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Abstract, On-line learning in domains where the target concept depends on some hidden context poses serious
problems. A changing context can induce changes in the target concepis, producing what is known as concept
drift. we describe a famuly of learning algonithms thar Hexibly react o concept drift and can rake advantage
of silwations where contexts reappear. The general approach underlying all these algorithms consists of (1}
keeping vnly a window of currenily trusted examples and hypotheses; (2) storing concepl descriptions and re-
using them when a previous context re-appears; and (3) controlling boih of these [unctions by a heuristic that
constantly monitors the system’s behavior. The paper reports on experiments that test the systems’ performance
under various conditions such as different levels of nowse and different extent and rate of concept drifi.
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1. Introduction

The work presented here relates to meremental or on-line concept learning, which has
rceently recerved considerable attention among theorcticians (e.g., Angluin, 1988; Maass,
1991; Helmbold, Littlestone, & Long, 1992) as well ay practitioners (e.g., Schlimmer
& Granger, 1986; Langley, Gennari, & Iba. 1987 Kilander & Jansson, 1993; Kubar,
1989, 1993; Salganicolt, 1993a; Widmer & Kubat, 1993). The principal task is to leam
a concept incrementally by processing labeled training cxamples one at a time. From
another point of view, the problem may be seen as minimizing the total number of
erroneous classifications in a feedback system: a siream of objects are classified, one
by onc, as positive or negative instances of & concepl, and immediately aflerwards the
correct answer 1s received. The learner uses the current state of the knowledge base to
predict the class of cach incoming cxample. A discrepancy between the prediction and
the real class value will usually trigger modifications to the knowledge base.

A difficult problem 1in such a learning scenarie is that the concepts of interess may
depend on some hidden comext. Mild weather means different things in Siberia and
in Central Africa; Beatles fans had a different idea of a fashionable haircut than the
Depeche-Maode genaration. Or consider weather prediction rules, which may vary radi-
cally depending on the scasor. Changes in the hidden context can induce more or less
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Figure I Current and old concept deseriptions and the window moving along the stream of examples.

radical changes in the target concepts, producing what is gencrally known as concept
drift in the literature {e.g., Schlimmer & Granger, 1986).

An cxample of real-world concept drift is described by Kubat (1997), where a systermn
was presented that learned to control the load redistribution in computer clusters: over-
loaded units should send part of their load to underfoaded units in order to improve the
overall responsc time. The ‘real” rules desening “overloadedness” woultd depend on
the workload profile as defined by the frequency af disk operations, CPU and memory
requircments, and the like. However, the only variables visible to the sysiem were the
lengths of various CPU and disk queues. Thus, the workload structure was the hidden
context that determined the mterpretation of the visible variables. Note that this context
varies in titne and that similar contexts can reappear.

Effective learning in environments with hidden contexts and concept drifl requires a
learning algorithm that can detecl context changes withoul being explicitly informed
about them, can quickly recover from a context change and adjust its hypotheses o a
new conlext, and can make usc of previous experience m situations where old contexts
and corresponding concepts reappear

One possible approach is sketched in Figure 1. As the contexl 15 known to vary in
time, the learner trusts only the latest cxamples — this scl is referred to as the window.
Examples are added te the wandow as they arrive. and the oldest cxwmples are deleted
from it. Both of these actions (addition and deletion) tngger modifications to the current
concept hypothesis to kecp it consistent with the examples in the window. In the simplest
case, the window will be of fixed size, and the oldest example will be dropped whenever
A NCW One comes in.

To extend the basic model, assume that the learner maintains a store of concept de-
scriptions or hypotheses pertaining to previously encountered contexts. This 18 indicated
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by the boxes in the lower left part of Figure 1. When the lcarner suspects a context
change, 1t will examine the potential of the previously stored deseriptions to provide bet-
ter classificalions. Based on the result, the system may cither replace the current concept
description with the best of the stored descriptions, or start developing an cntircly new
description,

Generally, a learmng algonithm embodying these ideas needs (1) operators that modify
the concept description in reaction to changes in the contents of the window; (2) the
ability to decide when and how many old examples should be deleted from the window
(‘forgotten’); and (3) a strategy that maintains the store of current and old descriptions
and assesses the relative merits of concept hypothescs. Clearly, items (2} and (3) will
require the system to make some guesses as 1o when & conlexl change is occurring.

Lhe basic approach to learning and forgetting will be claborated in the following
sectton, where we specify a simple algorithm for maintaining a consistent concept hy-
pothesis. Secnhon 3 looks at computational learning theory for some hints concerning the
main parameter of this algorithm (the window size). The followng sections then describe
three extensions of the basic method and their realization in experimental systems: the
algorithm FLORA2 (Section 4) possesses the ability to dynamically adjust the window
o an appropriate s1ze during learning; FLORAZ (Section 3) stores concepts for later use
and reassesses their utility when a context change is perceived; and FLORA4 (Section 6)
is designed to be particularly robust with respect 1o noise in the input data. Experirents
with all three algorithms under varying conditions are presented in Section 7. Finally,
Section 8 relates the FLORA approach o other rescarch in machine learning,

2. Learning and Forgetting: The General FLORA Framework

Currently, our algorithms are restricted 10 the relatively simple representation language
based on attribute -value logic without negation. Throughout the paper we will often use
the notion of a description item, which is a conjunction of atiribute-value pairs. We will
say that a description item maiches an example il it is true for it. For instance, (color
= white) /A (temperature = low) malches ‘snow” and (shape = cube) does not
match the Globe. Formally, a description item matches the description of an object if all
its litcrals (atribule-value pairs) occur in the object’s description.

In the FLORA framework, a concept description or hypothesis is represented in the
torm ot three description scts: the set ADES (Accepied DEScriptors) contains description
items matching only positive examples. Like the other two scts, ADES can be mterpreted
as a disjunctive normal form (DNF) formula. The sei NDES (Negative DEScriptors)
similarly summarnizes the negative cxamples; and POES (Potential DEScriptors) contains
description iters that are too general, matching posiive examples, but also some negative
oncs.' The set ADES, representing the current (positive) concept hypothesis, 15 used to
classify new incoming examples. NDES summarizes the negative examples and is used
to prevent over-generahization of ADES (sce below). while PDES acts as a reservoir of
hypotheses that are currently foo gencral but might become relevant in the {uture.

Assume the following structure:
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ADES — {AD(’?Sl/APl, [,iD(fSQ/APQ‘ .. }
PDES = {PDes, /PP,/PNy, ..}
NDES = [AVD(LJH/]V;\TI - }

where ADes,, PDes;, and N Des; are conjunctive description items; AP, and PF;
arc counters that specify how many positive cxamples in the current window maitch the
individual description items in ADES and PDES respecnively; similarly, PN, and NN,
count how many negative examples match the respective description ilems. The counters
arc updated with any addition to or deletion from the window and are used to decide
when to move an item from one set to another or when Lo drop it altogether from the
hypotheses. In any case, ilems are retained only if they cover at least one {positive or
negative) example in the current window.

The descriptien items in ADES and NDES are gencrated by incremental generalization
in response 10 posilive and negative instances. When new anstances are added o or
deleted from the window, some items will be moved from one set to ancther. T pacticular,
the set PDES of ‘potential hypotheses’ contains nems that were once in ADES or NDES,
but are contradicted by some examples. They are kept in PDES in the hope that they
gy become televant again when old instances we diopped ftom e window., Mo
precisely, modifications to the window can affect the contents of the description sets in
the following ways:

o  Adding a positive cxample to the window may cause a new description ilem to be
included in ADES, or some existing items to be either ‘conlirmed” or generalized to
accommodale the new instance, amd/or existing iteins 10 be vansfened from NDES
to PDES.

o Similarly, adding a negarive example to the window may cause a new description
stem Lo be included in NDES, or some existing items (o be ‘reinforced” or generalized,
or existing items to be transferred from ADES o PDES.

s Forgetring an example (dropping it from the window) can cause existing description
items to be ‘weakened’ (ic., the corresponding counters are decremented), or even
deleted from the current deseription set (if the counter drops to zero), or moved from
PDES 10 ADES (if the example was the only negative instance covered) or to NDES
(if the example was the only posittve one).

