Skip to main content
Log in

Investigation of the structure of a polydisperse gas-droplet jet in the initial region. Experiment and numerical simulation

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The structure of gas-droplet polydisperse jet was studied experimentally and numerically. Experiments were carried out using the Particle Image Velocimetry/Particle Tracking Velocimetry/Interferometric Particle Imaging methods, which allowed simultaneous measurements of parameters for the average and pulsation carrying and disperse phases. Gas phase turbulence was calculated using the model of Reynolds stresses transfer. Significantly non-isotropic character of velocity pulsation of particles along and across the section of the gas-droplet jet was demonstrated in experiments and calculations. Strong dependence of axial pulsations of disperse phase velocity on the size of its particles is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Sternin, B.N. Maslov, A.A. Shraiber, and A.M. Podvysotsky, Two-Phase Mono- and Polydispersed Gas Flows with Particles, Mashinostroenie, Moscow, 1980.

    Google Scholar 

  2. G.N. Abramovich, T.A. Girshovich, S.Yu. Krasheninnikov, A.N. Sekundov, and I.P Smirnova, The Theory of Turbulent Jets, Nauka, Moscow, 1984.

    Google Scholar 

  3. W.A. Sirignano, Fluid dynamics of sprays — 1992 freeman scholar lecture, ASME. J. Fluids Eng., 1993. Vol. 115, P. 345–378.

    Article  Google Scholar 

  4. Yu.V. Zuev, I.A. Lepeshinsky, and V.A. Sovetov, Experimental and numerical investigation of a gas-droplet polydisperse turbulent jet, Fluid Dynamics, 1986, Vol. 21, No. 5, P. 730–735.

    Article  ADS  Google Scholar 

  5. M. Sommerfeld, Analysis of isothermal and evaporating turbulent spray by phase-Doppler anemometry and numerical calculation, Int. J. Heat Fluid Flow, 1998, Vol. 19, P. 173–186.

    Article  Google Scholar 

  6. V.G. McDonell and G.S. Samuelsen, An experimental data base for computational fluid dynamics non-reacting methanol sprays, ASME. J. Fluids Eng., 1995, Vol. 117. P. 145–153.

    Article  Google Scholar 

  7. V. Ferrand, R. Bazile, and J. Boree, Measurements of concentration per size class in a dense polydispersed jet using planar laser-induced fluorescence and phase Doppler techniques, Exp. Fluids, 2001, Vol. 31, P. 597–607.

    Article  Google Scholar 

  8. V. Ferrand, R. Bazile, J. Boree, and G. Sharnay, Gas-droplets turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets, Int. J. Multiphase Flow, 2003, Vol. 29, P. 195–217.

    Article  MATH  Google Scholar 

  9. Y.-C. Chen, S.H. Starner, and A.R. Masri, A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone, Int. J. Multiphase Flow, 2006, Vol. 32, P. 389–412.

    Article  MATH  Google Scholar 

  10. A. Terfous, M. Helmaoui, A. Hazzab, and A. Ghenaim, Measurement of liquid particle concentrations in a free jet flow, Chemical Engng. Processing, 2009, Vol. 48, P. 348–355.

    Article  Google Scholar 

  11. E. Babinsky and P.E. Sojka, Modeling drop size distribution, Progr. Energy Combust. Sci., 2002, Vol. 28, P. 303–329.

    Article  Google Scholar 

  12. Yu.V. Zuev and I.A. Lepeshinsky, Two-phase multicomponent turbulent jet with phase transitions, Fluid Dynamics, 1995, Vol.30, No. 5, P. 750–757.

    Article  ADS  Google Scholar 

  13. X.Q. Chen and J.F.C. Pereira, Computation of turbulent evaporating spray with well-specified measurements: a sensitivity study on droplet properties, Int. J. Heat Mass Transfer, 1996, Vol. 39, P. 441–454.

    Article  Google Scholar 

  14. B.M. Galitseisky and V.Yu. Shustova, Two-phase turbulent jet flows with phase transformations, Mathematical Models and Computer Simulations, 2005, Vol. 17, No. 7, P. 79–93.

