Electrospray Mass Spectrometry for the Analysis of Opioid Peptides and for the Quantification of Endogenous Methionine Enkephalin and β-Endorphin

Chhabil Dass and Jozef J. Kusmierz
Charles B. Stout Neuroscience Mass Spectrometry Laboratory and the Department of Neurology, University of Tennessee-Memphis, Memphis, Tennessee, USA

Dominic M. Desiderio
Charles B. Stout Neuroscience Mass Spectrometry Laboratory and the Department of Neurology and Biochemistry, University of Tennessee-Memphis, Memphis, Tennessee, USA

Stuart A. Jarvis and Brian N. Green
VG Masslab, Altrincham, Cheshire, WA14 5RZ, UK

Electrospray ionization mass spectrometry was used to characterize several different neuropeptides, whose molecular weights ranged from 555 to 3463 Da, and to quantify endogenous methionine enkephalin (ME) and β-endorphin (ßE) extracted from a human pituitary gland. Methionine enkephalin and leucine enkephalin both yield only an [M + H]⁺ ion with electrospray mass spectrometry; the other peptides produce a series of multiply charged even-electron molecular ions of the general nature [M + nH]⁺⁺⁺ in proportion to the number of basic amino acid units present, with no evidence of fragmentation. The electrospray mass spectra are characterized by low background noise. The quantification of ME is based on a comparison of the ion current due to the [M + H]⁺ ion of native and of a deuterated ME ([2 H₅-Phe]-ME) internal standard. The calibration curve is linear in the range of ca. 1-35 pmol synthetic ME. The amounts of ME determined in three separate human pituitary extracts were 9.1, 8.2, and 4.7 pmol/mg protein. The corresponding amount of ME in a canine pituitary was 39.8 pmol/mg protein. To quantify ßE, the ion current due to the [M + 5H]⁷⁺ ion was monitored and compared to an external calibration curve obtained by analyzing solutions of synthetic ßE in the range 5 fmol-50 pmol. The analysis of a human pituitary yielded 660 fmol ßE/mg protein. (/ Am Soc Mass Spectrom 1991, 2, 149-156)

The focus of current interest in mass spectrometry is to develop ionization methods appropriate for the analysis of biomolecules of ever-increasing molecular size. In the past, the use of mass spectrometry in this field was hampered because these polar, nonvolatile, and thermally labile molecules were not readily accessible to conventional ionization methods. Several so-called soft ionization techniques are in current use to produce intact molecular ions from complex and fragile biomolecular species. Underivatized peptides, proteins, oligonucleotides, carbohydrates, and lipids are being analyzed routinely by fast atom bombardment (FAB) [1], secondary ion mass spectrometry [2], field desorption [3], laser desorption [4], ²⁵²-Cf-plasma desorption [5], and thermospray [6] mass spectrometry.

Recent developments in sample introduction and ionization techniques include electrospray [7-9] and its variation, ion-spray [10, 11]. The origin of electrospray can be traced back to early pioneering experiments of Dole [12, 13]. These techniques are capable of producing a series of multiply charged molecular ions, of the general nature [M + nH]ⁿ⁺, from complex and fragile biomolecules, and no evidence of fragmentation. The benefits of multiple-charging are to extend significantly the usable mass range of a mass spectrometer in proportion to the number of charges on the analyte, and to permit determination of the molecular weight (M₀) of large biomolecules [11, 14, 15]. For example, the electrospray spectrum of the bovine albumin dimer [M₀ = 133,000 Da] was found to contain ions with over 120 charges [14, 16].

Address reprint requests to Chhabil Dass and Dominic M. Desiderio. Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, University of Tennessee-Memphis, Memphis, TN 38163.
Table 1. Neuropeptides investigated by using electrospray mass spectrometry