Figure 2 helps visualize what 1s going on during the learning process. The arrows
idicate possible migrations of hypotheses between description sets after the arrival or
deletion of a positive (&) or negative (23} instance, respectively. The extent of these
transitions for the case of n arrivals and m deletions is quantitied by Kubat (1991},

The complete basic FLORA algorithm for maimtaining the hypotheses when a positive
cxample is processed is sketched in Tuble 1 (i the example is negative, the algorithms
work analogously — just subsiitute NDES for ADES). Note that there arc two procedures,
onc for the case when a new ecxample is added and one for the case when the oldest
caample i1s deleted from the window.
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Function learn-from(I} for a positive instance [
Junctions:
match(l, X Deg;) ... determines whether the X [as; is true for instance /
. delete{ X XDES) . deletes X from XDES
- include(X, XDES) .. puts X into XDES if not subsumed by an cxisting item
- generalizet LXDES, YDES, ZDES) . . performs minimal generalization of some
itern X in XOES to cover instance T (if possible without subsuming some 1tem
in the other sets YDES, ZDES), tries to select X that requires least amount
of generalization; returns triue upon success;

algorithm:
MATCH ;= false;
for 2 = | 1y |f1f'JH.'Q I
it match{! Ales;) then
begin AP oo AP+ 1
MATCH := true
end;
if not MATCH then G = generalize(LADES, PDES NDES ),
if not MATCH and not G then inchide(I/1, ADES )
fore: Lo | RS ]
it matchii P lies;) then PP, = P8 + 1,
fori:=1to | NIDES |
if marchyl, N Des,) then
begin delete( N Des;, NDES),
ncludel{ N Desy /1NN, PDES)
cnd:

Function forgeif 1) for a positive instance /
algorithm:
fori:= 11t ADES |
begin  if maichil ADes, ) then AF; = AP, - 1.
i AP = 0 then deletefl Aldes;, ADES)

end;
for+:. Lto|POES -
begin it mecid, P Pes, ) then PP, = PP - |
it 1215 0 ihen
begin delete{ P 1)es, PDES);
tncinde( Plics /PN, NDES)

end

end;

Tuble I The basic FLORA algorithm: Functions learn from{X ) and jorgeif X}
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Figure 2. Transitions among the descnption sets

The actions taken when removing an example from the window arc rather straight-
forward. In the case when a new (positive) examplc arrives, the respective counters in
the set of potential descriptors, PDES, arc incremented and description items in NDES
matching the instance are moved to PDES. For ADES (accepted descriptors), there are
three possible cases: if the cxample matches some items, the counters are simply 1nere-
mented; otherwise, if some item can be generalized to accommaodate the instance without
becoming too general (i.e., subsuming some item in PDES or NDES), generalization is
performed. Otherwise, the description of the instance is added as a new description to
ADES. The onty generalization operator used is the dropping condition rule (Michalski,
1983), which drops attribute-valuc pairs from a comunctive description item.

Generally, the three description sets are kepl non-redundant and consistent by check-
ing for subsumption within and betwcen the sers. In this way, for wnstance, over-
generalization of ADES is avoided by checking it against PDES and NVDES whencver
one of the description items 15 gencralized.

Note also that there is no specialization epcrator o this framework: 1f a new positive
{negative) instance cannot be incorporated consistently into any of the generalizations,
its full deseniption is added to ADES (NDES); the instance acts as a specific “seed” which
may be gencralized later. Overly general descriptions are discarded when old examples
are forgotten.

The gencral approach presented here assumes that only the latest examples are relevant
and should be kept in the window, and that only description iems consistent with the
examples in the window arc retained. While each new example is automatically included
in the window, the guestion of how many exarmples should he deleted 1 more difficult.
In the tollowing section, we briefly review some theoretical results from computational
learning theory as they relate to this question. Then we present a heunstic solution to
the problem.
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3. Theoretical results concerning learning under drift

The notion af concept drift has received some attention in the literature on computational
learning theory in recent years. For instance, Helmbold and Long (1991, 1994) and
Kuh, Petsche, and Rivest (1991, 1992) have investigated various conditions under which
effective dnft tracking is possible, They start from the observation that drift tracking is
strictly impossible 1f there are no restrictions on the type of concept changes allowed. (As
an extreme example, consider a sequence of concepts that randomly alternates between
the congtant functron 1 and the constant function O after every example). They then go
on to study various restrictions on the severity (extent) or the frequency (rate) of concept
changes.

In particular, Helmbold and Long (1994) assume a permanent {(possibly with cach
example) but very slight drift. In the following statement of results, the ¢;'s are positive
constants, ¢ is the maximum allowed probability of misclassifying the next incoming
example, v is the number of available attributes, and 4 is the Vapnik Chervonenkis
dimension (see, e.g.. Blumer et al., 1989) of the target class. The extenr of concept
drift A 15 measured in terms of the relative error of two successive concepts, 1.¢., the
probability that they will disagree on a randomly drawn example. Their main results are:

s an algorithm that tolerates drift of extent up to A < eye?/{dn {1/€));

¢ a randomized version of this algorithm that is potentially more cflicient cormnputa-
tionally but tolerates drift of lower extent (A << coe?/(d% In {1/e})}: and

e upper bounds on the tolerable amount of drift for two particular concept classes (hatf-
spaces and axis-aligned reclangles) — no algorithm can track concept drift greater
than e4¢? /1 if the prediction error is to stay betow e.

Helmbold and Long also show that it is sufficient for a learner to consider only a fixed
number of previcus examples {L.¢., a fixed window sliding over the input stream). Their
analysis teads Lo rough estimates as to the window size needed for effective tracking; in
the case of the first of the above algorithms, for instance, they show that @ window size
m — {cod/e)log (1/€) (logether with the above restriction on the allowable amount of
dnft) s sufficient to guarantee trackability.

“Computationally cfficient”, in their framework, means that updating the hypothesis
and classifying the next incoming example should be feasible in polynomual nme. In
effect, their atgorithm recompuies the current hypothesis from the entire windew after
every new instance {“hatch learning”). This is a reasonable assumption in complexity
theory, but it may not be what we desire for a practical application. What we are looking
for 1s a truly incremenial algorithm that only locks at the new example to maodify its
current hypothesis.

Kuh ¢t al. (1991) introduce the notion of PAC-tracking as a stratghtforward cxtension
of Valiant’s (1984) PAC framework. Again, their general resalis relate to the batch-
learning scenario, where a hypothesis is recomputed from the entire window after each
instance  Their approach is somewhat orthogonal 10 the work of Helmbold and Long:
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rather than resiricting the exfent of drift, they set oul to determine the maximum rafe of
drift {i.c., how [requently a concept is allowed to change) that is tolerable by a learner.

Their mai general result is a lower bound on the allowed drift rate: A < Smi{c, £/2)
(where a drift rate A means that on average, a concept is stable for at least 1/A time
steps or nstances).  Again, this result assumes a mimimum {(ixed) window size of

w(e, 8) — e, 6/2) where m{e, §) is derived from the general bound on the num-
ber of training cxamples that guarantec PAC-learning (Blumer et al., 1989). m(e. &) —

-r.‘vm,:z:(tﬂ log f tﬁ log %} The similarity to the sample size derived by Helmbold and

Long 1s evident.

Artempts o characterize fully incremental learning under concept drift (Kuh et al.,
1992) have led to bounds on the expected mistake rate of drift trackers for some very
specific concepl classes (e.g., hall-planes and intersections thereof). No general results
for arbilrary concept classes are known o us.

