Skip to main content
Log in

Green Synthesis Using Tragacanth Gum and Characterization of Ni–Cu–Zn Ferrite Nanoparticles as a Magnetically Separable Catalyst for the Synthesis of Hexabenzylhexaazaisowurtzitane Under Ultrasonic Irradiation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, we report the synthesis, characterization, and catalytic evaluation of Ni–Cu–Zn ferrite using tragacanth gum as a biotemplate and metal nitrates as the metal source by the sol-gel method without using any organic chemicals. The sample is characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The powder XRD analysis reveals the formation of cubic-phase ferrite MNPs with an average particle size of 20 nm. The magnetic analysis reveals that the Ni–Cu–Zn ferrite nanoparticles have ferromagnetic behavior at room temperature with a saturation magnetization of 52.76 emu/g. The catalytic activity of Ni–Cu–Zn ferrite MNPs is evaluated for the synthesis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,9.03,11]dodecane (HBIW) under ultrasonic irradiation. Mild reaction conditions, short reaction times, the use of an economically convenient catalyst, and excellent product yields are the advantageous features of this method. The catalyst could be easily recycled and reused few times without a noticeable decrease in the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Nabiyouni, H. Halakoui, and D. Ghanbari. J. Nanostruct., 2016, 7, 77–81.

    Google Scholar 

  2. S. Taghavi Fardood, A. Ramazani, and S. Moradi. J. Sol-Gel Sci. Technol., 2017, 82, 432–439.

    Article  CAS  Google Scholar 

  3. K. Hedayati. J. Nanostruct., 2015, 5, 13–16.

    Google Scholar 

  4. F. Sadri, A. Ramazani, H. Ahankar, S. Taghavi Fardood, P. Azimzadeh Asiabi, M. Khoobi, S. Woo Joo, and N. Dayyani. J. Nanostruct., 2016, 6, 264–272.

    CAS  Google Scholar 

  5. A. El-Sayed. Mater. Chem. Phys., 2003, 82, 583–587.

    Article  CAS  Google Scholar 

  6. M. Ahmed, E. Ateia, L. Salah, and A. El-Gamal. Mater. Chem. Phys., 2005, 92, 310–321.

    Article  CAS  Google Scholar 

  7. M. Gabal. J. Magn. Magn. Mater., 2009, 321, 3144–3148.

    Article  CAS  Google Scholar 

  8. R. Arabian, A. Ramazani, B. Mohtat, V. Azizkhani, S. W. Joo, and M. Rouhani. J. Energ. Mater., 2014, 32, 300–305.

    Article  CAS  Google Scholar 

  9. P. Maksimowski, T. Golofit, and W. Tomaszewski. Cent. Eur. J. Energ. Mater., 2016, 13, 333–348.

    Article  CAS  Google Scholar 

  10. A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George, and J. L. Flippen-Anderson. Tetrahedron, 1998, 54, 11793–11812.

    Article  CAS  Google Scholar 

  11. A. J. Bellamy. Tetrahedron, 1995, 51, 4711–4722.

    Article  CAS  Google Scholar 

  12. Y. Bayat, H. Ebrahimi, and F. Fotouhi-Far. Org. Process Res. Dev., 2012, 16, 1733–1738.

    Article  CAS  Google Scholar 

  13. W. Qiu, S. Chen, and Y. Yu. J. Chem. Crystallogr., 1998, 28, 593–596.

    Article  CAS  Google Scholar 

  14. M. R. Crampton, J. Hamid, R. Millar, and G. Ferguson. J. Chem. Soc., Perkin Trans. 1993, 2(2), 923–929.

    Article  Google Scholar 

  15. M. Zohuriaan and F. Shokrolahi. Polym. Test., 2004, 23, 575–579.

    Article  CAS  Google Scholar 

  16. N. Gralen and M. Kärrholm. J. Colloid Sci., 1950, 5, 21–36.

    Article  CAS  Google Scholar 

  17. R. Waldron. Phys. Rev., 1955, 99, 1727–1735.

    Article  CAS  Google Scholar 

  18. K. M. Batoo, S. Kumar, and C. G. Lee. Curr. Appl Phys., 2009, 9, 826–832.

    Article  Google Scholar 

  19. J. Jefimczyk, A. Antczak, and P. Maksimowski, Przem. Chem., 2008, 87, 296–299.

    CAS  Google Scholar 

  20. T. Golofit, P. Maksimowski, P. Szwarc, T. Ceglowski, and J. Jefimczyk. Org. Process Res. Dev., 2017, 21, 987–991.

    Article  CAS  Google Scholar 

  21. S. Shokrollahi, A. Ramazani, S. J. Tabatabaei Rezaei, A. Mashhadi Malekzadeh, P. Azimzadeh Asiabi, and S. W. Joo. Iran. J. Catal., 2016, 6, 65–68.

    Google Scholar 

  22. V. Azizkhani, F. Montazeri, E. Molashahi, and A. Ramazani. J. Energ. Mater., 2017, 35, 314–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Taghavi Fardood.

Additional information

Original Russian Text © 2018 S. Taghavi Fardood, A. Ramazani, Z. Golfar, S. W. Joo.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 7, pp. 1789–1795, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi Fardood, S., Ramazani, A., Golfar, Z. et al. Green Synthesis Using Tragacanth Gum and Characterization of Ni–Cu–Zn Ferrite Nanoparticles as a Magnetically Separable Catalyst for the Synthesis of Hexabenzylhexaazaisowurtzitane Under Ultrasonic Irradiation. J Struct Chem 59, 1730–1736 (2018). https://doi.org/10.1134/S0022476618070296

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618070296

Keywords

Navigation