Skip to main content
Log in

Metal-Hydride Systems for Processing Hydrogen Isotopes for Power Plants

  • Published:
Materials Science Aims and scope

Abstract

We consider the main approaches and designs of using metal hydrides in supply systems of vacuum power plants with hydrogen isotopes as a working medium. By analyzing the results of investigations and developments in this field, we show that the most promising method is connected with the creation of multifunctional metal-hydride elements, which are a part of the structural units of the working zone of a vacuum chamber (e.g., the electrodes of a device supporting plasma) and are made of hydride-forming materials that are reversible absorbers of low-pressure hydrogen. In this case, in addition to the complex solution of auxiliary problems of compact storage, purification, and programmed bleeding-in of hydrogen isotopes into the vacuum chamber of a power plant, efficient pumping-out and improved operation of the plant as a whole can be ensured in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Kareev, A. N. Savotkin, and V. V. Frunze, “A hydride injector of hydrogen with a powder element,” Vopr. Atom. Nauki Tekh., Ser. Termoyad. Sintez, Issue 2, 41–47 (1991).

    Google Scholar 

  2. Yu. F. Shmal'ko, V. V. Solovei, M. V. Lototskii, and E. V. Klochko, “Metal-hydride vacuum technologies for physical powergenerating systems,” Vopr. Atom. Nauki Tekh., Ser. Yaderno–Fiz. Issled. (Teor. Éksper.), Issue 1(27), 13–19 (1994).

    Google Scholar 

  3. Yu. F. Shmal'ko, V. V. Solovei, and M. V. Lototsky, “Use of hydrides in systems for supplying physical–energy installations,” in: D. L. Block and T. N. Veziroglu (editors), Proceedings of the 10th World Conf. on Hydrogen Energy “Hydrogen Energy Progress X” (Cocoa Beach, Florida, June 20–24, 1994), Vol. 2, International Association for Hydrogen Energy (1994), pp. 1311–1319.

  4. V. V. Solovei, Development of a Theory and Creation of Metal-Hydride Thermal Power Plants [in Russian], Doctoral Degree Thesis (Technical Sciences), IPMash Akad. Nauk Ukrainy, Kharkov (1986).

    Google Scholar 

  5. Yu. F. Shmal'ko, M. V. Lototskii, G. I. Medvedev et al., “A metal hydride system for storage, purification, and programmed bleeding-in of hydrogen,” Vopr. Atom. Nauki Tekh., Ser. At.–Vodor. Energet. Tekhnol., Issue 2, 49–51 (1985).

    Google Scholar 

  6. A. N. Podgorny, Yu. F. Shmal'ko, V. V. Solovei, and M. V. Lototsky, “Metal hydride technology of hydrogen processing,” in: T. N. Veziroglu and A. N. Prozenko (editors), Proceedings of the 7th World Conf. on Hydrogen Energy “Hydrogen Energy Progress VII” (Moscow, Sept. 25–29, 1988), Vol. 2, Pergamon (1988), pp. 1401–1417.

  7. Yu. F. Shmal'ko, Physical–Energy Features of the Interaction of Hydrogen with Metal Hydrides in Multifunctional Heat-Consuming Installations [in Russian], Candidate-Degree Thesis (Technical Sciences), Lomonosov OTIPP, Odessa (1991).

    Google Scholar 

  8. V. S. Kogan and V. M. Shulaev, Adsorption–Diffusion Vacuum Pumps (Vacuum Pumps with an Unsprayable Getter). Survey [in Russian], TsNIIatominform, Moscow (1990).

    Google Scholar 

  9. P. Della Porta, “Gettering — an integral part of vacuum technology,” in: Technical Paper TP 202. SAES Getters S. p. A. (Presented at the 39th National Symposium of the American Vacuum Society), Milan, Italy.