For many practical applications with real-world data, truly incremental fearning 1s im-
pottant, and s0 arc reasonably sized windows. On the other hand, we cannot always
demand or expect an arbitrarily small error. With respect to the large window size pre-
scribed by theoretical analysis, Kuh et al. (1991} conclude that “[a}n algorithm that
removes inconsistient examples more mtelhgently, e.g.. by using contlicts between ex
amples or information about allowable changes, will he able to rack concept sequence
spaces that change more rapidly.” That 1s exactly what we atterapt to do 1 the FLORA
farmily of algorithms. In the tradition of “Al-type” learning, we will take a hearisiie
approach 10 dynamically adjusting the window size based on strategies tor explicitly
detecting context changes. We will assume that the rare of context changes is rather
low (1e, that there are phases of stability between periods of change}, but on the other
hand we will allow concept changes of arbitrarily large extent (successive versions of the
targel concept may be very different). Of course. under these circumstances one cannot
expect the prediction error € always to be bounded; bul our heunsuc approach aims at
enabling the learner to recover very quickly from low predictive accuracy after a context
change.

4. Flexible Windowing: FLORA2

The first realization of the FLORA framework that we discuss 1s the algonthm FLORAZ
(Widmer & Kubat, 1992) which attempts to dynamically adapt the size of ts window
during the lcarning process.

4.1, Description of FLORAZ

Let us start with an intuitive look at the effects of an iappropriate window: basically,
a narrow window will not accommodate a sufiiciont number of examples for a stable
concepl description; a wide window, on the other hand, will slow down the learner’s
reaction to concept drift, particularly if the change tn the concept is quite dramatic. Ob-
viousty, the weal sctting depends on the extent of the concept drift and on the raomentary
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denotations:
N ... number of positive instances covercd by ADES
S .Losize of ADES in terms ol namber of literals
Aee . current predictive accuracy (monitored over recent classification attermpts)
| Wi .. window size

parameters fe, he and poare user-defined
afgorithm:

W {NJS < ey or (LAce << py and decreasing(Ace) /% drift suspected =/

then £ @ 0.2« | W % reduce window by 20% */
clse it (N/S = 2= he) and (Aee = p) 1* extremely siable *{

then £ @ 2 1% reduce window by | */
clse 1f (N/5 = ficy and (Ace > p) > stable enough */

then L : -1 1* keep window fixed */

else 1 .= 0. /% grow window by [ ¥/

Table 2. Window Adjustment Heuristic (WAH): how_many_to_forger{le, he, p)

state of learming. Both of these variables can only be determined dynamically, during
learning. Morcover, the occurrence of a concept change can only be guessed at. A
good heuristic for dynamic window adjustment should shrink the window (and lorget
old instances) when a concept drift seems to occur, and keep the window size fixed when
the concept scems stable. Otherwise the window should gradually grow until a stable
concepl description can be formed.

[n trying to gucss when a concept change occurs, FLORAZ uses two heunistic indica-
tors: the system’s predictive performance Ace (monitored over a fixed number ol past
classifications) and syntactic properiies of the evolving hypotheses. The basic assup-
tion is that sericus drops in Ace or an explosion of the number of descreption items in
ADES may signal a possible concept drift. As bath of these indicators depend heavily on
characteristics of the tearning rask, three parameters are used o customize the heuristic
to the applicabon domain:

ie: ( = threshold for low coverage of ADESY,
he (= threshold for high coverage of ADES); and
p (= threshold for acceptable predictive accuracy).

By the coverage of a description set we mean the ratio of the number of instances
covered by items in the set and the size {in terms of the total number of hierals over all
descriptions) of the set. This definition of coverage trades off the number of examples
covered and the “cost” (syntactic complexity) of deseription items.

Table 2 shows the Window Adjustment Heuristic (WAH) that is used in FLORAZ The
WAH decreases the window size by 20% 1f a concept drift 18 suspected.  In contrast,
the window size is deereased by 1 {after the addition of a new example, (he twe oldest
examples are deleted) if the hypothesis seems to be extrerncly stable: this is to avoud
retention of vnnecessarily large numhers of examples. It the carrent hypolhesis scems
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sutficiently stable, the window size is simply left unchanged. If none of these conditions
15 satisfied, the program assumes that more information is needed and 1 docs not forget
the oldest example, thus merementally ncreasing the window size by .

The particular parameter settings curtently used in FLORAZ are le = 1.2, hc = 4.0
and p = T0%. The paramelers were set after some preliminary experiments with the
‘STAGGER concepts’ (see below) and were left unchanged in all the other experiments
1o be reporied.?

Giiven that the heuristic is (necessarily) very syntactically onented and is thus very
sensitive (o the description language used, it seems hopeless (or at least difficult) to
make ir completely free of parameters.

4.2. A simple experiment: The STAGGER concepts

For a quick comparison with one of the first concept drift trackers, STAGGER (Schhmmer
& Granger, 1986), FLORAZ was tested on the same artificial learning problem as used
by Schlimmer and Granger. The instance space of a simple blocks world is defined
by the three attributes size € {smaell, medium, large}, color ¢ {red, green, blue},
and shape ¢ {square, cirenlar, triengular}. There is a sequence of three targoe
concepts (1) size = smaoll A color = red, (2) color = green v shape = circular
and (3) suze — [medvum Vlarge). 120 tramng mslances arc generaled yandomly,
labeled according to the hidden concept, and after processing cach instance, the predictive
accuracy is tesled on an independent test set of 100 instances, also generated randorly.
The underlying concept s made to change after every 40 training examples.” The resufts
are averaged over 10 runs. Figure 3 shows FLORAZ2's predictive accuracy on the test
set after processing cach traimng example. The dotted vertical lines indicate where the
underlying concept changes.
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Figure 3. Adjusting w drift: predictive accuracy.
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Figure 4. Adjusting lo drift: dynamic window size.

[f can be seen that the dramatic concept shifts lead o a sharp decrease of the predictive
accuracy, but FLORAZ adjusts very quickly and soon approaches the 100% mark again.
Figure 4 indicates that this 15 due (o the workings of the Window Adjustment Hewristic,
Figure 4 plots the development ol the window size i a typical (single) run. The WAH
behaves as expected: a change in the definition of the underlying concept first leads to
a short increase in the size of the window, before the system reacts to the concept shili
by narrowing the window and forgetting old, now irrclevant or contradictory instances.

A comparison ef these curves with the respective figures in (Schlimmer & Granger,
F980) suggosts thal FLORAZ is compatable o STAGGER in wenms of convergence and
re-adjustment speed on this basic task. In a sccond experiment, Schlimmer and Granger
showed that STAGGER s sensitive 1o over-training. The longer 1L has been trained on
a stable concept. the slower it will be in “letling go” and changing itz hypothesls when
the underlving context changes. When the same experiment (makeng cach of the three
concept periods 150 instances long) is performed with FLORAZ, there s no such effect,
which Is, ol course, due o the lact that FLORAZ swps the window growth once its
hypotheses are stable. ' We will return to this point in Section 8.

In any case, FLORAZ's explicit drift detection mechanism (the WAI) has additional
acbvantages, as will be seen in the lollowing section, where we introduce an algorithm
for explicit context handling,

5. Dealing with Recurring Contexts: FLORAS

There are many natural domains where there s a {inite number of hidden contexts that
may reappear, cither cyciically or in an unordered fushion. For mstance, there are {our
seasons that follow each other in a cyclic order and cause regular changes in many natuial



80 G, WIDMER AN M. KUBAT

phenomena. Biological and economic systems tend to go through cycles of development
with recurring patterns,

In domains where conlexls and associaled concept versions veappear, it would be a
waste of effort 1o relearn an old concept from scratch for each recurrence.  Instead,
concepts or hypotheses should be saved so that they can be reexamined at some later time,
when there are indicarions of a context change. The effect should be laster convergence (o
the concept (or a similar one) has alrcady oceurred. This section introduces an exlension
of FLORAZ that includes a mechanism {or context storage and recall. The mechanism
is tightly coupled with the window adjustment algorithm.

