
Minimizing energy consumption and makespan in a
two-machine flowshop scheduling problem
S Afshin Mansouri1* and Emel Aktas2
1Brunel Business School, Brunel University London, Uxbridge, UK; and 2Cranfield School of Management,
Cranfield University, Bedfordshire, UK

Energy consumption has become a key concern for manufacturing sector because of negative environmental
impact of operations. We develop constructive heuristics and multi-objective genetic algorithms (MOGA) for a
two-machine sequence-dependent permutation flowshop problem to address the trade-off between energy con-
sumption as a measure of sustainability and makespan as a measure of service level. We leverage the variable speed
of operations to develop energy-efficient schedules that minimize total energy consumption and makespan. As
minimization of energy consumption and minimization of makespan are conflicting objectives, the solutions to this
problem constitute a Pareto frontier. We compare the performance of constructive heuristics and MOGAs with
CPLEX and random search in a wide range of problem instances. The results show that MOGAs hybridized with
constructive heuristics outperform regular MOGA and heuristics alone in terms of quality and cardinality of Pareto
frontier. We provide production planners with new and scalable solution techniques that will enable them to make
informed decisions considering energy consumption together with service objectives in shop floor scheduling.

Keywords: scheduling; production; energy consumption; multi-objective; heuristics; genetic algorithms

The online version of this article is available Open Access

1. Introduction

A significant proportion of energy used in manufacturing is
currently generated through fossil fuels (Rahimifard et al,
2010). Therefore in the foreseeable future, energy efficiency
will become the main focus in manufacturing because of both
scarce resources and increasing greenhouse gases from produc-
tion processes. In terms of energy-efficient manufacturing,
minimization of energy use, recovery of parts, transformation
of wastes into key resources are required to align the manufac-
turing processes with principles of sustainable production and
resource efficiency.
The manufacturing sector uses massive amounts of energy

and contributes to 36% of global CO2 emissions (OECD-IEA,
2007). In the United Kingdom, industry electricity consumption
accounts for 31% of the total. This is equivalent to 69 million
metric tonnes of CO2, which approximates to annual green-
house gas emissions from more than 14.3 million passenger
vehicles (calculation obtained from EPA, 2013). This has
obliged manufacturing companies to put more efforts into
reducing their environmental impact and take proactive mea-
sures to consider likely energy shortages in their operations.
One way to do this is by using energy-efficient operations
(Duflou et al, 2012) such as selectively shutting down machines

during idle time (Mouzon et al, 2007; Mouzon and Yildirim,
2008) or operating them at speeds allowed by the set service
level targets.
Manufacturing scheduling has traditionally been influenced

by performance-oriented metrics such as makespan, float time,
and tardiness. Minimizing carbon footprint on the shop floor
involves multifaceted challenges that necessitate a multi-
objective approach because of conflicting objectives of, for
example, makespan and energy consumption. It entails complex
decision making and trade-off analysis by the operations
managers. As one of the first attempts in this field, Mansouri
et al (2016) addressed a bi-criteria two-machine flowshop
scheduling problem to minimize total energy consumption and
makespan. They showed the conflict between the two objec-
tives and developed an O(n3) heuristic to solve large size
problems. Two-machine flowshop scheduling problems have
attracted significant attention from practitioners and researchers.
There are many real world problems that involve scheduling of
two machines. These include applications for instance in printed
circuit board (Sabouni and Logendran, 2013), shampoo produc-
tion (Belaid et al, 2012), and metalworking (Uruk et al, 2013).
In this paper, we extend the work of Mansouri et al (2016) by
developing a new O(n2) heuristic and multi-objective genetic
algorithms (MOGAs) for a sequence-dependent two-machine
permutation flowshop scheduling problem to extend applicabil-
ity of the concept of green scheduling in real life applications. In
particular, we examine the effect of hybridizing the MOGA
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with the constructive heuristics to improve the efficiency and
the effectiveness of the search. We validate the performance of
the developed solution techniques through comprehensive
experiments based on three performance metrics, namely,
quality (distance with the lower bound to the problem),
diversity (number of unique sequences in the solution set), and
cardinality (size of the solution set) of the Pareto frontiers.
The remainder of the paper is organized as follows. Section 2

reviews the literature. Section 3 introduces the mathematical
model. Solution techniques including the new constructive
heuristic and MOGAs are described in Section 4. The experi-
mental set-up and results are presented in Section 5. Finally,
Section 6 discusses the results, concludes the paper, and
identifies future research directions.

2. Literature review

Research on incorporating energy considerations into manufac-
turing scheduling is rather limited. Previous work focused on
minimizing energy consumption and total completion time on a
single machine with multi-objective mathematical program-
ming models used for job scheduling where energy savings
were achieved by turning machines off during idle time but not
by considering energy used during machine operation (Mouzon
et al, 2007).
Processing time and energy consumption of computer numeri-

cally control machines can vary significantly by changing cutting
speed, feed rate, depth of cut, and nose radius (Ahilan et al, 2013).
It is possible to explore opportunities for saving energy by
relaxing the fixed processing times assumption. For example,
Fang et al (2011) developed a multi-objective mixed integer linear
programming (MOMILP) model to minimize completion time
and energy by varying operation speed on a single machine. In
this work, decisions on operation speed affected peak load and
energy consumption. Although they analysed a flowshop environ-
ment with two machines, they did not consider set-up times,
which have a direct impact on the completion time.
Machining time dictates the energy demand and the specific

energy consumption of a machine tool is affected by the
processing speed (Diaz et al, 2011). Not surprisingly, in the
computing field, energy consumed increases with higher execu-
tion speeds of processors (Fang and Lin, 2013) and jobs
executed at a higher machine speed for time savings incur a
greater energy consumption.
It is possible to build mathematical models to predict power

consumption based on machining parameters. One such work
by Ahilan et al (2013) reports the use of neural networks to
examine the effect of turning parameters such as cutting speed,
feed rate, depth of cut, and nose radius on power consumption
and surface roughness. The authors develop a non-linear
parametric equation that estimates power consumption based
on various levels of machining parameters and report a positive
relationship between power consumption and turning para-
meters. It is then possible to use this estimate of power