  10. V. A. Yartys', I. Yu. Zavalii, and M. V. Lototskii, “Adsorbents of low-pressure hydrogen based on Zr – V and Zr – V – Fe alloys modified with oxide additives,” Koordin. Khim., 18, No. 4, 409–423 (1992).

    Google Scholar 

  11. V. A. Yartys, I. Yu. Zavaliy, M. V. Lototsky et al., “Oxygen-, boron-, and nitrogen-containing zirconium-vanadium alloys as hydrogen getters with enhanced properties,” Z. Phys. Chem., 183, 485–489 (1994).

    Google Scholar 

  12. Preparation of New Getter Materials as Efficient Means of Supporting High Vacuum in the Devices of Radio Engineering and Electronics, Report on the DKNT Project 7. 05. 01/003 of the State Research Program “Metal-Hydride Technologies and Materials” [in Ukrainian], PMI, Lviv (1994).

  13. V. A. Yartys', M. V. Lotots'kyi, L. P. Marushko et al., A Composition for Hydrogen Absorption [in Ukrainian], Patent of Ukraine, No. 18661, Publ. 25.12.97, Bull. No. 6 (1997).

  14. A. B. Riabov, V. A. Yartys, B. C. Hauback et al., “Hydrogenation behaviour, neutron diffraction studies and microstructural characterization of boron oxide-doped Zr – V alloys,” J. Alloys Comp., 293–295, 93–100 (1999).

    Google Scholar 

  15. I. Yu. Zavaliy, “Effect of oxygen content on hydrogen storage capacity of Zr-based-phases,” J. Alloys Comp., 291, 102–109 (1999).

    Google Scholar 

  16. I. Yu. Zavaliy, W. B. Yellon, P. Y. Zavaliy et al., “The crystal structure of the oxygen stabilized η-phase Zr3 V3 Ox D9.6,” J. Alloys Comp., 309, 75–82 (2000).

    Google Scholar 

  17. V. A. Yartys, A. B. Riabov, and B. C. Hauback, “Neutron diffraction studies of Zr-containing intermetallic hydrides. Cubic Zr3 V3 B0.24 O0.36 D8.0 and Zr3 V3 B0.40 O0.60 D8.0 with filled η1-type structure,” J. Alloys Comp., 317–318, 67–74 (2001).

    Google Scholar 

  18. K. Ichimura, N. Jone, and T. Tekachi, “Absorption and desorption of hydrogen, deuterium, and tritium for Zr – V – Fe getters,” J. Vac. Sci. Technol. A, 2, 1341–1347 (1984).

    Google Scholar 

  19. Shen Gong–Lie and Jin Xian–De, “Thermal desorption of hydrogen for the Zr – Al getter alloy,” Vacuum, 38, No. 12, 1105–1108 (1988).

    Google Scholar 

  20. M. V. Lototskii, Hydride-Forming Zirconium-Base Alloys and Their Use as Hydrogen Getters and Sources [in Russian], Candidate Degree Thesis (Chemical Sciences), Lviv University, Lviv (1992).

    Google Scholar 

  21. Yu. F. Shmal'ko, V. V. Solovei, and S. E. Pitul'ko, “Power-industry processing of hydrogen using reversible metal hydrides,” Vopr. Atom. Nauki Tekh., Ser. Atom.-Vodorod. Energet. Tekhnol., Issue 2(15), 35-37 (1983).

    Google Scholar 

  22. V. V. Solovei, Yu. F. Shmal'ko, M. V. Lototskii et al., An Automatic Metal-Hydride Device for Regulation of Hydrogen Pressure [in Russian], Author's Certificate of the USSR, No. 1266097, MKI CO1B 6/24, Bull. No. 39 (1986).

  23. A. N. Artemenko, M. V. Lototskii, G. I. Medvedev et al., A System for Automatic Regulation of Hydrogen Pressure in a Metal Hydride Device [in Russian], Author's Certificate of the USSR, No. 1467930, MKI CO1B 6/24, Bull. No. 11 (1989).