5.1. Description of FLORASJ

The top level of FLORAS is sumilar to FLORAZ. The system first trics (o classify the
new incoming example, updates its on-ling classification accuracy, then learns {rom the
instance by incorporating it mto the window and updating the description sets, and,
after calling the WAH to decide whether and how to adjust the window size, “forgels’
the appropriatc number of old instances. However, after cach learming cycle, FLORAS
inspects the current state of learning in order to decide whether it should reconsider
concept descriptions that were useful in some old context.

The idea is that when a context change seems to occur, the system should consult
its store of old concept deseriptions to see whether some old concept nught better de-
scribe the cxamples currently in the window. Conversely, when a stable concept hy-
pothesis has been reached, it might be worthwhile to store the currcot hypothesis for
later reuse. It is the Window Adjustment Hewristic (WAE), as embodied in the function
how_many_to forger in Table 2, that trics to determine the relevant conditions (the oc-
curtence of a context change and the stability of the learning situation). So in FLORAS,
storage and reexamination of old hypotheses are tightly linked to changes in the window
size.

The corresponding function choose.context, which is called at the end of cach learning
loop, is sketched in Table 3. When the current hypothesis is stable according to the
WAH. the svstemn saves it for later reuse, unless there 1s already a stored concept with
the same set of ADES descriptions. On the other hand, if there 1s reason to helieve that a
context change is taking place (i.c., when the WAH enforces a narrowing of the window),
the system examines its store of old concept descriptions in an atiempt t© find one that
fits the current siwation. 1 one is found that scems more appropriate than the current
hypothesis, it 1s reinstalled as the new hypothesis.

Note that when a concepl description pertaining to an ald context is retrieved, 1t will
usually not agree 100% with the examples in the current window. Therelore, all examples
in the current window must be regeneralized. The counters associated with the items of
the retrieved hypothesis are set to zero, and then the regnlar FLORA learning algonthm
(Table 1) ts invoked for cach example in the window. All description items 1hat have
counters equal o zero after re-generalization are removed as irrclevant. The algorithm
for reassessing old concepts proceeds in three steps (see Table 33
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denotations:

Stable .. boviean variable; rrue if the current hypothesis is stable
gecording o the WAL,

Drift suspected . boolean variable; rrue if the WAH suspects a
concept drift and has narrowed the window;

functions.

. slore_currend L store current description scts

. Sind_besi_candidate .. find best matching old context

- regeneralize old_descripiion . .. regeneralize according to current window
. replace.ifapplicable . reinsiall old hypothesis, if better than current

algorithn:
it Stable

then store_current

clse it Drift_suspecied then

begin Best = find_best_candidaie:
G o= regeneralize_old_description{Best);
replace _if applicable(G)

end.

Tabte 3. Funciion choose_contexr

(o)

Find the best candidate among the stored concepts: an old hypothesis becomes a
candidare 111 (s consistent with the current example. All the candidates are evaluated
with respect (o the ratio of the numbers of positive and negative instances they match
(from the current window);

Update the best candidate w.rt. the current data by setting all the counters in the
deseription sets 1o 0 and then reprocessing all the examples in the window;

Compare the updated besr candidate O, 10 the current concept descriprion (0 use
some ‘measurc of fit’ to decide whether Cy is benter than ; if so, replace ¢ with
Cy. In the current version of FLORAZ, the measure of fit is simply the relative
complexity of the description: a concept description is considered better il ils ADES
set i1s more concise. (Remember that by construction, the ADES sets of hoth ¢ and
' cover all the positive and no negative 1nstances from the window).

The algortthm teies to maintain cfficiency by limiung the number of expensive repro-

cessing episodes. Old concepts are not reconsidered after every new fraining instance;
they are only retrieved when the window adjustment heunstic suspects a concept drift.
In addition, the cxpensive part of reconsidering an old concept — the regencralization of
all the instances in the window 15 done only for onc of them  the best candidate. The
best candidate 15 determined through a simple heurnistue measure, which, of course, can
sometimes lead 1o an inappropriate candidate being chosen. Thus, efficiency 1s achicved
at the possible expense of qualiry.
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It seems worth emphasizing that the role of the retrieved old concept/hypothesis is o
act as a medel or bias for regencralizing the current examples. The refrieved candidate
provides a list of generalizations that were usciul in the past and that might, at least in
part, also be useful in the new context. That reflects the insight that when an old context
returns, the target concepts will tend to be similar, but not necessarily identical to how
they appearcd 1n the old context.

5.2.  An FExperiment with recuarring contexts

To measure the effectivencss of the context tracking (store/recall) mechanism, we created
a situalion of recurting contuals by repeating the three STAGGER concepts three times, in
the cyclic order 1-2-3-1-2-3-1-2-3. Training and test instances were gencrated according
1o the same procedure as above. Again, results are averages over 10 runs.

Figure 5 compares FLORAT (solid line) 10 FLORAZ (dashed hine} on this task. Storing
and reusing old concepts lecads to a noticeable improvement over the simpler system
when contexts actually reappear: starting from the fourth period (the fust reoceurrence
of context 1) the solid line shows faster readjustinent o higher aceuracy levels in four
out of six cases {the differences in the last two perieds are oo small to be significant).
An interesting phenomenon appears in the third period of the plot — the first occurrence
of context 3. Here, FLORAZ did beuer than FLORAZ. That may scom odd at first sight,
as there is no contexl recurrence at this point, so ideally, both systems should behave the
same. But the concept retricval and adaptation algorithm is driven by heuristics and can
sometimes lead the system o reinstall an old concept o roncously.? The context tracking
mechanism thus adds another degree of freedom (and source of potential errors) 10 the
learning process. However, when old contexts actually do reappear, the advantages of
the context racking approach begin o outweigh the disadvantages, as can be seen from
the following phases in the experiment.

Similar results were achicved in experiments with a more complex world (sce Widmer
& Kubat, 1993y However, there it also wrned oul that very slow concept drift and
especially noise in the training data destabilized FLORAZ’s (and equally FLORAZ2' s} per-
formance more than seemed strictly necessary. That observation led 1o the development
of FLOKA4.

6. Drnift vs. Noise; FLORA4

Generally, it is very difficult in incremental learning to distinguish between “real” concept
drift and shight incgularitics that are due to neise in the training data. Methods designed
to react quickly o the first signs of concept drift may be misled into overteacting to
noisc. This results in unstable behavior and low predictive accuracy. On the other
hand. an incremental Tearner Uil is designed primarily to be highly robust in the face of
noise runs the risk of not recognizing real changes in the target concepts and may adjust
to changing condittons very slowly, or only when the concepts change radically. An
ideal lcarner should combine stabitity and robusiness with (leaible and sifective conteat
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Figure 5. Learning 1m domain with recurdng contexts: FLORAD (solid) vs. FLORA2 (dashed).

tracking capabilities. On the face of it, the two requiremnents scem diametrically opposed.
Nonetheless, we can at least try (o achieve a compromise between them.

A simple analysis of FLORAZ and FLORA3 veveals that their brittleness in the face
of noisc is a result of the strict consistency condition that 18 used Lo decide which
generalizations to keep in ADES. As hypotheses in ADES (and NDES) must be strictly
consistent with the examples (e.g., an expression in ADES must not cover any negative
instances), one negative ¢xample is sufficient to invahdate a description item and cause 1l
to be moved from ADES to PDES, even if it covers a large number of positive examples.
That can fead o somewhat unstable behavior ¢ven in noise-rce domains, especially when
a concepl change is taking place. but it is particularly problematic when the mput data
arc nolsy, i.e., when some of the training examples may be muslabeled.