consumption in scheduling problems that consider power
consumption explicitly, such as those studied by Mouzon et al
(2007), Fang et al (2011), Liu et al (2013), or this study.
Another work that should be noted is by He et al (2005),

who developed a bi-objective job-shop scheduling model to
optimize both the energy consumption and the makespan,
where energy consumption was calculated as a function of the
unload power of the machine and the machining time. The
authors used a heuristic algorithm based on tabu search to solve
this problem.
On the other hand, energy consumption can be analysed

separately during machine operation and idling. Liu et al (2013)
addressed this problem and developed a branch-and-bound
algorithm based on the NEH heuristic (Nawaz et al, 1983) to
solve the permutation flowshop problem with idle energy
minimization. Their objective was to minimize the total wasted
energy consumption as the weighted sum of idle times on each
machine.
Considering the extant work published in this field, schedul-

ing with set-up times received relatively lower attention,
probably because of the complexity of the problems. On
scheduling with set-up times, Gharbi et al (2013) developed
lower bounds for the two-machine flowshop scheduling with
sequence-independent set-up times based on waiting time-
based relaxation, the single machine-based relaxation, and the
Lagrangian relaxation, and recommended hybridizing the single
machine-based and the Lagrangian relaxation-based lower
bounds for sequence-dependent problems.
Some factors such as peak and off-peak times set by energy

providers affect energy consumed on the shop floor and
associated costs; yet they are outside the decision space of the
manufacturer. Nevertheless, it is possible to incorporate such
factors into the scheduling models. For example, Luo et al
(2013) studied machine electricity consumption costs in a
hybrid metalworking flowshop and used constant power/
speed ratios to optimize the electricity consumption during
peak and off-peak hours. They recommended combining
fast and slow operating machines to achieve higher energy
efficiency.
Not only cost minimization goals but also environmental

sustainability concerns call for minimizing energy consumption
in manufacturing operations. There is usually a trade-off for the
manufacturer between green and regular production techno-
logies. Gong and Zhou (2013) analysed this trade-off from
the perspective of emissions trading and observed that such a
trade-off is governed by the relationship between the additional
cost per energy consumption allowance saved and the trading
prices.
In relation to the mathematical formulation of scheduling

problems with set-up times, Allahverdi et al (2008) have
produced a detailed review and in terms of solution approaches
Yenisey and Yagmahan (2014) report on the use of heuristic
algorithms in permutation flowshop scheduling problems. Both
works can serve as a good starting point for the reader who wish
to deepen their knowledge in this field.
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To summarize, machining parameters, specifics of opera-
tions, the nature of the problem at hand, and external variables
have a role to play in minimizing energy consumption in
manufacturing. With the advancement of manufacturing tech-
nologies, machines can now be operated at variable speeds
accompanied with a corresponding energy consumption profile.
However, the research on including energy consumption with
variable speeds is yet to grow. Continuing on a previous work
by Mansouri et al (2016) that analyzes the trade-off between
minimizing makespan, a measure of service level and minimiz-
ing total energy consumption, an indicator of environmental
sustainability, we are aiming to address this gap by furthering
the modelling of energy consumption explicitly in scheduling
and developing heuristic and metaheuristic algorithms to solve
this problem.

3. Problem formulation

We address a two-machine permutation flowshop scheduling
problem with sequence-dependent set-up times where machines
have variable speed. Following from Ibrahimov et al (2014) we
build a model with a high degree of fidelity, with reasonable
assumptions and approximations. The general flowshop sche-
duling problem consists of n jobs that are to be processed in m
machines with fixed, non-negative processing time for all jobs
(Tiwari et al, 2015). Similar to the bi-criteria problem addressed
by Lu and Logendran (2012), a set-up is required for processing
each job on each machine, and its duration depends on both the
current and the immediately preceding job. Set-up times are
anticipatory, that is, a set-up can be started before the corre-
sponding job becomes available on the machine. We adapt
Graham’s three-field notation (α | β | γ) (Graham et al, 1979) for
scheduling problems (T'kindt and Billaut, 2006) where α field
describes the shop (machine) environment, β field describes the
set-up information, other shop conditions, and details of the
processing characteristics and γ field describes the objective to
be minimized.
The two-machine flowshop scheduling problem to minimize

total energy consumption (TEC) and makespan (or Cmax) with
sequence-dependent set-up times is denoted as F2 | STsd |TEC,
Cmax. We refer to this problem as Problem P, which is a multi-
objective optimization problem (MOP). Table 1 introduces the
indexes, parameters, and variables used in the mathematical
modelling of Problem P.
Problem P is NP-hard because the single objective problem

F2 | STsd |Cmax is known to be NP-hard (Gupta and Darrow,
1986). Among the most common approaches to solve MOPs
are sequential optimization, weighting method, ϵ-constraint
method, goal programming, goal attainment, and distance-
based and direction-based methods (Collette and Siarry, 2004).
Readers are referred to T'kindt and Billaut (2006) for a
comprehensive survey on the theory and applications of multi-
objective scheduling. In the following, we provide basic
definitions of the MOP, which are needed to describe the
solution techniques.

A MOP seeks to determine a vector of decision variables
within a feasible region to minimize a vector of objective
functions that usually conflict with each other. Without the loss
of generality, an MOP can take the following form:
minff1ð~xÞ; ¼ ; fmð~xÞg subject to ~x 2 Θ, where ~x is the vector
of decision variables and Θ is the set of feasible solutions to m
objectives. A decision vector ~x is said to dominate a decision
vector ~y (also written as ~x�~y) if and only if fið~xÞ⩽ fið~yÞ8i 2
f1; ¼ ;mg and 9i 2 f1; ¼ ;mg j fið~xÞ< fið~yÞ for a problem
with all objectives to be minimized. All feasible solutions that
are not dominated by any other feasible solution are called non-
dominated or Pareto-optimal. These are solutions for which no
objective can be improved without at least one other objective
being deteriorated. Problem P can be formulated as a MOMILP
problem as follows:

minTEC andCmax (1)

subject to : M ´ 1 - zj
� �

+ oj ⩾ s2jj - c1j 8j (2)

c1j ⩾
p1j
v‘

´ y1j‘ + s1jj ´ zj 8j; ‘ (3)

c2j ⩾ c1j + oj +
p2j
v‘

´ y2j‘ 8j; ‘ (4)

