
Invited Editorial

Novel no-arbitrage conditions for options written on

defaultable assets
Received (in revised form): 31st July 2014

Greg Orosi

is currently an assistant professor in the Department of Mathematics and Statistics at American University of
Sharjah. He holds a PhD in Applied Mathematics with a specialization in mathematical finance from the University
of Calgary. His research areas include computational finance and applications, numerical methods applied to
derivative pricing, empirical performance of option pricing models, and non-parametric modeling.

Correspondence: Greg Orosi, Department of Mathematics and Statistics, American University of Sharjah,
Office: Nab 254, PO Box 26666, Sharjah, UAE
E-mail: gorosi@ucalgary.ca

ABSTRACT In this work, we derive an improved lower bound for European-style put
options written on defaultable assets. Furthermore, we establish two additional no-arbitrage
conditions, one for European-style puts and one for calls, which are tighter than the ones
commonly reported in current literature. All of our results are based on static arbitrage
arguments and have important implications for constructing arbitrage-free call or put
option surfaces. In particular, we point out that the commonly stated conditions required
for a call option surface are not always sufficient to generate an arbitrage-free call option
surface.
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INTRODUCTION
Arbitrage-free valuation is a fundamental
principle in the modern theory of financial asset
pricing. Hence, establishing static arbitrage
bounds is essential for both academicians and
practitioners. For example, Dixit et al (2009)
examine whether lower-bound violations occur
in empirical data.
In the field of derivative pricing, an arbitrage-

free surface is necessary for pricing illiquid exotic
derivatives with arbitrary payoffs and copula-
based pricing of multi-asset products. For
example, using the implied risk-neutral density,

Monteiro et al (2011) accurately price European-
style binary options, Benaim et al (2008) calculate
the convexity correction for constant maturity
swaps, and Cherubini and Luciano (2002) price
bivariate equity options. Moreover, although
interpolation performed in the implied volatility
space has several advantages (see for example
Figlewski (2009) and Orosi (2012)), the resulting
call option surface is not arbitrage-free. To
generate a suitable call option surface from an
implied volatility surface, Fengler (2009) and
Orosi (2014a, b) employ arbitrage-free
interpolants.
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Typically, in the absence of call spread,
butterfly spread and calendar spread arbitrage,
discrete sets of call option prices are considered to
be free of static arbitrage (see for example
Aït-Sahalia and Duarte (2003) and Carr and
Madan (2005)). Moreover, similar conditions can
be derived for a continuous call price surface to
be free of static arbitrage (see for example Fengler
and Hin (2013) and Roper (2010)). However,
these results make certain assumptions about the
underlying process, and are not applicable to the
case when there is a positive probability of
default.
In this work, we derive an improved lower

bound for European-style put options written on
defaultable assets, which is necessary for the
construction of an arbitrage-free put option
surface. Furthermore, two additional no-
arbitrage conditions are established, one for puts
and one for calls, which are tighter than the ones
commonly reported in current literature. An
immediate implication of our results is that in the
presence of default, the commonly stated
no-arbitrage conditions required to generate an
arbitrage-free call or put option surface are not
always sufficient.

ASSUMPTIONS AND NOTATION

Utilizing Merton (1973) as a guide, the following
assumptions are made: (i) capital markets are
perfect; (ii) there is no arbitrage; (iii) investors
have positive marginal utility of wealth; and
(iv) current and future interest rates are strictly
positive. In addition, we assume that the stock
becomes worthless in the case of default. Based
on these conditions, consider a stock that has a
current price of S0 and a price of ST at some time
in the future T. Denoting the risk-neutral
probability of default before some time T by PD

and the risk-neutral survival probability of the
asset before time T by P(ST>0), the following
holds:

PðST>0Þ +PD ¼ 1: (1)

Moreover, let C(K, T), P(K, T), Bcall(K, T)
and Bput(K, T ) be, respectively, the current prices
of a European call, European put, European
binary call and European binary put options on
the stock with strike K, maturity T. By
employing the well-known relationships
between European-style calls and puts and
European binaries, we have:

Bcall K ;Tð Þ ¼ e - rTPðST>KÞ

¼ -
∂C K ;Tð Þ

∂K
; (2)

Bput K ;Tð Þ ¼ e- rTPðST⩽KÞ ¼ ∂P K ;Tð Þ
∂K

; (3)

and the risk-neutral probability of default and
survival probability can be expressed as:

PD ¼ PðST ¼ 0Þ ¼ erTBput 0;Tð Þ

¼ erT
∂P K ;Tð Þ

∂K

�
�
�
�
K¼0

; (4)

and

PD ¼ 1 -PðST>0Þ ¼ 1 - erTBcall 0;Tð Þ

¼ 1 - erT
∂C K ;Tð Þ

∂K

�
�
�
�
K¼0

: (5)

Based on the above equations, the price of the
digital contract, D(T ), that pays a unit currency if
default happens before time T and zero otherwise
is given by:

DðTÞ ¼ e - rT � PD ¼ Bput 0;Tð Þ; (6)

DðTÞ ¼ e - rT � PD ¼ e- rT -Bcall 0;Tð Þ: (7)
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Therefore, D(T) can be replicated by call
options and cash as follows:

DðT Þ ¼ e - rT -Bcall 0;Tð Þ ¼ e- rT +
∂C K ;Tð Þ

∂K

�
�
�
�
K¼0

¼ e - rT + lim
ΔK!0

C ΔK ;Tð Þ -C 0;Tð Þ
ΔK

;

and by put options as follows:

DðTÞ ¼ Bput 0;Tð Þ ¼ ∂P K ;Tð Þ
∂K

�
�
�
�
K¼0

¼ lim
ΔK!0

P ΔK ;Tð Þ -P 0;Tð Þ
ΔK

:

GENERAL RESULTS

Proposition 1: The lower bound of a European
put option written on a defaultable asset is

PðK ;TÞ⩾maxðK � e - rT - S0 +D;K � e - rT � PDÞ; (8)

where D is the present value of future dividends
expected to be paid before T.
Proof Orosi (2014b) shows that the lower

bound of a European call option written on a
defaultable asset is

CðK ;TÞ⩾maxðS0 -D -K � e - rT
+K � e - rT � PD; 0Þ: ð9Þ

Moreover, the put–call parity relation can be
rearranged as follows:

P K ;Tð Þ ¼ C K ;Tð Þ +D - S0 +Ke - rT :

Substituting (9) into the above gives

P K ;Tð Þ⩾maxðS0 -D -K � e- rT
+K � e - rT � PD; 0Þ +D - S0 +Ke - rT

¼maxðK � e - rT � PD;K � e - rT - S0 +DÞ:

□

Proposition 2: The lower bound of the first
derivative of a European put option written
on a defaultable asset is

∂P K ;Tð Þ
∂K

⩾e - rT � PD: (10)

Proof Assume otherwise and form the
following zero-value portfolio at time zero:

Π ¼ ∂P K ;Tð Þ
∂K

- e - rT � PD +B

¼ Bput K ;Tð Þ -DðTÞ +B;
where B represents the amounts invested in
bonds. In the case of default, the value of the
portfolio at the time of expiry is given by:

Π ¼ 1 - 1 +BerT ¼ BerT>0

because the payoff of Bput(K, T )= 1 and
D(T )= 1. If the asset does not default before
expiry and the option finishes in the money
(or ST⩽K equivalently), then the value of the
portfolio at the time of expiry is given by:

Π ¼ 1 - 0 +BerT>0

because the payoff of Bput(K, T )= 1 and D(T )
becomes worthless. Finally, if the asset does not
default before expiry and the option does not
finish in the money (or ST>K equivalently),
then the value of the portfolio at the time of
expiry is given by:

Π ¼ 0 - 0 +BerT ¼ BerT>0;

and Bput(K, T ) and D(T ) become worthless.
Therefore, if (10) does not hold, a portfolio can
be constructed that yields static arbitrage
violation. □

Proposition 3: The lower bound of the first
derivative of a European call option written
on a defaultable asset is

∂C K ;Tð Þ
∂K

⩾e - rT PD - 1ð Þ: (11)
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Proof Differentiating the put–call parity
relation

C K ;Tð Þ -P K ;Tð Þ ¼ S0 -D -Ke - rT

with respect to K yields

∂C K ;Tð Þ
∂K

-
∂P K ;Tð Þ

∂K
¼ - e - rT ;

which can be written using (2) and (3) as

-Bcall K ;Tð Þ -Bput K ;Tð Þ ¼ - e - rT :

Rearranging and then substituting (6) gives:

Bcall K ;Tð Þ ¼ e - rT -Bput K ;Tð Þ⩾e - rT - e - rT � PD
¼ e - rT PD - 1ð Þ: □

DISCUSSION AND FUTURE

RESEARCH

The commonly stated no-arbitrage constraints on
European-style option price surfaces are derived
under the premise that the underlying security
stays strictly positive. In this section, we point
out that if the option implied risk-neutral
probabilities of default, as shown in (4) and (5),
are strictly positive, these constraints become
tighter. Hence, if conditions (8), (9), (10) and (11)
are ignored when fitting an arbitrage-free option
surface to certain market quotes, which imply a
positive probability of default, arbitrage violations
can occur even if the commonly stated arbitrage
conditions are not violated. The implications of
condition (9) have been discussed in Orosi
(2014b), therefore we will direct our attention to
the other three conditions.
First of all, it should be noted that, assuming

PD> 0, (8) is higher for strike prices for which

K � e - rT - S0 +D<0

than Merton’s lower bound of

PðK ;TÞ⩾maxðK � e - rT - S0 +D; 0Þ:

Although most financial engineering
applications utilize an arbitrage-free call option
surface, in some cases using an arbitrage-free put
option surface is preferable. For example,
Monnier (2013) extracts risk-neutral densities
from a set of arbitrage-free put option prices.
Moreover, (10) and (11) are also higher than

the typically stated lower bounds of (∂P(K, T))/
(∂K)⩾0 and (∂C(K, T))/(∂K)⩾−e−rT as long as
PD>0. Although these two conditions are not
always required for the construction of an
arbitrage-free option surface, they are commonly
stated in the literature (see for example
Aït-Sahalia and Duarte (2003), Fengler (2009),
Monnier (2013) and Orosi (2011)).
Another important implication of our finding

is that all four improved lower bounds can be
used to test the efficiency of option markets by
examining whether arbitrage violations occur in
market data. For example, Dixit et al (2009) find
that lower-bound violations and arbitrage
opportunities do occur in the S&P CNX Nifty
Index option market.

CONCLUSION

In this work, we derive three new improved
lower bounds for European-style call and put
options written on defaultable assets. We
demonstrate that these bounds are tighter than
the commonly stated lower bounds and briefly
discuss the implications of our results.
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