6.1.  Description of FLORA4

To counter this problem, FLORA4 drops the strict consistency condition and replaces it
with a ‘softer” notion of reliability or predictive power of generalizations. The 1dea 1s
to continuously monior the predictive accuracy of cach gencralization in the description
sets and to statisticatly evaluate the conlidence ot these accuracy estitnates: FLORA4 . like
1ts predecessors, uses its current hypothesis (ADES) to classify each incoming example
before learning from it Now the central idea is o keep a classification record for each
individual deseniption item {cenjunction) and to construct statistical confidence intervals
around these measures. Decisions as 1o when to move an item [rom one set to another of
when to drop it altogether are based on the relation between these confidence intervals and
the observed class [requencies: a hypothesis s kept i ADES as long as its predictive
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accuracy 1s higher (with high confidence) than the observed frequency of the class it
predicts.

Mote precisely, det g = requined confidence level (parameted); assume that cach de-
scription itern is associated with two numbers, v, and e, that represent the lower and
upper cndpoints, respectively, of the statistical confidence interval (with confidence p)
arcund the item’s classification accuracy, computed over the instances i the cuirent win-
dow. l.et v and =, be the lower and upper endpoints, respectively, of the confidence
interval (with confidence g} around the relative frequency of the positive class observed
s0 far (i.c., the percentage of processed waining instances (iat are positive exanples of
the target concept).”

FLORA4 then uses the following criteria 1o maintain its description scts (compare this
o Table 1):

s adescripuon ttem X is kept in ADES if the lower endpoint of its accuracy confidence
interval 1s greater than the class frequency interval’s upper endpoint (o > )
similarly, any X in POEY that satisties this conditten 1s moved to ADES - we say
that X is (lemporanly) aceepted as a predictor,

e adescription item X in ADES whose accuracy interval overlaps with the class fre-
quency interval (v, = ) s moved o PRES — X s a mediocre predictor (it docs
not do significantly better than guessing), expressions i PDES are not used for
classification,

e a description item X is dropped completely if the upper endpoint of its accuracy
interval 15 lower than the class frequency interval’s lower endpoint (ex, < 7)) — X
s rejected,

s doscription items 1a NDEAS are kept as long as they are acceptable prediciors of
negative instances (v > =, computed over the negative examples 1 the window).
In contrast o FLORAZ and FLORAS, there ts no migration of generalizations between
NDES and PDES. Unaccoptable hypotheses in NDES are simply dropped.

The gencral approach to deciding which hypotheses to trust has been adopied {rom
the instance based learning method JB3 (Aha et al, 1991), which uses simmtlar mes-
sures to distinguish between rehiabie and unreliable predictors (exemplars in IB3). The
lerms accepted, mediocre, and rejected are uscd here to highlight this similarity. In all
experimonts with FLORA4, a confidence lovel of p — 80% was used.

The main effect of the strategy 15 that generaiizations in ADES and NDES may be
permitted to cover some negalive or positive instances, respectively, and still 10 remain
in ADES or NDES if their overall predictive accuracy warrants it. PDES is a veservorr of
alternative generalizations that are recognized as unreliable at the moment, cither because
they cover (oo many negative cxamples, or because the absolute number ol mslances
they cover is still too small (and thus the confidence atervals are large). The rest of the
FLORAZ strategy, including the gencralization operator and the conlext reuse mechanisim,
remains unchanged. After every learming step the window adjustment heuristic is inveked
and juay devide to grow or shrink the window, DPredictive accuracy of hypotheses 15
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always computed with respect 1o the current window. In this way, FLORA4 combines
the advantages of the windowing approach with a less brittle strategy for maintaining
generalizations.

6.2.  Two preliminary experiments

The followmg two cxperiments briefly compare FLORA4 1o its predecessors and to its
‘cousin’ {83, from which its statistical hypothesis cvaluation strategy was adopted. They
arc again based on the STAGGER concepts. More thorough cxperiments are described
in Section 7.

6.2.1.  Basic drift tracking

Figure 6 comparcs FLOKA4 1o FLOKAZ and FLOKAS on the basic nowse-lree dritt
tracking task. The characleristic cffect that can be scen in this plot {(af least in the
second period) and that appears even more clearly in the experiments in the next section,
is that FLORA4 1s mmtially a bit slower 1 reacting to the chiange n the target concept,
but then soon picks up and eventually regains high accuracy faster than both FLORAZ
and FLORAS.

100+ o e
_ —’/
80 -
6l -
40 - : FLORA4 —
; FLORAR ————
a0 L : FLORAZ -
(1) ' {(2) (3)
0 | o L I !
(} 20 40 60 51 100 120

[nstances processoed

Figure 6. FLORAY vs. FLORAZ and FLORAZ on STAGGER concepis

The explanation s to he found m FLORA4 s statisiical conhdence measure, FILORA4
reacts more reluctantly initially because several contradicting examples are necessary
to invalidate a hitherto stable hypothesis in ADES, while FLORA2 and FLORAZ will
drop a description item as soon as the first contradicting instance appears The same
observation also explains why FLORAS later reaches high accuracy faster: a consequence
of FLORA2s sinet consistency condiuon 1s that one old negative instance (pertaining o

the ontdated context) erronecusly still in the window may prevent a good generalization
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from being included in ADES. FLORA4, with its “softer’ consistency condition, is less
disturbed by remnants of the old context still in the window and thus rcadjusts faster (o
the new coniext

6.2.2. FLORA4 vs., TR3

Figure 7 compures FLORA4 to the publicly available version of B3 (Aha et al., 1991).
IR 3 was modified so that it used different west sefs aceording to the cirrent context (which
changed after every 40 instances). The improvement ol FLORA4 over IB3 1s evident.

Generally, our experience from various experiments with B3 is that /B3 requires sig-
nificantly mote examples to converge to a high level of predictive aceoracy. and that i
is slower in recovering from changes in the target concept. The first cffect is due w0
the general instance-based learning method. The latter difference is clearly attributable
to the combination in FLORA4 of IB2’s statistical confidence measures with a haghly
reactive window-based [orgetting strategy, which permits the system to get rid of out-
dated information much faster. As a side note, one could alse point out that a symbolic
gencralizer like FLORA4 has certain advantages over an nstance-based learner in terms
of the comprehensibility of the results of learning.
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Figure 7. FLORA4 vs. IB3.

7. Systematic Experiments

The following experiments study the behavior of the FLORA systermns in some more
detall, by systematically varyving difforent aspocts of the learning task. Again, we use
artificial domains, as they make it casy to control e learning sitnation.

In particular, we study the [ollowing dimensions: (1) the level of classification noise
in the raining duta —- il iz of panicular interesi o FLORA4, which we claimed 15
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more robust tn the tace of noise than its predecessors; (2) the speed of {a gradual) drift,
which is the time it takes for a new context to completely take over; this scems to us a
moro natural dimension for practical scenarios than the notion of drift rare, which is enc
of the two main parameters in theoretical investigations (see Section 3); (3) the extent of
dnift, ie., the degree of dissimilarity of successive concepts, gquantified in terms of the
relative crror between the concepts, and (4) the offoct of additional, (rrelevant atiribuies
on the effectiveness of the learning process.

As none of the following cxperiments involves recurring contexts, FLORAS s concept
store/recall mechanism was disabled in FLORA4. ‘That is, FLORA4 resembles FLORAZ,
with the exception of the statistical hypothesis maintenance criterion. This was done 10
help separate the effects of concept reuse (as perlormed by FLORA ) and accuracy-based
hypothesis maintenance. All the resuls in the tfollowing sections are averages over 10
rUmns.