Table 1 Indexes, parameters, and variables of the
mathematical model

Indexes

i Index for machines
j,k Index for jobs
ℓ Index for processing speeds

Parameters
m Number of machines; i= 1,2
n Number of jobs; j,k= 1,…,n
pij Processing time (min) of job j on machine i
vℓ Processing speed factor; ℓ= 1,2,3 for fast, normal, and slow

speeds, respectively
sijk Sequence-dependent set-up time (min) for changing from job j

to job k on machine i
λℓ Conversion factor for processing speed ℓ
φi Conversion factor for idle time on machine i
πi Power of machine i (kWh)
M A very large number

Positive variables
cij Latest completion time (min) of job j on machine i
oj Set-up offset for the first job on the second machine j
θi Idle time on machine i
TEC Total energy consumption (kWh)

Binary variables
zj ∈ {0,1} 1 if job j is the first job
xjk ∈ {0,1} 1 if job j is scheduled immediately before job k
yijℓ ∈ {0,1} 1 if job j is processed at speed ℓ on machine i
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M ´ zk +M ´ 1 - xjk
� �

+ cik ⩾ cij +
pik
v‘

´ yik‘

+ sijk ´ xjk 8i; j; k; ‘ j j 6¼ k ð5Þ
X
k

xjk ¼ 1 8j j j 6¼ k (6)

X
j

xjk ¼ 1 8k j j 6¼ k (7)

X
j

zj ¼ 1 (8)

X
l

yij‘ ¼ 1 8i; j (9)

θi ¼ Cmax -
X
j

X
‘

pij
v‘

´ yij‘ 8i (10)

TEC ¼
X
i

X
j

X
‘

λ‘ ´
pij
v‘

´ yij‘ ´
πi
60

+
X
i

φi ´ θi ´
πi
60

(11)

Cmax ⩾ c2j 8j (12)

Constraint 2 ensures that the completion time of the first job
on Machine 2 is delayed by taking into account the set-up offset,
which allows for the set-up on the second machine to start
before the first job is completed on the first machine because of
the nature of anticipatory set-up assumption in the problem
definition. Constraints 3 and 4 specify the earliest completion
time of jobs on Machines 1 and 2, respectively. Constraint 5
ensures that set-up changeovers and completion times of the
preceding jobs are taken into account in determining completion
times of successive jobs. Constraints 6 and 7 specify the
sequence of jobs as a tour in travelling salesman problem in
which the last job is paired with the first job. Note that the
decision variable zj sets the first job in the tour and subsequently
all the completion times are calculated accordingly. The subtour
issue is handled by Constraint 5, which is only binding for
consecutive jobs as defined by xjk decision variables. For non-
consecutive jobs, this constraint will be non-binding because of
the presence of the big M. In this way, completion time of the
last job (which is paired with the first job) will not be affected
because of the big M in Constraint 5. Constraint 8 warrants that
there is only one first job. Constraint 9 guarantees that exactly
one speed factor is selected for each job. Machines’ idle times
are calculated by Constraint 10. Finally, Constraints 11 and 12
compute TEC and Cmax, respectively.

4. Solution techniques

To address the computational complexity of the constructive
heuristic developed byMansouri et al (2016), which is anO(n3)
algorithm (called CH1 in this paper), we first introduce a novel
constructive heuristic (CH2) with the reduced complexity
O(n2). Subsequently, we develop regular and hybrid MOGAs

(denoted by R-MOGA and H-MOGA, respectively) to further
improve the effectiveness and efficiency of search for the Pareto
frontier of Problem P. Finally, we introduce an ϵ-constraint
method run on CPLEX and random search as two widely used
benchmark approaches to assess performance of search
heuristics.

4.1. Constructive heuristic 2 (CH2)

The CH2 includes a scheduling module (SM). For this module,
we extended the idea of the dominance rules proposed by Gupta
and Darrow (1986) for single speed two-machine sequence-
dependent flowshop scheduling to minimize Cmax to account
for variable speed problem defined in Section 3. A local search
is carried out at the end to improve quality of the solution.
Details of the SM are presented in Algorithm 1. As detailed in
Algorithm 1, the SM routine is implemented in three steps. The
search parameters are first initialized in Step 0. Subsequently,
the jobs are sequenced in Step 1 by using the speed vector
~Δ ¼ ½δij�; i ¼ 1; 2; j ¼ 1; � � � ; n, where δij denotes the proces-
sing speed factor of job j on machine i; δij∈ {v1,v2,v3}
representing fast, normal, and slow speeds, respectively. As
detailed in Algorithm 1, σ1 and σ2 are two partial sequences and
ω is the set of jobs, which are not included in σ1 and σ2. These
sets are initialized in Step 0 by setting σ1= σ2=∅ and ω= {1,2,
…,n}. During the sequencing routine in Step 1, jobs are taken
one by one from ω and added to the end of σ1 or the beginning
of σ2. This process continues until n− 1 jobs are sequenced in
either σ1 or σ2 and there is only one job left in ω. The final
complete sequence σ is then formed by placing σ1 at the
beginning, ω in the middle, and σ2 at the end: σ= σ1ωσ2. In
Step 2, the jobs are scheduled according to the sequence σ and
speed vector ~Δ. Accordingly, the start and finish times for all
jobs on both machines are calculated. Finally, a local search is
carried out to improve the quality of the solution. The local
search begins by examining jobs one by one to see if removing
them from their position and inserting them in subsequent
positions could improve Cmax. In this way, the first job is
examined for insertion in (n− 1) subsequent positions. It is then
inserted in the position that yields the maximum reduction in
Cmax or left in its current position if no such Cmax-improving
move can be found. The second job in the sequence is then
examined for insertion in the following (n− 2) positions and so
on and so forth. On the basis of a given vector of processing
speed factors, Algorithm 1 schedules the jobs and calculates
Cmax and TEC.
By using this schedule as a starting point, the CH2 (Algo-

