Skip to main content
Log in

Feeding groups, lifetypes and the global ecology of termites

  • Energy, nutrients and food webs
  • Published:
Ecological Research

Two termite functional classifications (Abe’s lifetypes and Donovan’s feeding groups) are evaluated, and then synthesized to make a single unified ‘lifeway’ matrix classification with eight categories. The systematics and biogeography of the lifeway groups are outlined. The lifeways are then tested against other relevant data on termite ecology (stable isotopes, molecular probes, survey data) to show that they consistently reflect real distinctions in termite biology. The advantages and disadvantages of each lifeway are discussed in the context of energy availability, nitrogen balance, foraging and nest-building energetics, and biogeographical dispersal ability. Finally, an ecological evolutionary scheme is outlined for the global ecology of termites using the lifeway classification as a framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T. (1984) Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiology and Ecology (Japan) 21: 63–88.

    Google Scholar 

  • Abe T. (1987) Evolution of life types in termites. In: Evolution and Coadaptation in Biotic Communities. (eds S. Kawano, J. H. Connell & T. Hidaka) pp. 126–148. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Abe T., Bignell D. E. & Higashi M. (2000) Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bess H. A. (1970) Termites of Hawaii and the Oceanic Islands. In: Biology of Termites. (eds K. Krishna & F. M. Weesner) pp. 449–476. Academic Press, New York.

    Google Scholar 

  • Bignell D. E. (1994) Soil-feeding and gut morphology in higher termites. In: Nourishment and Evolution in Insect Societies. (eds J. H. Hunt & C. A. Nalepa) pp. 131–157. Westview Press, Oxford.

    Google Scholar 

  • Bignell D. E. & Eggleton P. (2000) Termites in ecosystems. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, M. Higashi & D. E. Bignell). Kluwer Academic Press, Dordrecht, The Netherlands.

    Google Scholar 

  • Bignell D. E., Eggleton P., Nunes L. & Thomas K. L. (1997) Termites as mediators of carbon fluxes in tropical forest: Budgets for carbon dioxide and methane emissions. In: Forests and Insects (eds A. D. Watt, N. E. Stork & M. D. Hunter) pp. 109–134. Chapman & Hall, London.

    Google Scholar 

  • Bignell D. E., Oskarsson H., Anderson J. M., Ineson P. & Wood T. G. (1983) Structure, microbial associations and function of the so-called mixed segment of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termiditae, Termitinae). Journal of Zoology (London) 201: 445–480.

    Google Scholar 

  • Brauman A. (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review.◊European Journal of Soil Biology 36: 117–125.

    Google Scholar 

  • Brauman A., Dore J., Eggleton P., Bignell D., Breznak J. A. & Kane M. D. (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology Ecology 35: 27–36.

    Google Scholar 

  • Brauman A., Bignell D. E. & Tayasu I. (2000) Soil feeding termites: Microbial associations and digestive mechanisms. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 233–260. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Breznak J. A. (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 209–232. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Cleveland L. R., Hall S. K., Sanders E. P. & Collier J. (1934) The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences 17: 185–382.

    Google Scholar 

  • Darlington J. P. E. C. (1994) Nutrition and evolution in fungus-growing termites. In: Nourishment and Evolution in Insect Societies. (eds J. H. Hunt & C. A. Nalepa) pp. 105–130. Westview Press, Boulder, CO.

    Google Scholar 

  • Davies R. G., Eggleton P., Jones D. T. & Gathorne-Hardy F. (In press) Global patterns of termite functional diversity. Ecological Monographs.

  • Deines P. (1980) The isotopic composition of reduced organic carbon. In: Handbook of Environmental Isotope Geochemistry, Vol. 1. The Terrestrial Environment, A. (eds P. Fritz & J. C. Fontes) pp. 329–406. Elsevier, Amsterdam.

    Google Scholar 

  • Donovan S. E., Eggleton P. & Bignell D. E. (2001) Gut content analysis and a new feeding group classification of termites (Isoptera). Ecological Entomology 26: 356–366.