7.1 Varying the amount of noise

The coujoctuie motivating the {irst experiment is that FLORA4 should have significant
advantages in noisy environments due to 1ts combined sirategy: the statistical confidence
measures provide a certain robustness against noise, cspecially in relatively stable silua-
uuns, and the window adjusunent heuristic should recognize persisient misclassifications
asndicators of a concept change and should lead 10 effective adjustment by shrinking the
window in such situations. The targets in this experiment are again the three STAGGER
concepts, bul now e baining data are corrupied with various levels of classificalion
noise,

- T ¥ T - |
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\
60 |- "
40 L FLORA4
: FLORA3Z
FLORA?
20 -
i ) : i3
ot — P L | R .
0 20 40 60 50 L0 120

Instances processad
Figure 8 FLORA2 FIORAZ FLORAY al 0% noise

Figures 8 through 10 compare the performance of the three FLORA algonthms at noise
levels in the traming data of 10%, 2050, and 40%. respectuvely. (In this article, 0% class
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Figure & FLORAZ, FLORA3, FLORA4 at 20% noise.

noise medans that with probability 17/700, the class label of an instance will be assigned
randomly. Thus, completely random data will be gencrated when 1 — 100.)

Again. we see that FLORA4 1s osually a bit slower in its nitial reaction to the concept
change. but then soon outperforms FLORAZ and FLORAS. The differcnce is markedly
greater than in the noise-free case, FLORA2 and FLORAZ have cbviows problems, while
FLORA4’s accuracy gquickly rises to a mark that corresponds roughly to the given level
of classification noise (remember that V% noise means /2% misclassified instances
on average in a two-class learning task).

100 -

FILORA4 4
FLORAZ
20 + ‘ . . FILLORAZ -
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Figure 1Y FLORAZ, FLORAZ FLORAL at A10% noise

A companson of the average window sizes in the experiment with 40% notse (Figure
11} confirms our expectations: in the FLORA4 curve, the characteristic shape (growing
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Figure 11, Average window sizes at 40% noise.

the window to a reasonable size during phases of concept stabihty, shrinking it in reaction
to a perceived context change) is still clearly recognizable, whercas the behavior of the
other two systems is less predictable. ‘They apparently misinterpret noisy examples
as indicators of concept drift, as evidenced by the constant growing and shrinking of
the window, which in many cases prevents them from reaching a window size that is
sufficient for stable concept identification. In FLORA4 (s kind of erratic behavior 13
largely prevented by the robustness of the gencralizer’s statistical criteria.

As a side note, we also notice that there 1s almost no difference between FLORAZ
and FLORA3. Onc might expect FLORA3 to exhibit even less stable behavior than
FLORA2, as crroncous reactions Lo perceived drift would lead it to constantly reexam-
ine and sometimes reinstall previouwsly stored hypotheses. However, the fact is that
this noisy cnvironment, FLORAS hardly ever reaches a situation that 1t considers stahte
cnough lo store 115 current hypothesis for possible fuiure use, so there sunply are no old
concepts that could be reinstalled by mistake.

Sehlimmer and Granger (19861 have noted that STAGGRR dhstingmishes between ran-
dom (examples of both classes alfecled) and systematic noise (only positive ot only
negative mstances corrupted). [n our expernments, we could not detect a similar ten-
dency in FLORA4 That scems reasonable, as there are no components m our model
comparable to STAGGER's LS and LN measures, which are sensttive 10 onc-sided van-
ations. We conjecture that STAGGER may be more robust than FLORA4 1in situations
with extremely high, but systematic noise.

7.2, Varying the speed of drift

The following expertment s concerned with what might be called the speed of concept
diift. Sumetimes concepts will change only gradually, creating a period ol uncertainty
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hetween stable states. The new concept only gradually takes over, and some examples
may still be classificd according to the old concept. An example is the behavior of a
device beginmmg 1o malfunction — it first fails (classifies in a new way) only sonetimes,
until the new failure moede becomes dominant,

Specd of drift can modelled by a function « (see Figure 12) that represents the degree
of dominance of the old concept A over the new concepl f3 or, in other words, the
probability that the current concept stitl belongs to the old context. « — | means that A
is Tully in effect, &« — 0 means that B has completely taken over. The o axis in Figure
12 represents the number of examples processed so far; assuming that instances arrive at
constant intervals this can also be regarded as a dimension of time. X1 is the poinl where
the concept begins to drift. The slope of the function « can then be characterized by
Az, the number of waining instances until o reaches zeto. Between X1 and X1 + Az,
aex 1009 of the examples are still classified according to A, and B labels {1+ o)+ 100%
of the cases.

{ _"_\ e
0 D Sy
X1 Ax“

Figure 12, The luncition o

This situation was modelled in a simple artificial domain. Tn a universe spanned by
six boolean attributes {a ... ag}, we defined a scquence of two {rather different) target
concepts A <> ey Aas and B 43 (ug Aag) v (a5 & ag), where A would gradually change
into /3. In order to ensure that the test set also reflected the changing enviromment,
the same st of 200 testing examples was used throughout cach run. but the instances
in the set were relabeled alter cach training example was processed: the relabeling was
probabilistic in the same way as the labeling of vaining examples {1e., it was also
determined by the function o). The drift rates compared were Az - 50 (moderalely Tast
drifty, Ar 100, and Az — 200 (very slow drfti. X1 (the pont where the concept
hegins 1o drift rom A (o f3) was at 100 instances. As n all other cxperiments in this
paper, the following results are averages over 10 runs.

Figures 13 through 15 compare our three learners in cach of the three different dntt
situations.  In addition. for purposes of otientativi, the doed horzental hnos an the
figures indicate simple hypothetical upper and lower bounds on prediciive accaracy
this task. The upper line plots the maxmmum accuracy that could be achieved if a fearner
had perfect information (i.e.. if it knew both when the concept starts o change, and
what the tareet concepts are). In effect, the upper bound indicates (he effect of the
noise crealed by the slow drift. The lower bound 1s simply the accuracy of gucssing the
majority class (which 1s always & in our case).
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Figure 16 Window size for different speed of drift (FLORA4}

The most important finding is that the quakitative behavior of the learners seeme fo
he quite tobust As expected. the shape of the valley of decreased accuracy depends
on the slope of the dnft function . All three algorithms usually start lo recover and
readjust before the concept change is complete (e, while there ss still noise in the data).

FLORAL scems (o do best overall, at least for Az
difference can be found in the case with the longest period of uncertaingy (Ao -

whicl scoms o confusce all three learners alike.

50 and Ax -+ 100, No significant

200),
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The robusiness of the Window Adjustment Heuristic is also documented in Tigure
16, which plots FLORA4 s window sizes (again averaged over the 10 runs) in the three
experiments. ‘Lhe charactenstic shape (narrowing of window at beginning ot drilt, then
increase unti] stable concept is learned) ts clearly recognizable in all three curves. The
more sudden the dritt, the easier 1t is to detect, and the steeper is the window narrowing
curve. Note also the stable range ol the window size over the entire experiment: in none
of the three conditions did the window grow 1o an unreasonable size, nor did it collapse
except in situations of concept drift or noise.

7.3.  Varying the extent of drift

Another unportant dimension s the extent of drift, ie., the dissimilarity berween two
successive concepls A and B, Cornputational learning theory quantifies doft extent as the
relative crror between the (wo concepts, which is the probability that 73 will misclassify
a randomly drawn cxample that is labeled according to 4 (and vice versa). We can view
this as the probability of drawing an example from the symmetric difference, A B, of
thie two concepts. Theoretical resules like those in Sceiion 3 suggest that the smalier the
cxtent, the casier it should be for a learner to track the drilt.