rithm 2) seeks for energy-efficient schedules in an iterative
loop. It starts with an initial sequence in which all jobs are run at
fast speed (ie, v1). In an iterative procedure, the processing
speeds of operations are decreased iteratively while keeping the
same sequence. The central idea in this procedure is removing
idle times on either machine by slowing down machining
operations that affect the idle time the most. The idle times are
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identified by comparing completion times of jobs on Machine 1
(denoted by c1[k]) and their ready times on Machine 2 (repre-
sented by r2[k]). The job with maximum |c1[k]− r2[k]| is con-
sidered the most promising job (denoted by ξ) for energy saving
by reducing machining speed of its respective operations on
either machine. If the job is completed on Machine 1 after
Machine 2 is ready to process it (ie, c1[ξ]> r2[ξ]), then the speed
of respective operation on Machine 2 (ie, δ2[ξ]) is slowed down
by one level if not currently run at slow speed. Alternatively, if
the reverse situation holds (ie, r2[ξ]> c1[ξ]), the speed of
respective operation on Machine 1 (ie, δ1[ξ]) is reduced by one
level. In the event that there is no idle time on either machine
(except for the first job), the operation with minimum proces-
sing time (ie, min pi[k]/δi[k]) is chosen for speed reduction. The
resultant schedule is added to Pareto frontier (Ω) if it is not
dominated by current members of the frontier. This process
continues until all operations are run at slow speed v3.
It is clear that the new algorithm has a complexity of O(n2).

Compared with the constructive algorithm of Mansouri et al
(2016) with complexity of O(n3) (which is referred to as CH1
here), the new algorithm has less computational complexity.
This time efficiency has been achieved at the expense of wider
exploration of job sequences. Unlike CH1, CH2 does not
change the job sequence after alteration of speed levels. As a
result, all solutions of the resultant Pareto frontier from CH2
have the same job sequence.

Algorithm 1: The scheduling method (SM)

input: vector of jobs processing speed factors on the two
machines
output: schedule S with near optimal Cmax and its associated
TEC
begin

Step 0 (initialization)
let σ1 and σ2 be two partial sequences; d the last job in σ1
and e the first job in σ2;
let n1 and n2 denote the number of jobs in σ1 and σ2
respectively;
let ω denote the set of jobs not included in σ1 and σ2;
let σ denote a complete sequence with n jobs;
let δij denote the processing speed factor of job j on
machine i; δij∈ {v1,v2,v3};
let let ~Δ denote the vector of speed factors,
~Δ ¼ ½δij�; i ¼ 1; 2; j ¼ 1; � � � ; n;
let J[k] denote the job in k

th position of the sequence;
set σ1= σ2=∅, n1= n2= 0, ω= {1,2,…,n};
Step 1 (sequencing)
while (n1 + n2)< (n− 1) do

find job a such that A ¼ p1a=δ1a + s1da - s2da
¼ min

j2ω
½p1j=δ1j + s1dj - s2dj�:

find job b such that B ¼ p2b ¼ min
j2ω
½ p2j=δ2j�:

Algorithm 1: The scheduling method (SM)

if A<B then
let σ1= σ1a, n1= n1 + 1;

else if A>B then
let σ2= bσ2, n2= n2 + 1;

else
if a≠ b then

if min[(s1da+ p1a/δ1a), (p2b /δ2b+ s2be)]
⩽min[(s1db+ p1b/δ1b), (p2a /δ2a+ s2ae)]

set σ1= σ1a, n1= n1 + 1
end
else

set σ2= bσ2, n2= n2 + 1;
end

else
if (s1da+ p1a/δ1a)⩽ (p2a /δ2a+ s2ae) then

set σ1= σ1a, n1= n1 + 1;
end
else

set σ2= bσ2, n2= n2 + 1;
end

end
end
update ω;

end
let σ= σ1ωσ2;
Step 2 (scheduling and local search)
create schedule S by sequencing the jobs according to σ
and the speed vector Δ;
let S1= S; S2= S; min Cmax= S → Cmax;
for k1= 1 to n− 1 do

let k2= k1;
while k2< n− 1 do

move the job and processing speeds from
position k2 of S1 to position k2 + 1;
if S1 → Cmax<min Cmax then
let min Cmax= S1→Cmax;
let S2= S1;

end
let k2= k2 + 1;

end
let S= S2

end
report schedule S and its objective vector [S→Cmax,
S → TEC].
end

Algorithm 2: Constructive heuristic 2 (CH2)

input : Set of jobs
output: Approximation of Pareto frontier (Ω)
begin
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Algorithm 2: Constructive heuristic 2 (CH2)

set iterator ρ= 0;
let [k] denote the job in position k of the sequence;
let oi[k] denote the operation in position k on machine i;
let ri[k]= ci[k− 1] + si[k− 1][k] denote the ready time of kth

job on machine i;
initialize the speed vector at fast speed Δρ:{δi[k]← v1;
∀ i, k};
develop schedule Sρ by running the scheduling method
SM (Algorithm 1) using Δρ;
if ∄ Sμ 2 Ω j Sμ�Sρ then

set Ω=Ω∪ Sρ;
end
let Ξ= {oi[k] | δi[k]≠ v3);
while Ξ≠∅ do

set Λ= {k∈ Sρ | c1[k]≠ r2[k]};
find ξ such that | c1[ξ]− r2[ξ]| =max

k2Λ
j c1½k� - r2½k� j ;

if ξ= 1∧ c1[ξ]> r2[ξ] then
let Λ=Λ− ξ;
find ξ such that |c1[ξ]− r2[ξ] |
=max

k2Λ
j c1½k� - r2½k� j ;

end
if c1[ξ]> r2[ξ]∧ δ2[ξ− 1]≠ v3 then

update Δρ : fδ2½ξ- 1�  vð‘ + 1Þg;
else if r2[ξ]> c1[ξ]∧ δ1[ξ]≠ v3 then

update Δρ : fδ1½ξ�  vð‘ + 1Þg;
else

find oi[ξ]∈Ξ such that
pi½ξ�=δi½ξ� ¼ min

k
pi½k�=δi½k�;

update Δρ : fδi½ξ�  vð‘+ 1Þg);
end
set ρ= ρ+ 1;
recalculate cij's, rij's, Cmax and TEC of schedule Sρ
using Δρ;
if ∄ Sμ 2 Ω j Sμ�Sρ then

set Ω=Ω∪ Sρ;
end
update Ξ ;

end
end
report Ω as an approximation of the Pareto frontier;

4.2. Multi-objective genetic algorithms

Genetic algorithms (GAs) are adaptive search methods that
have been shown to be robust for a variety of combinatorial
optimization problems (Jog et al, 1991). GAs have successfully
been applied to solve a wide range of complex MOPs (Coello
et al, 2002). In a typical GA, a set of solutions (called
population) are improved (or evolved) over a number of
iterations (called generations) using a combination of operators

(named genetic operators) such as reproduction, crossover, and
mutation (Goldberg, 2006). In this section we provide details of
the MOGAs that we have developed to solve Problem P.