  24. A. N. Artemenko, Yu. V. Afanasev, M. V. Lototskii et al., A Hydrogen Generator [in Russian], Author's Certificate of the USSR, No. 1568641, MKI F17C 11/00, Bull. No. 20 (1990).

  25. A. N. Podgornyi, N. A. Demidov, E. M. Ezhov et al., A Device for Stabilized Bleeding-in of Hydrogen [in Russian], Author's Certificate of the USSR, No. 1419238, MKI F17C 11/00, Bull. No. 31 (1988).

  26. V. M. Gul'ko, A. A. Klyuchnikov, N. F. Kolomiets, et al., Ionic Vacuum Devices for Neutron Generation in Electronics [in Russian], Tekhnika, Kiev (1988).

    Google Scholar 

  27. L. A. Shope, R. S. Berg, and M. L. Neal, “The operation and life of a zetatron neutron tube in borehole logging application,” Int. J. Appl. Radiat. Isot., 34, No. 1, 269 (1983).

    Google Scholar 

  28. M. M. Antonova, Properties of Metal Hydrides [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  29. G. R. Morris, C. H. Bush, and J. W. Reichardt, “Small accelerators for borehole application,” IEEE Trans. Nucl. Sci., NS-30, No. 2, 1648 (1983).

    Google Scholar 

  30. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  31. M. Bineau, T. Consoli, P. Hubert et al., “Traps with magnetic plugs,” in: Plasma Physics and Magnetohydrodynamics [Russian translation], Izd. Inostr. Lit., Moscow (1961), pp. 135–214.

    Google Scholar 

  32. M. D. Gabovich, Plasma Ion-Source Physics and Engineering [in Russian], Atomizdat, Moscow (1972).

    Google Scholar 

  33. S. P. Sukhoveev, “On ignited vacuum arc between ZrD electrodes,” Zh. Tekh. Fiz., No. 5, 1027–1029 (1979).

    Google Scholar 

  34. G. A. Lyubimov and V. I. Rakhovskii, “Cathode spot of a vacuum arc,” Uspekhi Fiz. Nauk, 125, No. 4, 665–706 (1978).

    Google Scholar 

  35. V. A. Boiko, O. L. Krokhin, and G. V. Sklizkov, “Investigation of parameters and dynamics of laser plasma in sharp focusing of radiation on a solid target,” Trudy Fiz. Inst. Akad Nauk SSSR, 76, 186–228 (1974).

    Google Scholar 

  36. D. F. Bespalov, Yu. A. Bykovskii, I. I. Vergun et al., “A pulse neutron generator with a laser source of deuterons,” Prib. Tekh. Éksper., No. 6, 19–21 (1978).

    Google Scholar 

  37. I. I. Vergun, K. I. Kozlovskii, Yu. P. Kozyrev et al., “Investigation of an intensive laser source of deuterons,” Zh. Tekh. Fiz., No. 5, 2003–2007 (1979).

    Google Scholar 

  38. Yu. A. Bykovskii, K. I. Kozlovskii, and Yu. P. Kozyrev, “Investigation of an ionic diode with a laser–plasma anode,” Fiz. Plaz., Issue 5, 1024–1028 (1981).

    Google Scholar 

  39. Y. Wong, J. M. Dawson, W. Gekelman, and Z. Lucky, “Production of negative ions and generation of intense neutron beams by laser irradiation,” Appl. Phys. Lett., 25, No. 10, 579–580 (1974).

    Google Scholar 

  40. W. Gekelman, V. Vanec, and A. Y. Wong, “The characterization of a laser-produced negative-hydrogen-ion plasma,” J. Appl. Phys., 49, No. 6, 3049–3058 (1978).

    Google Scholar 

  41. Yu. A. Bykovskii, G. I. Zhuravlev, V. I. Belousov et al., “Relative yield of ions of chemical elements from laser plasma,” Fiz. Plaz., Issue 2, 323–327 (1978).

