Skip to main content
Log in

The effects of turbidity and light intensity on the consumption of mysids by juvenile perch (Perca fluviatilis L.)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nursery areas of perch, Perca fluviatilis L., in the shallow coastal areas of the Baltic Sea are affected by increased water turbidity due to the ongoing eutrophication and other physical disturbances. Visually feeding fish, such as perch, which depend on clear water and good light conditions for effective foraging are often negatively affected by turbidity. We tested the following hypothesis: in laboratory experiments increased turbidity combined with decreased light intensity impairs the foraging efficiency of juvenile perch. Consumption of the mysid shrimp, Neomysis integer Leach, by 0+ perch (4–5.2 cm) and 1+ perch (6.1-7.7 cm) was tested at four levels of turbidity (1, 10, 20 and 30 NTU = Nephelometric Turbidity Units) combined with three light intensities imitating daylight (64–71 μmol m−2 s−1), twilight (1.0–1.2 μmol m−2 s−1) and night (complete darkness). There were no significant reductions in the consumption of mysids by 0+ and 1+ perch with increased turbidity and decreased light intensity in 3 h trials. The consumption of mysids by 0+ perch decreased slightly, although not significantly, with increasing turbidity in 1.5 h trial. This indicates that there are compensatory factors (e.g. increased activity of perch, increased prey encounter, reduced anti-predator behaviour of prey, altered contrast of prey) acting on reduced visual ability of juvenile perch due to increased turbidity and low illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, M. & M. Kattenfeld, 1997. The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav. Ecol. Sociobiol. 40: 169–174.

    Google Scholar 

  • Aksnes, D. L. & J. Giske, 1993. A theoretical model of aquatic visual feeding. Ecol. Model. 67: 233–250.

    Google Scholar 

  • Ali, M. A., R. A. Ryder & M. Anctil, 1977. Photoreceptors and visual pigments as related to behavioral responses and preferred habitats of perches (Perca spp.) and pikeperches (Stizostedion spp.). J. Fish. Res. Bd Can. 34: 1475–1480.

    Google Scholar 

  • Bannister, R. C. A., D. Harding & S. J. Lockwood, 1974. Larval mortality and subsequent year-class strength in the plaice (Pleuronectes platessa L.). In Blaxter, J. H. S. (ed.), The Early Life History of Fish. Springer-Verlag, New York: 21–37.

    Google Scholar 

  • Benfield, M. C. & T. J. Minello, 1996. Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish. Envir. Biol. Fishes 46: 211–216.

    Google Scholar 

  • Bergman, E. 1988. Foraging abilities and niche breadths of two percids, Perca fluviatilis and Gymnocephalus cernua, under different environmental conditions. J. Anim. Ecol. 57: 443–453.

    Google Scholar 

  • Blaxter, J. H. S., 1975. Fish vision and applied research. In Ali, M. A. (ed.), Vision in Fishes, New Approaches in Research. Plenum Press, New York: 757–773.

    Google Scholar 

  • Blomqvist, S. 1982. Ekologiska bedömningsgrunder för muddring och muddertippning. National Swedish Environmental Protection Board, Solna, 113 pp.

    Google Scholar 

  • Boehlert, G. W. & J. B. Morgan, 1985. Turbidity enhances feeding abilities of larval Pacific herring, Clupea harengus pallasi. Hydrobiologia 123: 161–170.

    Google Scholar 

  • Bonsdorff, E., E. M. Blomqvist, J. Mattila & A. Norkko, 1997. Long-term changes and coastal eutrophication. Examples from the Åland Islands and the Archipelago Sea, northern Baltic Sea. Oceanol. Acta 20: 319–329.

    Google Scholar 

  • Breitburg, D. L. 1988. Effects of turbidity on prey consumption by striped bass larvae. Trans. Am. Fish. Soc. 117: 72–77.

    Google Scholar 

  • Buskey, E. J. 2000. Role of vision in the aggregative behaviour of the planktonic mysid Mysidium columbiae. Mar. Biol. 137: 257–265.

    Google Scholar 

  • Craig, J. F. 1977. Seasonal changes in the day and night activity of adult perch, Perca fluviatilis L. J. Fish. Biol. 11: 161–166.

    Google Scholar 

  • Degerman, E. & R. Rosenberg, 1981. Miljöeffekter av småbåtshamnar och småbåtar. En hjälpreda vid planering. National Swedish Environmental Protection Board, Solna.

    Google Scholar 

  • Diehl, S. 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Google Scholar 

  • Elmgren, R. 1989. Man's impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18: 326–332.

    Google Scholar 

  • Gal, G., E. R. Loew, L. G. Rudstam & A. M. Mohammadian, 1999. Light and diel vertical migration: spectral sensitivity and light avoidance by Mysis relicta. Can. J. Fish. Aquat. Sci. 56: 311–322.

    Google Scholar 

  • Gradall, K. S. & W. A. Swenson, 1982. Responses of brook trout and creek chubs to turbidity. Trans. Am. Fish. Soc. 111: 392–395.

    Google Scholar 

  • Grecay, P. A. & T. E. Targett, 1996. Effects of turbidity, light level and prey concentration on feeding of juvenile weakfish Cynoscion regalis. Mar. Ecol. Prog. Ser. 131: 11–16.

    Google Scholar 

  • Gregory, R. S. 1993. Effect of turbidity on the predator avoidance behaviour of juvenile chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50: 241–246.

    Google Scholar 

  • Gregory, R. S. & C. D. Levings, 1996. The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp., to predation by adult cutthroat trout, O. clarkii. Envir. Biol. Fishes 47: 279–288.