4.2.1. Chromosome structure. To represent solutions for
Problem P, we use a two-dimensional chromosome structure,
including three rows and n columns. Figure 1 illustrates the
solution structure for given sequence J1 to Jn.

4.2.2. Fitness assignment. Fitness of solutions are calculated
according to the concept of non-dominated sorting (Deb and
Sinha, 2009). To assign appropriate fitness to the individuals
in a population taking into account both objectives, we selec-
ted the non-dominated sorting method proposed by Srinivas
and Deb (1994), which is one of the most commonly used
methods for multi-objective optimization using GAs. In this
procedure, the population is ranked based on individuals’ level
of non-domination. The non-dominated individuals of the
population are first identified and assumed to constitute the
first non-dominated frontier. These individuals are assigned a
large dummy fitness value. To maintain diversity in the popu-
lation, these dummy fitness values are then shared with solu-
tions in their close neighbourhood, called their niche. In this
way, the dummy fitness of an individual is divided by the
number of solutions in its niche. The niche dimensions in a
given population is calculated using the concept of niche
cubicle proposed by Hyun et al (1998). The niche size is cal-
culated at every generation. A solution in a less dense cubicle
will have a higher chance to survive in the next generation.
After sharing, these non-dominated individuals are ignored
and the same process is implemented to identify individuals
for the second non-dominated frontier. These non-dominated
solutions are then assigned a new dummy fitness value, which
is smaller than the minimum shared dummy fitness of the
previous frontier. The dummy fitness values are then shared
and this process is repeated until the whole population is
classified into several frontiers and individuals are assigned
fitness values.

4.2.3. Selection. An elitist strategy is used to preserve non-
dominated solutions found over generations in an archive
called Elite Set. The Elite Set is updated at the end of each
iteration by adding non-dominated solutions of the current
generation and eliminating dominated solutions from the set.
Selected solutions from each population are copied into the
mating pool. To give fitter solutions more chance to contribute
to the next generation, the expected number of each solution is

Figure 1 The chromosome structure for the sequence J1,…,Jn.
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set proportionate to their fitness. For a given solution x with
fitness fx, the expected number of copies is calculated as fol-
lows: E½x� ¼ PopSize ´ ð fx=

P
x
fxÞ, where PopSize denotes

Population Size. Integer parts of E[.] will determine the num-
ber of chromosomes to be copied into the mating pool. The
remainder of mating pool is filled by randomly selected solu-
tions from the Elite Set.

4.2.4. Genetic operators. Order crossover (Michalewicz,
1996) is used for recombination. Figure 2 represents an
example of recombination using Order Crossover in a problem
with seven jobs. The bold lines in Figure 2(a) designate the
segment of the sequences that will remain intact and form part
of the offspring. This segment is selected randomly for each
crossover operation. A new parent is then created by moving
all the genes appearing to the right of this segment (of the
original parent) to the beginning of the sequence (Figure 2(b)).
Subsequently, the characters that match the characters
between the bold lines of the other original parent are removed
(Figure 2(c)). Finally, the sequence between the bold lines of
the original parent and this shortened list from the other parent
is used to generate an offspring (Figure 2(d)).
To further diversify the population, a small proportion of the

chromosomes will be mutated. Four strategies are used for
mutating selected solutions. These include: Inversion, Insertion,
Swap, and Speed Alteration. The four mutation strategies are
demonstrated in Figure 3. Inversion simply reverses the order of
genes in a randomly selected segment of the chromosome
(Figure 3(a)). Through Insertion, a single gene is taken out
from a random position along the chromosome and is inserted
in another random position (Figure 3(b)). Swap operator
exchanges the position of two randomly selected genes

(Figure 3(c)). Finally, Speed Alteration changes the speed
factors of randomly chosen genes on either machines from one
value to another (Figure 3(d)).
The chromosome produced by mutation will be compared

with the original chromosome and will replace the original if it
dominates it. However, a dominated offspring will still have a
chance to replace its parent. Probability of such degrading
moves will be high at the beginning and decreases as the search
converges to final solution. The probability of accepting a
dominated offspring, starting from 1.0, will be decreased
exponentially over generations. The probability of accepting a
dominated offspring resulted by mutation at a given time t is
denoted by Pa(t) and is calculated as follows:

PaðtÞ ¼ exp
- t

tmax - t

� �
; t ¼ 0; ¼ ; tmax (13)

where tmax represents the maximum execution (CPU) time.

4.2.5. The search procedure and hybridization. The overall
structure of the MOGAs is represented in Algorithm 3. We
develop three variants of MOGAs in this paper, including a
regular (R-MOGA) and two hybrid MOGAs (or H-MOGAs).
Performance of GAs can often be improved through hybridi-
zation with local search and heuristic approaches (Costa et al,
2012). The main difference between regular and hybrid
MOGAs in this research are in the initiation of the Elite Set.
The initial Elite Set of the R-MOGA is generated randomly
whereas in the H-MOGAs, the Elite Set is initiated by the
outputs of the two constructive heuristics, namely CH1 and
CH2. The resultant hybrid methods are denoted by H-MOGA1
and H-MOGA2, respectively. This will give the H-MOGAs
an initial advantage in terms of better starting points.

Figure 2 An example of recombination using Order Crossover in a problem with seven jobs.
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Moreover, the solutions found by the constructive heuristics
will have the chance to contribute to the generation of off-
spring.