    Google Scholar 

  42. S. Glushkov, Yu. A. Kareev, A. N. Savotkin et al., “Controlled generation of hydrogen isotopes with an electric pulse hydride injector,” in: Abstracts of the 5th NATO Int. Conf. on Hydrogen Materials Science and Chemistry of Metal Hydrides ICHMS'97 (Katsiveli, Yalta, September 2–8, 1997), Yalta (1997), p. 222.

  43. Yu. A. Kareev, V. A. Kiryushin, A. N. Savotkin, and V. V. Frunze, “An electric pulse hydride injector of hydrogen isotopes,” Vopr. Atom. Nauki Tekh., Ser. Termoyad. Sintez, Issue 1, 44-49 (1990).

    Google Scholar 

  44. Yu. F. Shmal'ko, M. V. Lototsky, V. V. Solovey et al., “Application of metal hydrides in hydrogen ion sources,” Z. Phys. Chem., 183, 479–483 (1994).

    Google Scholar 

  45. Yu. F. Shmal'ko, M. V. Lototsky, Ye. V. Klochko, and V. V. Solovey, “The formation of excited H species using metal hydrides,” J. Alloys Comp., 231, 856–859 (1995).

    Google Scholar 

  46. V. M. Borysko, Yu. F. Shmal'ko, M. V. Lotots'kyi et al., “On the oscillatory excitation of hydrogen molecules desorbed from metal hydrides,” Dop. Nats. Akad. Nauk Ukrainy, No. 11, 91–95 (2000).

    Google Scholar 

  47. Ye. V. Klochko, M. V. Lototsky, V. V. Popov et al., “Sorption and electrotransfer characteristics of hydrogen-gettering materials in contact with a hydrogen plasma,” J. Alloys Comp., 261, 259–262 (1997).

    Google Scholar 

  48. V. M. Borysko, E. V. Klochko, M. V. Lotots'kyi, et al., “Systems self-stabilized by pressure for gas supply of vacuum-plasma devices using reversible hydrogen getters,” Vakuum. Tekh. Tekhnol., 10, No. 1, 15–19 (2000).

    Google Scholar 

  49. V. M. Borysko, G. P. Glazunov, E. V. Klochko et al., “Investigation of temperature modes of metal hydride cathodes in reflecting discharge,” in: Vopr. Atom. Nauki Tekh., A Special Issue: The 14th Int. Conf. on Physics of Radiation Phenomena (Alushta, Crimea, June 12–17, 2000) [in Russian], Kharkov (2000), pp. 214–215.

  50. V. N. Borisko, V. V. Bobkov, V. V. Chobotarev et al., “Influence of plasma treatment on erosion characteristics of reversible hydrogen getters,” in: Abstracts of the 8th Ukrainian Conf. and School on Plasma Physics and Controlled Fusion (Alushta, Crimea, September 11–16, 2000), NSC KIPT, Kharkov (2000), p. 165.

    Google Scholar 

  51. J. L. Anderson, “Requirements to the methods of work with tritium and the development of these methods for controlled thermonuclear fusion,” TIIER, 69, No. 8, 233–246 (1981).

    Google Scholar 

  52. A. P. Strokach, Prospects of the Use of Ionic Hydrides in Sources of Negative Hydrogen Ions [in Russian], Preprint of the NIIÉFA No. K-0470, Leningrad (1980).

    Google Scholar 

  53. V. Vanek, D. P. Dixon, and W. Gekelman, “Production of negative ions in alkali hydride arc,” J. Appl. Phys., 50, No. 11, 7237–7239 (1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmal'ko, Y.F., Solovei, V.V., Lotots'kyi, M.V. et al. Metal-Hydride Systems for Processing Hydrogen Isotopes for Power Plants. Materials Science 37, 689–706 (2001). https://doi.org/10.1023/A:1015041406755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015041406755

Keywords

Navigation