Again, we used our artificial domain defined by six hoolean attributes {2y ... 06} 10
test this conjecture. We devised a “starting concept” #4 and four differenl “successor’
concepts 3; with linearly increasing degrecs of dissimilarity 1o A, The concepts are
defined as follows:

=

ay M {(13 A LL,])]I W [Hl Aag Aag Aagl,

A Surr
DBl eslu, A
EEAE L(H N

B3 s lap Al A as Aagl V[E Aas A{az Voaa)),

B4 <@y A

Assuming u uniform probability distribution over the instance space, the cxtents of
hfference arc as follows:® ext(A. 31) = 8/64 — 0125 cxt(A, B2) — 16/64 - 0.25;
ext(AB3) - 24/64 — 0.375; and ext(A, B4) = 32/64 .- 0.5,

As the previous experiments have shown, FLORAY 1s the most stable lcarner overall.
We ran FLORA4 on the four concept sequences A -» 81, A+ B2, A -+ H3, and
A 2240 The results (accuracy measured on test set of 200 instances, plots arc averages
over 10 runs) are shown in Figure 17

At first sight, the results seem rather surprising. To he sure, the drops in accuracy
after the context change are as expected: the smaller the extent of change, the smaller
the drop. That 1= a tivial conscquence ol applying the old concept A 10 a4 new (est
sei that reflects the instance distribution of the new concept I3, and s overlap with A
But contrary o what theory scems (o tell us — namely. that the smaller the cxtent, the
yuicker the learne: s recovery — we see that in fact the concept sequence with the fargest
extent (0.5) led to the fastest readjusiment!

7 A :LJJ W "El A @y A (,L;gjz

Closer examunation of the results and learning protocols reveals the reasons for the
dpparent paradox: learning theory s {of course) right. buat it is not applicable o our
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Figure 17. FLORA4 at doift of varying cxtent,

scenario. The theoretical models of Section 3 assume a window of fixed (large) size.
while FLORA4 reduces its window very effectively once it comes to beiieve in a concept
change: this is effective enough o deal with drift of any cxient.

For the FLORA systems, the effectiveness of adjusting to drift depends on (1) whether
the concept drifl is perecived at all — which may in fact be easier when the difference
between concepts is larger — and (2) what the new concept looks like. 1tis the eomplexity
of the concept descriptions thai causes problems for the FLORA syslems, in particular
through the Window Adjustment Heuristic. Whether the window grows to an appropriate
size depends on the syntactic complexity of the concepUs description and the absolute
and relative frequency with which incoming examples confirm a particular conjunct of
the hypothesis. That is also a function of the sparsity of the concept. In our experiment,
the concept with the largest drift extent (B4) was also the simplest one. syntactically
speaking, and thal i why it was leamned much more easily than the others. We can
easily get better results for this oxperiment by moditying those parameters of the WAH
that relate to the complexity of a hypothesis vis-a-vis the number of examptes covered
({e and he — see Table 2), but that is not the point of this cxercise.

Our analysis poinis to a fundamental problem with all the FLORA systems: the Window
Adjustment Heuristic — and, by tmplication, the entire hypothesis mamtenance algorithm
is rather sensitive to the form and complexity of the target concept. For practical
applications, preliminary experiments with the aim of finding good paraneter settings
for the WAH witl be essential. From a theoretical point of view, the situation is not very
satisfactory, but we have not been able to devise a gencral solution so far.
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Figure 18 FLORA4 at drift of varying cxtent (10 atributes).

7.4.  Adding irrelevant attributes

For a test of whether more wrelevant attributes woutd have a detrimental effect on
FLORAZ s performance, we repeated the above experiment with examples that possessed
four additional boolean attributes with randomly assigned values. That gives a wtal of
10 atteibutes and increases the size of the instance space from 2% . 64 to 2'Y — 1024 and
the number ol possible hypotheses (all of which FILORA4 can thenretically represent)
from 27" 5 10'% 10 22" 2 10390 The target concepts were the same as ahove,

The experimental result, as given in Figure 18, does not show any grave effects. The
simplest concept (B4} s still easily learned. The more complex concepts show some
shght deterioration 1n comparison to Figure 17, which was to be expected, but no inor-
dinate degradation cecurs. Thes 1s a consequence of the explicit symbolic generalization
(projection mto a lower dimensional attribute space) in FLORA4; the performance of
an instance-based learncr like IB3 would degrade much more dramatically, as has been
shown in various empirical and theoretical studies (see, e.g., Langley & I[ba, 1993)
Again, we suspect that the more complex the targel concepts, the stronger will be the
detrimental cffect of trelevant features.

8. Related Work

Altheugh the notion of context dritt is rarely discussed explicitly in the machine learning
literature, several well-known learning techniques can be ascribed a certain plasticity i
the face of changes. For instance, the momentum function in the deita rule used in newral
metworks (see, vz, Heeht Nielsen, 1990) essentially roalizes a form of memory decay;
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recent experience can be made to have a stronger influence on the network’s internal
weight configuration than very old examples. In principle, neural networks can adjust to
changing contexts. For instance, Adaptive Rescnance Theory {Grossberg, 1987) repre-
sents a signilicant step in this direction. Howcever, even though this architecture explicitly
facilitates incremental learnmg, 1t 1s rather reluctant to dismiss outdated information.

Simple Instance-Based Learnng algorithms ke I8 (Aha ot al., 1991) can be viewed
as incremental on-line learners that first classify cach new cxample by scme nearcst-
neighbor method and then store it as a new exemplar. The basic IB/ algorithm cannot
adjust to drift, since all exemplars will remain in memory, even il the context changes.

The more sophisticated variant /83 (Aha et al., 1991) possesses a mechanism stmilar
to FLORA4's {or deciding which of the exemplars are ‘trustworthy’ predictors, which of
them should be discarded as possibly noisy or outdated, and which are as yet undecided,
The decision about the quality of an excrplar i1s based on its success in the tentative
classification of the newly arriving examples. In the process, the individual exemplars can
move between the three categories i a way similar to the description items in FLORA.
This property gives the algorithm a strong capability to track concept drilt. Howcever,
as our cxperunents have confirmed. there is a certain amount of inertia in the statistical
criterion used to assess the quality of exemplars. 183 is well-suited 1o situations of slow
drift, but it 15 somewhat reluctant to adjust quickly to radical changes  Also, instance-
based algorithins are known to be sensitive to altribute relevance: irrelevant attnbutes
have a detrumental cffect on predictive accuracy, though some approaches Lo improve on
this have recently been suggesied (Satzberg, 1991; Cost & Salzberg, 1993).

I recent vedrs, some adthors have begun to explicitly address the probfem of concept
dnft and context dependence. Probably the first system to attack the problem ol drift
was STAGGER (Schlimmer & Granger, 1986), which learns symbolic characterizations
from classified examples. The main adjustment mechanism in STAGGER 18 again of
a statistical nature: for cach description itetn, STAGGER maintains statisues of logical
sufficiency (1.5 and necessity (L) of the item for the target concept, and these dertermine
which description itlems will be used in further gencralization. and which oncs will be
dropped. STAGGER adjusts to changes quite effectively.

As briefly noted in Section 4 2, STAGGER exhibits a strong sensttivity 1o overtraming:
the fonger it hag been trained on a particular target concept, the slower 1t w6 10 adapting
te changes and tracking a concept dritt. Schtimmer and Granger regard that as an assct
— 1t mirrors empirical resulls from the psychology of learning. The FLORA sysiems
show yno such behavior, because their windows do not grow linearly with the nomber of
examples pracessed. The window 15 kept at a more or less fixed size once the learner’s
hypotheses are stable. Psychological plausitatity may be lost, but the guarantec ol quick
adjustment to changes irrespective ol the learming history may be an advantage i certain
practical applications,

In contrast w FLORAS, STAGGER docs not possess the ability 1o recognize recurning
conteats and take advantage of that o pertodic or otherwise regular coviconmoents. On
the other hand. ¢ can use already learned concepts tn the characterization ol other, more
abstract concepts. This capability of constructive induction (Michalsky, t983) 1s not
nnplemented in FLORAS, althiough the contexls recognized by FLORAS can be viewed
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as constructed higher-level attributes that might be used explicitly to characterize different
situations.

The wdea of introducing a forgeifing operator to improve learning was discussed in
(Markoviich & Scott. 1988), in the context of a system that learned macro operators for
scarch. Their experiments had nothing 1o do with concept drift, but were motivated by
the so called wtilety problem in Fxplanation-Based Learning (Mitchell ot al., 19863, which
is the problem that learned macro-operators or schemata, even if correct, arc not abways
helptul, but may actually decrease the performance of the systern. Similar observations
were made by Tambe and Newcll (1988) and Minton (1988). The general conclusion is
that forgetting can be beneficial even in stable domains.