Algorithm 3: Pseudocode of the MOGA approaches

input : Search parameters
output: Approximation of the Pareto frontier
Let time counter t= 0;
Initialize population;
Initialize search parameters;
Initialize {Elite Set}
while t< tmax do

Perform nondominated sorting;
Select individuals for mating pool;
From mating pool, generate new generation using
genetic operators;
Let current generation= new generation;
Identify F1= nondominated frontier of current
generation;
Let {Elite Set}= {Elite Set}∪F1;
Refine {Elite Set};
Let t= t+1;

end
Report {Elite Set};

4.3. Other benchmark methods

To have baselines for comparing performance of the above
search methods, we use an ϵ-constraint method implemented in
CPLEX and a random search (RS). Using CPLEX provides the
opportunity to examine the practicality of existing optimization
tools in solving Problem P. Comparisons with RS on the other
hand, will serve as a sanity check to ensure that the performance
of the guided search methods is not just a result of computa-
tional power of the hardware used to implement them.

5. Experiments and results

5.1. Performance metrics

In this research, we have used three metrics to compare the
performance of the solution techniques. These include distance
with the lower bound (DLB) as a measure of quality, diversity
(DVR) as a measure of the variety of the solution set, and
cardinality (CRD) as a measure of the size of the solution set of
the final Pareto frontier found by each algorithm. The accuracy
of the Pareto frontier Ω is measured by its distance with the
lower bound, denoted by DLBΩ and calculated as follows:

DLBΩ ¼
P
τ2Ω

min
Cτ
max -C

LB
maxð Þ

CLB
max

; TECτ - TECLBð Þ
TECLB

� �

j Ω j (14)

a b

c d

Figure 3 Four mutation strategies. (a) Inversion; (b) Insertion; (c) Swap; (d) Alteration.
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where CLB
max and TECLB are lower bounds for Cmax and TEC,

respectively, as defined in Mansouri et al (2016). In short, CLB
max

and TECLB are calculated by solving a sequence-independent
variant of Problem P (defined in Section 3), in which the
minimum set-up changeovers from all other jobs are considered
as the required set-up for any given job irrespective of their
position in the sequence. The Cmax of the sequence-independent
problem can be found in polynomial time using the algorithm of
Yoshida and Hitomi (1979). Mansouri et al (2016) proved that
Cmax of the sequence-independent problem is a lower bound for
Cmax of Problem P when all operations are run at slow speed.
Moreover, they showed that TEC of the sequence-independent
problem is lower bound for TEC of Problem P when operations
are executed at slow speed and under some non-restrictive
conditions. The diversity of the Pareto frontier Ω is denoted by
DVRΩ and it represents the number of unique sequences in the
final frontier. It should be mentioned that the objective values of
a solution are primarily defined by two factors: the sequence of
jobs and speed of operations. As such, a single sequence of jobs
may lead to different Cmax and TEC values depending on speed
factors of operations on the two machines. Considering n jobs
and three speed levels for every operations, there are (n3)2= n6

possible combinations of speed factors for any sequence of
jobs. The DVRmetric captures the number of unique sequences
regardless of speed in the Pareto frontier, which serve as an
indicator of flexibility in production planning. The more diverse
is the Pareto frontier, the more flexibility production planners
will have in job sequencing. Finally, the total number of
solutions in the frontier is the cardinality of the Pareto frontier
Ω and denoted by CRDΩ , which reflects the total number of
solutions in the Pareto frontier regardless of the uniqueness of
sequences.

5.2. Experimental design

We used a full factorial design of experiments for a F2 | STsd |
Cmax,TEC problem with 480 problem instances (30 for each
combination of factors) based on the number of jobs (n) set-up
to processing time ratio (sijk) generated using the experimental
setting given in Table 2. Then we solved these problem
instances using seven algorithms: CPLEX, CH1, CH2,
H-MOGA1, H-MOGA2, R-MOGA, and RS.

In Table 2, we based the number of jobs in our experi-
ments on previous flowshop scheduling research by Naderi
et al (2009). Following from the classical problem intro-
duced by Taillard (1990) and revisited by Ruiz et al (2005)
we used uniformly distributed processing times in the
experiments. In order to gain insights about the impact of
set-up times, we followed the set-up to processing time ratio
investigated by Ruiz and Stützle (2008). We took the idle
time energy consumption parameter from Mouzon et al
(2007). The work of Ahilan et al (2013) was instrumental to
estimating processing speed and energy conversion rate. We
obtained energy conversion rate distribution from Ahilan
et al (2013) and drew this parameter from the given distribu-
tions for each problem set. In accordance with the work of
Ahilan et al (2013) and Mouzon et al (2007), each problem
instance in the data set satisfied the condition: min{(λ1 − λ2)
and (λ2 − λ3)}⩾max(φ1,φ2).

5.2.1. Setting up the search methods. Parameters of the
MOGAs were tuned empirically on a number of test problems
in comparison with true Pareto frontiers found by CPLEX.
The following are the set of parameters used for the MOGAs:
Population Size= n; Crossover Rate= 0.70; Inversion Rate=
0.10; Swap Rate= 0.10; Insertion Rate= 0.08; Speed Altera-
tion Rate= 0.10; and tmax= n seconds.
For a fair comparison, we ran CPLEX under ϵ-constraint

approach for the same time (n seconds) as other search
heuristics. To allow for the formation of frontier and to avoid
spending too much time at any ϵ level, we set a limit for 10% of
the total time for each ϵ level before proceeding with the
reduced ϵ value. Incidentally, in deciding on the time spent at
each stage, there is a trade-off among the three performance
metrics, that is, accuracy, diversity, and cardinality. More time
at any given ϵ level would allow CPLEX to improve accuracy
but at the expense of less iterations and hence lower cardinality
and diversity. We examined a number of problem instances and
observed that 10% provides a fair opportunity for exploration
and exploitation of the search space at the same time. The best
solution found at each stage is archived and ultimately refined
by removing dominated solutions to obtain the set Ω. All
algorithms were coded in C++ and run on an Intel Xeon CPU
3.50GHz with 32.0GB RAM under Windows 7 Enterprise.