    Google Scholar 

  15. N.A. Beishuizen, B. Naud, and D. Roekaerts, Evaluation of a modified Reynolds stress model for turbulent dispersed two-phase flows including two-way coupling, Flow, Turbulence, Combust., 2007, Vol. 79, P. 321–341.

    Article  MATH  Google Scholar 

  16. M.A. Pakhomov and V.I. Terekhov, Effect of vaporizing droplets on the structure of a submerged spray, Fluid Dynamics, 2009, Vol. 44, No. 3, P. 419–429.

    Article  MATH  ADS  Google Scholar 

  17. E. Amani and M.R.H. Nobari, Systematic tuning of dispersion models for simulation of evaporating sprays, Int. J. Multiphase Flow, 2013, Vol. 48, P. 11–31.

    Article  Google Scholar 

  18. I.V. Derevich and L.I. Zaichik, Particle deposition from a turbulent flow, Fluid Dynamics, 1988, Vol. 23, No. 5, P. 722–729.

    Article  MATH  ADS  Google Scholar 

  19. M.W. Reeks, On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A, 1991, Vol. 3, P. 446–456.

    Article  MATH  ADS  Google Scholar 

  20. F. Prevost, J. Boree, H.J. Nuglish, and G. Sharnay, Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet, Int. J. Multiphase Flow, 1996, Vol. 22, P. 686–701.

    Article  Google Scholar 

  21. I.V. Derevich, The hydrodynamics and heat and mass transfer of particles under conditions of turbulent flow of gas suspension in a pipe and in an axisymmetric jet, High Temperature, 2002, Vol. 40, No. 1, P. 78–91.

    Article  Google Scholar 

  22. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry, Springer, Berlin, 1998.

    Book  Google Scholar 

  23. M.P. Tokarev, D.M. Markovich, and A.V. Bilsky, Adaptive algorithms for PIV image processing, Computational Technologies, 2007, Vol. 12, No. 3, P. 109–131.

    MATH  Google Scholar 

  24. A.V. Bilsky, Yu. A. Lozhkin, and D.M. Markovich, Interferometric technique for measurement of droplet diameter, Thermophysics and Aeromechanics, 2011, Vol. 18, No. 1, P. 1–12.

    Article  Google Scholar 

  25. S.P. Lin and R.D. Reitz, Drop and spray formation from a liquid jet, Ann. Rev. Fluid Mech., 1998, Vol. 30, P. 85–105.

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Shima, Low-Reynolds-number second-moment closure without wall-refection redistribution terms, Int. J. Heat Fluid Flow, 1998, Vol. 19, P. 549–555.

    Article  Google Scholar 

  27. B.J. Daly and F.H. Harlow, Transport equations in turbulence, Phys. Fluids, 1970, Vol. 13, P. 2634–2649.

    Article  ADS  Google Scholar 

  28. B. Oesterle and L.I. Zaichik, Time scales for predicting dispersion of arbitrary-density particles in isotropic turbulence, Int. J. Multiphase Flow, 2006, Vol. 32, P. 838–849.

    Article  MATH  Google Scholar 

  29. L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows, Phys. Fluids, 1999, Vol. 11, P. 1521–1534.

    Article  MATH  ADS  Google Scholar 

  30. N.R. Panchapakesan and J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium. Pt. 1. Air jet, J. Fluid Mech., 1993, Vol. 246, P. 197–223.

    Article  ADS  Google Scholar 

  31. A.Yu. Varaksin, Fluid dynamics and thermal physics of two-phase flows: Problems and achievements, High Temperature, 2013, Vol. 51, No. 3, P. 377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lozhkin.

Additional information

The work was partially financed by RF President support for the young Doctors of sciences (Project MD-670.2012.8) and RFBR (Grant No. 13-08-01411).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkin, Y.A., Markovich, D.M., Pakhomov, M.A. et al. Investigation of the structure of a polydisperse gas-droplet jet in the initial region. Experiment and numerical simulation. Thermophys. Aeromech. 21, 293–307 (2014). https://doi.org/10.1134/S0869864314030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864314030044

Keywords

Navigation