    Google Scholar 

  • Donovan S. E., Jones D. T., Sands W. A. & Eggleton P. (2000) The morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society 70: 467–513.

    Google Scholar 

  • Eggleton P. (1994) Termites live in a pear-shaped world: A response to Platnick.◊Journal of Natural History 28: 1209–1212.

    Google Scholar 

  • Eggleton P. (2000) Global patterns of termite diversity. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 25–54. Kluwer Academic Publications, Dordrecht, The Netherlands.

    Google Scholar 

  • Eggleton P. (2001) Termites and trees: A review of recent advances in termite phylogenetics. Insectes Sociaux 48: 187–193.

    Google Scholar 

  • Eggleton P., Bignell D. E., Hauser S., Dibog L., Norgrove L. & Madong B. (In press) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems and Environment.

  • Eggleton P. & Davies R. G. (In press) Termites (Isoptera). In: The Natural History of Madagascar. (ed. S. Goodman). University of Chicago, Chicago.

  • Eggleton P., Davies R. G. & Bignell D. E. (1998) Body size and energy use in termites (Isoptera): the responses of soil feeders and wood feeders differ in a tropical forest assemblage. Oikos 81: 525–530.

    Google Scholar 

  • Eggleton P., Williams P. H. & Gaston K. J. (1994) Explaining global termite diversity: productivity or history? Biodiversity and Conservation 3: 318–330.

    Google Scholar 

  • Gathorne-Hardy F. J. (2001) A review of the South East Asian Nasutitermitinae (Isoptera: Termitidae) with descriptions of one new genus and a new species and including a key to the genera. Journal of Natural History.

  • Gathorne-Hardy F. J., Collins N. M., Buxton R. D. & Eggleton P. (2000a) A faunistic review of the termites (Insecta: Isoptera) of Sulawesi, including an updated checklist of the species. Malay Nature Journal 54: 347–353.

    Google Scholar 

  • Gathorne-Hardy F. J., Jones D. T. & Mawdsley N. A. (2000b) The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins.◊Biological Journal of the Linnean Society 71: 251–267.

    Google Scholar 

  • Gathorne-Hardy F. J. Syaukani & Eggleton P. (2001) The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). Journal of Tropical Ecology 17: 379–393.

    Google Scholar 

  • Higashi M., Abe T. & Burns T. P. (1992) Carbon–nitrogen balance and termite ecology. Proceedings of the Royal Society of London Series B Biological Sciences 257: 303–308.

    Google Scholar 

  • Higashi M., Yamamura N. & Abe T. (2000) Theories on the sociality of termites. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 169–188. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hill G. F. (1942).Termites (Isoptera) from the Australian Region. CSIRO, Melbourne.

    Google Scholar 

  • Inoue T., Kitade O., Yoshimura T. & Yamaoka I. (2000) Symbiotic associations with protists. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 275–288. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Kambhampati S. & Eggleton P. (2000) Phylogenetics and taxonomy. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 1–23. Kluwer Academic Publishing, Dordrecht, The Netherlands.

    Google Scholar 

  • Kappler A. & Brune A. (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Applied Soil Ecology 13: 219–229.

    Google Scholar 

  • Krishna K. & Weesner F.M. (eds). (1969, 1970) Biology of Termites, Vols 1 & 2. Academic Press, London.

    Google Scholar 

  • Lepage M., Abbadie L. & Mariotti A. (1993) Food habits of sympatric termites (Isoptera: Macrotermitinae) as determined by stable isotope analysis in a Guinean savanna (Lamto, Cote d’Ivoire). Journal of Tropical Ecology 9: 303–311.

    Google Scholar 

  • Lo N., Tokuda G., Watanabe H., Rose H., Slaytor M., Maekwa K., Bandi C. & Noda H. (2000) Evidence from multiple gene sequences indicate that termites evolved from wood-feeding cockroaches. Current Biology 10: 801–804.