Table 2 Summary of experimental design

Input Levels Based on

Number of jobs (n) 20, 50, 80, 120 Naderi et al (2009)
Processing timedistribution (pij) Unif (1,99) Ruiz et al (2005); Taillard (1990)
Sequence dependentset-up timedistribution (sijk) Unif (1,25),Unif (1,50),Unif (1,99), Unif (1,125) Ruiz and Stützle (2008)
Powerdistribution (πi) Unif (60,80) Heidenhain (2011); Brooks (2012)
Idle time energyconsumption (φi ) 0.05 Mouzon et al (2007)
Processing speed (vℓ) 1.2, 1, 0.8 Ahilan et al (2013)
Conversion rate (λℓ) LogN (6.395, 0.220), LogN (6.225, 0.229),

LogN (5.804, 0.303)
Ahilan et al (2013)
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Moreover, we used CPLEX 12.5 in Concert Technology to
code the MILP model in C++ . Statistical analyses were done
on IBM SPSS Version 20.

5.3. Results

The LB we defined is very conservative. For each job, it takes
the shortest set-up time from job k to job j. Then, it uses
the Yoshida and Hitomi’s (1979) algorithm to find Cmax.
When the ratio of set-up to processing time is low, the LB is
closer to the optimal solution. So for problem sets with larger
set-up to processing time ratio the LB becomes much farther
away from the optimal solution. Part of the gap is because of
the looseness of the LB and part of it is because of the factors
that affect problem complexity. As our goal was to improve
the constructive heuristic developed in Mansouri et al
(2016), we initially checked how well CH2 performed
against CH1 in terms of CPU time and the three performance
metrics we defined in Section 5.1. As it can be seen from
Table 3, CH2 outperforms CH1 in CPU time required for the
algorithm, the distance with the lower bound and the number
of non-dominated solutions in the Pareto frontier, but not
diversity. So when the production planner is looking for
quick solutions to his scheduling problem, he may prefer
CH2 over CH1 unless the diversity of solutions does not
have priority over other performance metrics.
Table 4 shows the performance of algorithms with respect to

DLB. CPLEX is outperformed by even the random search,
where the difference between CPLEX and algorithms that
employ a GA (H-MOGA1, H-MOGA2, R-MOGA) are about
10%. There is no difference between CH1 and CH2 in terms of
the DLB and both are outperformed by all algorithms that
employ a GA. Both CH1 and CH2 perform better than CPLEX
and RS. There is no statistically significant difference between
the performance of H-MOGA1 and H-MOGA2 in terms of the
DLB. As expected, H-MOGA1 and H-MOGA2 perform better
than R-MOGA and RS.
In Table 5, it is clear that CH1 outperforms all the rest of

the algorithms with respect to diversity. Following CH1,
hybrid MOGAs are second best performers. Between the
two hybrid MOGAs, H-MOGA1 performs better than

H-MOGA2. Interestingly, RS performs better than
R-MOGA. One possible explanation for this result is the fact
that quality of the solution is not a criteria for assessing
diversity performance and random search has an inherent

ability to explore a wider search space, and therefore finds
more unique sequences than R-MOGA. Finally, the worst
performers in terms of diversity are CPLEX and CH2.
Although CPLEX found more solutions than CH2, the
difference in the number of unique solutions is not statisti-
cally significant.
Table 6 shows the mean differences between algorithms with

respect to the number of solutions they found in the Pareto
frontier. CH2 produced the largest number of solutions on the
Pareto frontier. As can be seen in Table 6 CPLEX is out-
performed by all algorithms where a constructive heuristic
is used. There is no statistically significant difference bet-
ween CPLEX and the MOGA starting with random search
(R-MOGA) and the random search (RS). CH2 and H-MOGA2
outperform CH1 in terms of the number of solutions
on the Pareto frontier; however, as it is highlighted in the
previous section on diversity, all these solutions represent only
a single unique sequence. CH1 performs better than its counter-
part with GA (H-MOGA1) and random solutions (R-MOGA
and RS).

5.3.1. An illustrative example. We show here, on a single
problem instance with 20 jobs and set-up to processing time
ratio= 25%, how the Pareto frontier and the performance of
the algorithms compare with each other. In Figure 4(a) we
display the Pareto frontier of each algorithm and the lower
bounds for Cmax and TEC. A few interesting observations can
be made: Random search (RS) has a frontier that is inferior
compared with all other frontiers except that of CPLEX.

Table 3 Paired comparison of the performance of CH1 and CH2

CPU time DLB DVR CRD

Mean SD Mean SD Mean SD Mean SD

CH1 161.382 191.930 0.159 0.089 17.150 12.639 42.035 23.661
CH2 58.482 76.571 0.157 0.087 1.000 0.000 98.002 68.775
p 0.000 0.014 0.000 0.000

Table 4 Comparison of algorithms with respect to DLB

(I) Algorithm (J) Algorithm Mean
difference

(I-J)

Standard
error

Significance

CPLEX CH1 0.076 0.007 0.000
CH2 0.079 0.007 0.000
H-MOGA1 0.131 0.007 0.000
H-MOGA2 0.123 0.007 0.000
R-MOGA 0.103 0.006 0.000
RS 0.049 0.006 0.000

CH1 CH2 0.003 0.007 1.000
H-MOGA1 0.055 0.008 0.000
H-MOGA2 0.047 0.007 0.000
R-MOGA 0.026 0.007 0.004
RS − 0.027 0.007 0.002