<table>
<thead>
<tr>
<th>Neuropeptide</th>
<th>M<sub>r</sub></th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucine enkephalin (LE)</td>
<td>555.3</td>
<td>YGGFL</td>
</tr>
<tr>
<td>Methionine enkephalin (ME)</td>
<td>573.2</td>
<td>YGGFM</td>
</tr>
<tr>
<td>ME-Lys-Lys</td>
<td>829.4</td>
<td>YGGFMK</td>
</tr>
<tr>
<td>Dynorphin A₁₋₈</td>
<td>980.6</td>
<td>YGGFLRIR</td>
</tr>
<tr>
<td>Dynorphin A₁₋₁₀</td>
<td>1136.7</td>
<td>YGGFLRIRIR</td>
</tr>
<tr>
<td>Dynorphin A₁₋₁₃</td>
<td>1233.7</td>
<td>YGGFLRIRRIP</td>
</tr>
<tr>
<td>Dynorphin A₁₋₁₇</td>
<td>1603.0</td>
<td>YGGFLRIRRPKLK</td>
</tr>
<tr>
<td>Dynorphin B₁₋₁₃</td>
<td>2146.2</td>
<td>YGGFLRIRRPKLKWNNQ</td>
</tr>
<tr>
<td>β-Endorphin₁₋₃₁</td>
<td>1569.9</td>
<td>YGGFLRIRRPKLKWNNQ</td>
</tr>
<tr>
<td>β-Endorphin₁₋₃₁</td>
<td>3462.8</td>
<td>YGGFMTEKSTPLVTFLKNAIKNAYKKGE</td>
</tr>
</tbody>
</table>

In principle, electrospray is an electric field-assisted phenomenon. A solution of the analyte is passed through a metal capillary. A difference in potential of several kilovolts between the capillary and the surrounding chamber charges the surface of the emerging liquid droplets. Coulombic explosion of these evaporating liquid droplets promotes dispersion of the liquid into a fine spray of charged droplets. As this process continues, a concomitant increase in surface charge density produces strong electric fields that facilitate desorption of solute ions.

In this article, we report the use of electrospray to obtain mass spectra of the opioid peptides listed in Table 1. We have also developed methods to quantify endogenous methionine enkephalin (ME) and β-endorphin (βE) from human pituitary extracts. The quantitation of ME is based on a comparison of the ion currents due to the [M + 1 H]⁺ ions of ME and [³H₅-⁴Phe]-ME. To quantify βE, the ion current due to the [M + 5H]⁺ ion was monitored and compared to an external calibration curve.

An off-line combination of high-performance liquid chromatography combined with mass spectrometry (HPLC/MS) was used in the present study. Although on-line HPLC/MS in some cases may be superior to off-line HPLC/MS, high liquid flow rates of HPLC have long been a constant source of concern in coupling HPLC with mass spectrometry. The atmospheric pressure ionization (API) electrospray and API-ionspray ion sources can handle effectively the liquid flow rates encountered in microbore-packed (5-10 μL/min) and conventional 1-mm i.d. (40–50 μL/min) HPLC columns, respectively [17]. The potential of HPLC/API-ionspray for the analysis of small dynorphin-related peptides [18, 19] and protein digests [20] was demonstrated recently. On the other hand, off-line HPLC/MS enjoys the advantage that mass spectrometric analysis of collected fractions is not limited to any specific ionization method. For over a decade, our research on the analysis of endogenous neuropeptides from biological samples has relied successfully on the off-line HPLC/MS combination [21]. Therefore, for evaluation of this new mode of ionization, it was appropriate to use similar sample-handling conditions.

The motivation for the present investigation is the fact that the intensity of the molecular ion signal in the more extensively used FAB/MS method is dependent on the relative hydrophobicity/hydrophilicity of various chemical constituents (analyte, matrix, impurities, etc.) present on the FAB probe tip [22]. Hydrophobic peptides preferentially occupy the surface of the FAB matrix and thus are ionized more readily. Because of this phenomenon and because of the multicomponent nature of a biological extract, many of the endogenous neuropeptides in tissue extracts are often difficult to ionize by using FAB, especially when present in low amounts (picomole and less). Furthermore, chemical noise produced by the FAB matrix [23] and other biological compounds present in the tissue extract begins to interfere at the picomole level.

The peptides studied here are important because they play crucial roles in various biochemical and neurochemical processes [24]. Their concentration in body fluids and tissues has been correlated with various psychiatric and metabolic disorders [25]. It is crucial to gain an understanding of the mass spectrometric behavior of these endogenous peptides before their concentration can be monitored accurately in body tissues and fluids.

Most laboratories use non-mass spectrometry methods, such as radioreceptor assay or radioimmunoassay, either alone or in combination with HPLC to analyze endogenous peptides [26]. Although those methods possess high detection sensitivity (picomole to femtomole, respectively), the claim of their high molecular specificity cannot be supported. Those assays exhibit varying degrees of cross-reactivities because they are based only on a receptor-binding or an antigen–antibody reaction, both of which cannot be highly specific to an amino acid sequence of a peptide. The greater complexity of several different, endogenous, structurally closely related neuropeptides that belong to the three opioid families demands the use of unambiguous sequence-specific analytical methods for identification and quantification of those peptides.