    Google Scholar 

  • Gregory, R. S. & C. D. Levings, 1998. Turbidity reduces predation on migrating juvenile pacific salmon. Trans. Am. Fish. Soc. 127: 275–285.

    Google Scholar 

  • Gregory, R. S. & T. G. Northcote, 1993. Surface, planktonic, and benthic foraging by juvenile chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditions. Can. J. Fish. Aquat. Sci. 50: 233–240.

    Google Scholar 

  • Houde, E. D. 1987. Fish early life dynamics and recruitment variability. American Fisheries Society Symposium 2. Bethesda, MD: 17-29.

  • Huusko, A., O. Vuorimies & T. Sutela, 1996. Temperature-and light-mediated predation by perch on vendace larvae. J. Fish. Biol. 49: 41–457.

    Google Scholar 

  • Imbrock, F., A. Appenzeller & R. Eckmann, 1996. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J. Fish. Biol. 49: 1–13.

    Google Scholar 

  • Johnston, D. D. & D. J. Wildish, 1982. Effect of suspended sediment on feeding by larval herring (Clupea harengus harengus L.). Bull. Envir. Contam. Toxicol. 29: 261–267.

    Google Scholar 

  • Jumppanen, K. & J. Mattila, 1994. Saaristomeren tilan kehitys ja siihen vaikuttavat tekijät. Lounais-Suomen Vesiensuojeluyhdistyksen Julkaisuja 82: 1–206 (English summary)

    Google Scholar 

  • Karås, P. 1996a. Basic abiotic conditions for production of perch (Perca fluviatilis, L.) young-of-the-year in the Gulf of Bothnia. Ann. Zool. Fenn. 33: 371–381.

    Google Scholar 

  • Karås, P. 1996b. Recruitment of perch (Perca fluviatilis) from Baltic coastal waters. Arch. Hydrobiol. 138: 99–121.

    Google Scholar 

  • Karås, P. & G. Thoresson, 1992. An application of a bioenergetics model to Eurasian perch (Perca fluviatilis). J. Fish. Biol. 41: 217–230.

    Google Scholar 

  • Kitchell, J. F., D. J. Stewart & D. Weininger, 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and wallyey (Stizostedion vitreum vitreum). J. Fish. Res. Bd Can. 34: 1922–1935.

    Google Scholar 

  • Lythgoe, J. N. 1979. The Ecology of Vision. Clarendon Press, Oxford.

    Google Scholar 

  • Miner, J. G. & R. A. Stein, 1993. Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Can. J. Fish. Aquat. Sci. 50: 781–788.

    Google Scholar 

  • O'Brien, D. P. & D. A. Ritz, 1988. Escape responses of gregarious mysids (Crustacea: Mysidacea): towards a general classification of escape responses in aggregated crustaceans. J. Exp. Mar. Biol. Ecol. 116: 257–272.

    Google Scholar 

  • Persson, L. 1983. Food consumption and competition between age classes in a perch Perca fluviatilis population in a shallow eutrophic lake. Oikos 40: 197–207.

    Google Scholar 

  • Persson, L. & L. A. Greenberg, 1990. Juvenile competitive bottlenecks: the perch (Perca fluviatilis)-roach (Rutilus rutilus) interaction. Ecology 71: 44–56.

    Google Scholar 

  • Reid, S. M., M. G. Fox & T. H. Whillans, 1999. Influence of turbidity on piscivory in largemouth bass (Micropterus salmoides). Can. J. Fish. Aquat. Sci. 56: 1362–1369.

    Google Scholar 

  • Rossier, O., E. Castella & J-B. Lachavanne, 1996. Influence of submerged aquatic vegetation on size class distribution of perch (Perca fluviatilis) and roach (Rutilus rutilus) in the littoral zone of Lake Geneva (Switzerland). Aquat. Sci. 58: 1–14.

    Google Scholar 

  • Ryer, A. D., 1998. Light measurement handbook. http://www.intllight. com/handbook/ (ISBN 0-9658356-9-3).

  • Sandström, A. 1999. Visual ecology of fish-a review with special reference to percids. Fiskeriverket. Rapport 2: 45–80.

    Google Scholar 

  • Sandström, A. & P. Karås, 2002. Effects of eutrophication on young-of-the-year freshwater fish communities in coastal areas of the Baltic. Envir. Biol. Fish. 63: 89–100.

    Google Scholar 

  • Utne, A. C. W. 1997. The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens. J. Fish. Biol. 50: 926–938.

    Google Scholar 

  • Vandenbyllaardt, L., F. J. Ward, C. R. Braekevelt & D. B. McIntyre, 1991. Relationships between turbidity, piscivory, and development of the retina in juvenile walleyes. Trans. Am. Fish. Soc. 120: 382–390.

    Google Scholar 

  • Vinyard, G. L. & W. J. O'Brien, 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Bd Can. 33: 2845–2849.

    Google Scholar 

  • Wang, N. & R. Eckmann, 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277: 135–143.

    Google Scholar 

  • Westin, L. & G. Aneer, 1987. Locomotor activity patterns of nineteen fish and five crustacean species from the Baltic Sea. Environ. Biol. Fishes 20: 49–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granqvist, M., Mattila, J. The effects of turbidity and light intensity on the consumption of mysids by juvenile perch (Perca fluviatilis L.). Hydrobiologia 514, 93–101 (2004). https://doi.org/10.1023/B:hydr.0000018210.66762.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:hydr.0000018210.66762.3b

Navigation