    Google Scholar 

  • Miura T., Roisin Y. & Matsumoto T. (2000) Molecular phylogeny and biogeography of the nasute termite genus Nasutitermes in the Pacific tropics.◊Molecular Phylogenetics and Evolution 17: 1–10.

    Google Scholar 

  • Nalepa C. A. & Bandi C. (2000) Characterizing the ancestors: Paedomorphosis and termite evolution. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 53–76. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Nalepa C. A., Bignell D. E. & Bandi C. (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Sociaux 48: 194–201.

    Google Scholar 

  • Noirot C. (1992) From wood-feeding to humus-feeding: An important trend in termite evolution. In: Biology and Evolution of Social Insects. (ed. J. Billen) pp. 107–119. Leuven University Press, Louvain, Belgium.

    Google Scholar 

  • Noirot C. & Darlington J. P. E. C. (2000) Termite nests: Architecture, regulationa and defence. Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 121–140. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Noirot C. & Pasteels J. M. (1988) The worker caste is polyphyletic in termites. Sociobiology 14: 15–20.

    Google Scholar 

  • Nutting W. L. (1969) Flight and colony foundation. Biology of Termites (eds K. Krishna & F. M. Weesner) pp. 233–282. Academic Press, New York.

    Google Scholar 

  • Roisin Y. (1996) Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Insectes Sociaux 43: 375–389.

    Google Scholar 

  • Roisin Y. (2000) Diversity and evolution of caste patterns.◊Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 95–120. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sands W. A. (1998).The Identification of Worker Castes of Termite Genera from Soils of Africa and the Middle East. CAB International, Wallingford, UK.

    Google Scholar 

  • Shellman-Reeve J. (1997) The spectrum of eusociality in termites. In: The Evoution of Social Interactions in Insects and Arachnids. (eds J. C. Choe & B. J. Crespi) pp. 52–93. Cambridge University Press, Cambridge.

    Google Scholar 

  • Slaytor M. (2000) Energy metabolism in the termite and its gut microflora. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 307–332. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sleaford F., Bignell D. E. & Eggleton P. (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecological Entomology 21: 279–288.

    Google Scholar 

  • Tayasu I. (1998) Use of carbon and nitrogen isotope ratios in termite research.◊Ecological Research 13: 377–387.

    Google Scholar 

  • Tayasu I., Abe T., Eggleton P. & Bignell D. E. (1997) Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology 22: 343–351.

    Google Scholar 

  • Tayasu I., Hyodo F., Takematsu Y., Sugimoto A., Inoue T., Kirtibutr N. & Abe T. (2000) Stable isotope ratios and uric acid preservation in termites belonging to three feeding habits in Thailand. Isotopes Environment Health Studies 36: 259–272.

    Google Scholar 

  • Tayasu I., Inoue T., Miller L. R., Sugimoto A., Takeichi S. & Abe T. (1998) Confirmation of soil-feeding termites (Isoptera; Termitidae; Termitinae) in Australia using stable isotope ratios. Functional Ecology 12: 536–542.

    Google Scholar 

  • Tayasu I., Sugimoto A., Wada E. & Abe T. (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81: 229– 231.

    Google Scholar 

  • Thorne B. L., Grimaldi D. A. & Krishna K. (2000) Early fossil history of the termites. In: Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 77–94. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Traniello J. F. A. & Leuthold R. H. (2000) Behaviour and ecology of foraging in termites. Termites: Evolution, Sociality, Symbioses, Ecology. (eds T. Abe, D. E. Bignell & M. Higashi) pp. 141–168. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Weesner F. M. (1965) The Termites of the United States, a Handbook. The National Pest Control Association, New Jersey.

    Google Scholar 

  • Williams P. H. (2000).WORLDMAP: Priority Areas for Biodiversity: User Manual for Program, Version 4.2. Natural History Museum, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Eggleton.

About this article

Cite this article

Eggleton, P., Tayasu, I. Feeding groups, lifetypes and the global ecology of termites. Ecol Res 16, 941–960 (2001). https://doi.org/10.1046/j.1440-1703.2001.00444.x

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2001.00444.x

Key words

Navigation