Experimental

Materials. All synthetic peptides studied here were purchased from Sigma Chemical Co. (St. Louis, MO), and were used without further purification. [³H₅]-
Phenylalanine was from Merck (St. Louis, MO), and diterbutyl dicarbonate from Fluka Chemical Corp. (Ronkonkoma, NY).

The deuterated peptide internal standard, \(^2\text{H}_5\text{-}^4\text{Phe}\)-ME, used in the quantification of ME was synthesized using the solid-phase peptide synthesis (SPPS) procedure on an Applied Biosystems (Foster City, CA) Model 430A peptide synthesizer [27]. The \(\alpha\)-butoxycarbonyl derivative of \(^2\text{H}_5\text{-}^4\text{Phe}\)-phenylalanine was synthesized according to the literature procedure [28]. After completion of the SPPS, the pentapeptide resin was treated with hydrofluoric acid (by Immuno-Pak disposable cartridge (Waters Associates, Milford, MA), and eluted with a 50:50 (v : v) acetonitrile (CH\(_3\)CN) : 0.1 % trifluoroacetic acid solvent mixture as an ethylamine formate (TEAF; 40 mM; pH 3.1) was used as the volatile buffer and CH\(_3\)CN as the organic modifier [29]. Ninety fractions were collected at 1-min intervals. For example, synthetic ME and \(\alpha\)-E eluted at 24 and 73 min, respectively. The ME fraction was purified further by an additional chromatography step as discussed above. The instrument was scanned over the narrow mass range 570-584 u to collect the ion current due to the \([\text{M + H}]^+\) ions of ME and \(^2\text{H}_5\text{-}^4\text{Phe}\)-ME. A total of 20 scans was accumulated within ca. 75 s by operating the data system in the multichannel analyzer mode. Approximately 5 \(\mu\)L of the sample (equivalent to 10% of the original sample) was consumed during the analysis.

Endogenous \(\beta\)-E from the human pituitary extract was analyzed in a similar fashion by scanning the mass spectrometer across the mass range 685-705 u to collect the ion current due to the \([\text{M + 5H}]^{5+}\) ion at \(m/z\) 694, which is the most dominant ion in the electrospray mass spectrum of \(\beta\)-E. The lyophilized HPLC fraction was dissolved in 500 \(\mu\)L of the electrospray solvent, and was analyzed for \(\beta\)-E by electrospraying 10 \(\mu\)L (equivalent to 2% of the original tissue) of that solution.

Results and Discussion

Electrospray Mass Spectra

Many of the peptides listed in Table 1 were previously characterized by FAB/MS [30-33]. Except for ME and leucine enkephalin (LE), all peptides contain basic amino acid residues. Electrospray has been shown to produce intact multiply charged molecular ion species [7-11, 14-16]. It is of interest to determine how these biologically important peptides behave when subjected to electrospray. That knowledge is helpful in their identification and quantification from extracts of body tissues and fluids. Table 2 lists the relative abundance of the different protonated molecular ions observed in the electrospray mass spectra of these neuropeptides. As representative examples, the mass spectra of LE \((M_r = 555 \text{ Da})\) and \(\beta\)-E \((M_r = 3463 \text{ Da})\) are illustrated in Figures 1 and 2, respectively. Approximately 7% (equivalent to 20 pmol) of the total amount (= 300 pmol) of each peptide injected into the ion source was consumed in obtaining these single-scan spectra. Unlike FAB mass spectra, the electrospray spectra of the peptides of Table 1 are relatively noise-free. The most significant feature of these electrospray spectra (except for LE and ME) is the presence of a series of multiply charged molecular ions.

The spectra also contain ions at the low mass range (see Figures 1 and 2) that probably stem from other constituents present in the solvent stream. For exam-
Table 2. Electrospray mass spectra of neuropeptides

<table>
<thead>
<tr>
<th>Neuropeptide</th>
<th>Number of basic amino acid residues</th>
<th>Number of charges</th>
<th>Relative abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ME</td>
<td>0</td>
<td>100</td>
<td><1</td>
</tr>
<tr>
<td>ME-Lys-Lys</td>
<td>2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Dynorphin A_{1-8}</td>
<td>2</td>
<td><1</td>
<td>100</td>
</tr>
<tr>
<td>Dynorphin A_{1-9}</td>
<td>3</td>
<td><1</td>
<td>12</td>
</tr>
<tr>
<td>Dynorphin A_{1-10}</td>
<td>3</td>
<td><1</td>
<td>17</td>
</tr>
<tr>
<td>Dynorphin A_{1-12}</td>
<td>5</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Dynorphin A_{1-17}</td>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Dynorphin B_{1-13}</td>
<td>3</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>β-Endorphin_{1-31}</td>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