CH2 H-MOGA1 0.052 0.007 0.000
H-MOGA2 0.044 0.006 0.000
R-MOGA 0.024 0.006 0.003
RS − 0.030 0.006 0.000

H-MOGA1 H-MOGA2 − 0.008 0.007 0.924
R-MOGA − 0.029 0.007 0.001
RS − 0.082 0.007 0.000

H-MOGA2 R-MOGA − 0.021 0.006 0.014
RS − 0.074 0.006 0.000

R-MOGA RS − 0.054 0.006 0.000
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There are solutions found by RS with TEC lower than that of
CPLEX. Another observation is that the frontier found CH1
for this problem instance is inferior to the frontier by
H-MOGA1. A similar comment can be made for CH2 and
H-MOGA2 pair. This in fact shows the level of improvement
achieved by hybrid MOGAs since H-MOGA1 and
H-MOGA2 start from the solutions found by CH1 and CH2,
respectively. Hybrid MOGAs cannot be considered superior
to R-MOGA; however, the frontier found by R-MOGA is
much more compact than the frontiers found by hybrid
MOGAs. R-MOGA has performed better than other search
techniques in the middle section of the frontier but per-
formed worse than some of the other methods in other areas.
Figure 4(b) shows normalized performance matrix of these
algorithms in a radar chart. We normalized the performance
metrics DLB, CRD, and DVR given this problem so that the
best performer has a score 100% and the worst performer has
a score 0%. Considering the three performance measures, we
cannot say there is an algorithm that is absolutely inferior. It
is clear that none of the algorithms outperform the others in
all three dimensions. H-MOGA1 and H-MOGA2 have the
best performance in terms of DLB. CH2 has the best perfor-
mance in terms of CRD. When it comes to DVR, CH1 and
H-MOGA2 have the best performance. On the other hand,
RS is inferior to CPLEX when it comes to DLB; however, it
has more solutions than CPLEX and its diversity considering
the unique sequences of solutions is higher than that of
CPLEX. Apart from CH2 and CPLEX, the RS is inferior to
the rest of the algorithms when considering all three perfor-
mance measures.

6. Discussion and conclusion

Manufacturers are under pressure to incorporate greener
practices in their operations. In this paper we addressed a
complex two-machine sequence-dependent permutation
flowshop scheduling problem to minimize energy consump-
tion and makespan. Our research contributes to the literature
on green scheduling by developing a new heuristic and GAs
for finding the Pareto optimal frontiers. We compared
performance of the heuristics and GAs against each other
and also with truncated CPLEX (ie, time constrained) and
random search. More specifically, we developed a new O(n2)
heuristic (named CH2) and compared its performance against
an existing O(n3) heuristic (called CH1). Our experiments
show that CH2 takes much less time than CH1 to run, which
depends on the problem size. On average, CH2 takes one-
third of the time it takes CH1 to solve a problem. In terms of
the distance of the resultant Pareto frontiers with the lower
bounds, although statistically significant, the difference
between the two heuristics is marginal. With regard to
diversity, CH1 is able to produce much more diverse set of
sequences, while CH2 produces only one sequence. This is
indeed the main reason for faster implementation of CH2.
While CH2 produces more solutions on the Pareto frontier,
CH1 produces many more unique sequences, which provides
higher flexibility to production planners.
Our results show that hybrid GAs perform better than regular

GAs. In terms of diversity, CH1 showed the best performance
in producing unique sequences, followed by H-MOGA1. In this
respect, the poorest performance is shown by CH2.

Table 5 Comparison of algorithms with respect to DVR

(I) Algorithm (J) Algorithm Mean
difference

(I-J)

Standard
error

Significance

CPLEX CH1 − 14.910 0.473 0.000
CH2 1.240 0.422 0.052
H-MOGA1 − 9.890 0.466 0.000
H-MOGA2 − 5.360 0.415 0.000
R-MOGA − 1.500 0.402 0.004
RS − 2.450 0.402 0.000

CH1 CH2 16.150 0.467 0.000
H-MOGA1 5.020 0.507 0.000
H-MOGA2 9.550 0.461 0.000
R-MOGA 13.410 0.449 0.000
RS 12.460 0.449 0.000

CH2 H-MOGA1 − 11.130 0.460 0.000
H-MOGA2 − 6.600 0.408 0.000
R-MOGA − 2.740 0.394 0.000
RS − 3.690 0.394 0.000

H-MOGA1 H-MOGA2 4.530 0.454 0.000
R-MOGA 8.390 0.441 0.000
RS 7.430 0.441 0.000

H-MOGA2 R-MOGA 3.860 0.387 0.000
RS 2.900 0.387 0.000

R-MOGA RS − 0.950 0.373 0.139

Table 6 Comparison of algorithms with respect to CRD

(I) Algorithm (J) Algorithm Mean
difference

(I-J)

Standard
error

Significance

CPLEX CH1 − 27.600 1.839 0.000
CH2 − 68.980 1.640 0.000
H-MOGA1 − 14.640 1.812 0.000
H-MOGA2 − 33.130 1.614 0.000
R-MOGA − 2.930 1.562 0.495
RS − 2.140 1.562 0.819

CH1 CH2 − 41.380 1.815 0.000
H-MOGA1 12.950 1.972 0.000
H-MOGA2 − 5.530 1.791 0.033
R-MOGA 24.660 1.745 0.000
RS 25.460 1.745 0.000

CH2 H-MOGA1 54.330 1.788 0.000
H-MOGA2 35.850 1.586 0.000
R-MOGA 66.040 1.533 0.000
RS 66.840 1.533 0.000

H-MOGA1 H-MOGA2 − 18.490 1.764 0.000
R-MOGA 11.710 1.716 0.000
RS 12.510 1.716 0.000

H-MOGA2 R-MOGA 30.190 1.505 0.000
RS 30.990 1.505 0.000

R-MOGA RS 0.800 1.450 0.998
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This, however, is mainly because of the way that CH2 was
designed based on time efficiency rather than solution quality or
diversity. In terms of cardinality, CH2 produces the largest
number of solutions. It should be noted that these solutions are
produced for one sequence with different speed vectors.
On ths basis of the results, it could be concluded that

if time is not an important criterion, CH1 is the preferred
solution method for small- and medium-sized problems.
For large-sized problems, hybrid GAs are recommended.
However, in situations where diversity of Pareto frontier is
more important, H-MOGA1 is preferred. If cardinality is more
important regardless of the number of unique sequences, then
CH2 is preferable. Finally, if the distance with the lower bound
and diversity are more important, then H-MOGA2 is preferable,
followed by H-MOGA1 and CH1.
The current research could be extended in a number of

directions. New mathematical models for green scheduling of
manufacturing operation need to be developed. This includes
new models for general m-machine flowshop, job-shop, and
open-shop problems including other energy- and power-related
objectives alongside performance-oriented metrics. As an
example, minimizing maximum power and makespan in gen-
eral job-shop environment has interesting applications for
manufacturing companies to reduce their need to peak power
while maintaining their service level. Majority of research in
this field have been conducted at machine level, focusing on
optimizing energy consumption considering various machining
parameters. Future research could look into integrating
this line of research with factory-level optimization of energy
consumption. By optimizing individual components of a
system, one does not necessarily optimize the entire system.

Such an integration would allow for wider energy savings at
system level.
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