Forgetling as a means of adjusting o concept drift was used in the original FLORA
system described in (IKubat, 1989), which was also applied to a practical problem (Kubat,
1992}, Forgetting was controlled by a window of fixed size, which was sufficient for
the particular apphcation, but turned out to be meffective in dealing with various types
of concept dritt. The window adjustment heuristic inoedoced in this papor sigiificantly
increased the system’s flexibility and power.

An alternative to a Ume window as a means of controlling forgetting is ageing of
knowledge. This method was used 1o the coneept formation system FAVORT (Kiiza
kova & Kubat, 1992), which performs conceptual clusiering in a way similar 1o Lebowitz”
UNIMEM (Lchowity, 1987). In PAVORIT, cach cxemplar is assigned a weight which
slowly decays with time. If the same cxemplar rcappears, the weight is incremented.
Exemplars whose weight drops below some threshold are forgotten. Another recent con
cept formation system using a forgetting operator is COBBIT (Kilander & Jansson, 19973)
which adapicd FLORA's windowing philosophy 10 unsuporvised clustering sconarnios,

Both ageing and window-hased forgetting refer to the temporal order of the incoming
training exarmples, 1.¢.. to fime. For numeric domaing, an alternative approach named
density-adaptive forgetting has been proposed by Salgamicofl (1993a). The idea is not
10 rely solely on the age of exemplars. Rather, exemplars are forgoten only il there
is subsequent mlonnation i their vicinity in attribule space (o supersede them. In thes
way, the algorithm s more robust w dnfting sampling distcibations during increncntal
learming. The integrauen of some variant of this approach into the FLORA systems might
further add o the swbility of their bebavior.

Finally, Turncy (1993) discusses the problem of contear-dependence from a ditforent

angle. In his scenario, the testing examples may come from a dilferent context than the
training examples. He presents various techniques (or normalization of learning results
and for adapting learned concepts for prediciion in new contexts. Though this problem
15 somewhat different from ours. seme of the technigques might well be transferabie 10
the FLORA sciting

9., Conclusion

To recapitulate briefly, the article has presented a family of algorithms for on-line learning
in domains with contexi-dependent concepts and concept drift. The main icchniques
constituting the basic method are (1) representation of hypotheses in the form of three
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description sets thal summarize both the positive and the ncgative wformation; {2) &
forgetting operator, controlled by a time window over the input stream; and (3) a method
for the dynamic control of forgetting through floxible adjustment of the window during
learning. The central idea is that forgetting should permit faster recovery after a context
change by getting rid of outdated and contradictory information.

Experiments with an initial implementation ol the basic incthod i the program FLORAZ
showed that the method behaves esscntially as expected.  In particular, the window
adjustment heuristic proved to be rather robust under a variety of types of concept drift.

FLORAY extends FLORAZ with a mechanizm for storing concepts in stable situanons
and recalling them in similar contexts. In environments with a relatively small number
ot contexts. this capability speeds up the process of re-learning concepts by biasmg the
learner towards generahizations that have proven useful in the past. Again, the window
adjustment heuristic plays an tmportant role in this process as an indicator ol context
changes.

Finally. FIL.ORA4 uses a refined strategy based on the monitored predictive performance
of individual description items to deal with the problem of noisy data. FLORA4™s robust
ness derives from the fact that it integrates two different learning strategies. The statistical
criteria used 10 distinguish between reliable and unrehable generalizations make 1L robust
against noise, and the ‘forectling’ of outdated infermation, controlled by reaciive win
dow adjustmient, enables it o quickly adapt to new contexts. Tn terms of the framework
of Salganicolf (1993h), FLORA4 can be characlerized as integrating “perlormance-crror
weighted forgeuting” and “time-weighted lorgetting”™

There are numerous possibilities for further improvement. As noted before, a central
problem is that the window adjustment heuristic (WAH) 1s dependent on parameters. Al
though the parameter settings we chose early on turned out to yield rather robust behavior
in most of our artificial domains, this is not satislactory, One possible solution might be
to adapt a technigue presented in (Moore. 1992), which estimates task-specific forgetting
parameters ((or mstance-based learning) via cross-validation. Another possibility s 1o
perform some kind of beam search in the space ol parameler settings by having several
versions of, say, FLORA4 run in parallel and tune their parameters during learning,

The algerithm’s flexibility could be (urther mercased by combining the dynamic win-
dowing approach with more selective forgetting mechanisims like those described in
(Salpanicoff, 1993b). That 15, decisions as to which instances (and gencralizations) (o
discard would be based not only on the items™ age. but also on other charactenstics iike
the relalive proximity of ohservations and observed distributions.

In some domains, there may be contextual attributes or combinations of atributes that
are characteristic of the current context and whese change signals a conext change. As a
simple example, as Tang as we are in one particular country. say, Austria, all or almost all
ol the cars we see witl have Austrian license plates. As soon as we move 1o a dillerent
country. this feature will change in a systematic manner. An interesting idea might be to
try to explicitly learn o recognize such clues Tor example by keeping track ol attributes
that have  constant value over ali instances 10 the current window.

Another 1nteresting extension would be the mtegrauon of a notion of expecration
[n many domains, the order in which contexis can oceur 1s not random, bul fughly
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constrained. The four scasons usually follow cach other in a cycle, and countries border
only on a limited number of neighbors. A learner should be able to develop expectations
as o which context(s) witl mest likely become relevant next. This will require an explicit
representation of contexts, an extension that would open the door to a number of other
interesting possibilitics.

Finally, the representation language can be extended. The introduction of numeric
attributes, though a relatively simple step, will be nnportant for possible applications
in control or monttoring tasks. An cxtension of the approach o (some subset of} frst
order logic will certainly be more difficult; incremental generalization and subsumption
checking are not trivial problems. Nonetheless, the general ideas of dynamic [orpetting
and context tracking might be of interest for relational learners.
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Notes

b The name FLORA 15 an acronym for FLOating Rough Approximation. which indicares that rhe arigimal
[ramework us concelved in (Kubai, 1989) was inspired by Rough Set Theory (Pawlak. 1982) ANES
was a lower approximation of the concept: the union ADES ) PDES formed s upper approximation.
This interpretation 15 no longer valud 1 the current implemeniaiion of the FLORA systems. The seis are
maintained for praciical reasons. o sumimariee information from the training examples.

2. Omne might ask why p (the threshold Lor acceptable predictive accuracy) should not be much higher (or
even LO0%; 1t one knows that the dala are aoise-free). Closer wvestigation reveals thar ihat would serously
destabilize F1.O0RA2's behavior Bspecially during phases of concept drift, too high a threshold prevents
e SYSIC Trom ever growing e window © a sufficient size. The value p oo (07 15, of course, purely
heuristic

3. In the werminclogy of Section 3, the exenr of drift is 039 (16/27) between concepts (1) and (2) and 0 48
(13/27) benween concepts (23 and (3.

4. In fact, the system does nor know how many hidden contexis there are. In the experiment reported here
the number of conrexts thay FLORAS stored was never exactly 5, as we would expecr. knowing the targsl
concept. 0 most cases, 10 was between 4 and 7

5 The formla used (o compute conhudenee tutervals s e same as i (Al e al, 1991 and (Razlbling,
1994, p. 2833

6. The wtl size of the instance space (the number of distinct cxamples deseribable with 6 boolean attributes)

is 2% o= 64 the csze’ the oumber of instances belonging w the concep) of cach of the concepls 1
A - BB YA S S 31 = I6; st interseciions and differences are A7 B0 w0 12
A £ oo AT R LK A B 6, AT B3| = L | AD B3 — 2, PAN 0,
CAH B4 -2

7 This idea way sugpocted by one of ihe anonymous reviewers of thic paper.
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