

  3. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 174, 49 (2004) [Phys. Usp. 47, 887 (2004)].

    Google Scholar 

  4. A. N. Tkachev and S. I. Yakovlenko, Cent Eur. J. Phys. 2, 579 (2004); www.cesj.com/physics.html.

    Article  Google Scholar 

  5. L. P. Babich, T. V. Loĭko, and V. A. Tsukerman, Usp. Fiz. Nauk 160, 49 (1990) [Sov. Phys. Usp. 33, 521 (1990)].

    Google Scholar 

  6. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  7. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  8. A. V. Gurevich and K. P. Zybin, Usp. Fiz. Nauk 171, 1177 (2001) [Phys. Usp. 44, 1119 (2001)].

    Article  Google Scholar 

  9. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Vol. 1, pp. 98–182.

    Google Scholar 

  10. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1964; Consultants Bureau, New York, 1964), Vol. 4, pp. 81–187.

    Google Scholar 

  11. S. I. Yakovlenko, http://zhurnal.ape.relarn.ru/articles/2004/009.pdf.

  12. S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 10, 27 (2003).

  13. S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 5, 8 (2004).

  14. S. I. Yakovlenko Pis’ma Zh. Tekh. Fiz. 30(9), 12 (2004) [Tech. Phys. Lett. 30, 354 (2004)].

    Google Scholar 

  15. S. I. Yakovlenko Zh. Tekh. Fiz. 74(9), 47 (2004) [Tech. Phys. 49, 1150 (2004)].

    Google Scholar 

  16. S. I. Yakovlenko Pis’ma Zh. Tekh. Fiz. 31(4), 76 (2005) [Tech. Phys. Lett. 31, 169 (2005)].

    Google Scholar 

  17. I. D. Kostyrya, V. M. Orlovskii, V. F. Tarasenko, et al., Zh. Tekh. Fiz. 75(7), 65 (2005) [Tech. Phys. 50, 881 (2005)].

    Google Scholar 

  18. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 11, 12 (2005).

  19. A. N. Tkachev and S. I. Yakovlenko, Laser Phys. 12, 1022 (2002).

    Google Scholar 

  20. A. N. Tkachev and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 2, 43 (2004).

  21. A. N. Tkachev and S. I. Yakovlenko Zh. Tekh. Fiz. 75(4), 118 (2005) [Tech. Phys. 50, 508 (2005)].

    Google Scholar 

  22. W. C. Fon, K. A. Berrington, P. G. Burke, and A. Hibbert, J. Phys. B 16, 307 (1983).

    Article  ADS  Google Scholar 

  23. H. C. Straub, P. Renault, B. G. Lindsay, et al., Phys. Rev. A 52, 1115 (1995).

    Article  ADS  Google Scholar 

  24. R. S. Schappe, M. B. Schulman, L. W. Anderson, and C. C. Lin, Phys. Rev. A 50, 444 (1994).

    Article  ADS  Google Scholar 

  25. J. E. Chilton, J. B. Boffard, R. S. Schappe, and C. C. Lin, Phys. Rev. A 57, 267 (1998).

    Article  ADS  Google Scholar 

  26. V. L. Granovskiĭ, Electric Current in Gases, Vol. 1: Steady-State Current (GITTL, Moscow, 1952) [in Russian].

    Google Scholar 

  27. A. M. Eletskiĭ and B. M. Smirnov, Physical Processes in Gas Lasers (Énergoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Tkachev, A.A. Fedenev, S.I. Yakovlenko, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 6, pp. 22–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachev, A.N., Fedenev, A.A. & Yakovlenko, S.I. Townsend coefficient, escape curve, and efficiency of runaway-electron beam formation in argon. Tech. Phys. 52, 699–704 (2007). https://doi.org/10.1134/S1063784207060047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207060047

PACS numbers

Navigation