The ions at m/z 160, 178, 220, and 256 probably are the solvent adducts having the structures [(CH₃OH)s]^+, [(CH₃OH)sH₂O]^+, [(CH₃OH)sCH₃COOH]^+, and [(CH₃OH)s(CH₃COOH)H₂O]^+, respectively.

Multiple-charging of the peptide results from multiple protonation of the parent molecule to yield even-electron ions of the general nature [M + nH]^n+.

The basic amino acids such as Lys and Arg play an important role in multiple-charging of polypeptides [10, 14, 16, 34]. The influence of these basic residues on the electrospray spectra discussed here is also obvious. LE (Figure 1) and ME, which lack these basic residues, yield a singly protonated molecule only; in contrast, the peptides that contain basic amino acid residues produce a series of multiply charged molecular ion species. As the Mₙ increases from LE to βE, the singly charged [M + H]^+ species disappear. Also, ion current increases concomitantly with the increase in the number of charges until a maximum is reached, and then decreases rapidly. Furthermore, except for dynorphin A_{1-17} and dynorphin A_{1-13}, a proportionality exists between the number of charges of the most abundant ion among those clusters and the number of basic amino acid units present in the peptide. For example, for ME-Lys-Lys and dynorphin A_{1-8}, both of which contain two basic amino acid units, the most abundant ion in their electrospray mass spectra is the [M + 2H]^2+ ion.

The proportionality between the number of charges and the number of basic amino acids is not as straightforward to rationalize as it appears in the above discussion. If that were the case, we would expect a one-to-one correspondence between the number of charges of the most abundant multiply charged ion and the number of the protonation sites (i.e., the number of basic amino acids plus the N-terminal site). Clearly, other factors, such as higher order structures, charge density, charge repulsion between the neighboring basic amino acids, etc., play a role in determining the charge state of a molecule.

The dependence of an ion's desorption rate on droplet surface charge density [35], the presence of disulfide bonds in a peptide [16, 35], the voltage applied to the nozzle-skimmer at the entrance orifice to the mass spectrometer [36], and the solvents used in the electrospray process [34] also affect the charge state of a molecule.

Another interesting feature of the electrospray spectra is the absence of any amino acid sequence specific fragment ions. A significant implication of this deficiency, as will be demonstrated later for ME and βE, is the potential increase in the detection sensitivity.
ity for quantification measurements based on electro­
spray mass spectrometry, because the total ion cur­
rent is concentrated within only a few of the intact
molecular ion species.

On the other hand, the lack of any peptide bond
fragmentation could be a serious limitation of electro­
spray mass spectrometry for structural analysis. Other
than obtaining the M_n value of a peptide from the
multiply charged molecular ion species, it is not possi­
tive to arrive at its amino acid sequence. However,
efforts are being made to induce peptide bond frag­
mentation of the intact multiply charged molecular
ion species formed in electrospray by collisions with a
neutral target [37, 38]. This development, in combina­
tion with tandem mass spectrometry (MS/MS), would
enhance the potential of electrospray for structural
analysis of biomolecules. Several peptides listed in
Table 1 have been sequenced by us with ease by using
FAB ionization alone [30, 32] or coupled with the B/E
linked-field MS/MS technique [31, 32].

Quantification of Methionine Enkephalin

Electrospray mass spectrometry represents a signifi­
cant advance in the use of soft ionization techniques
for the analysis of thermally sensitive compounds. So
far, electrospray mass spectrometry has been applied
mainly to characterize large peptides and proteins
based on their M_n determination. We present here the
application of electrospray mass spectrometry to
quantify endogenous ME and βE.

Calibration curve. As discussed above, the electro­
spray spectrum of ME is very simple, and yields only
the $[M+H]^+$ ion and no indication of fragment ions
characteristic of the ME sequence. The ion current
due to that $[M+H]^+$ ion was used here to obtain a
calibration curve.

For the success of any quantification method, it is
obligatory to incorporate an internal standard very
early in the overall analysis scheme. For example, the
appropriate internal standard must be added before
tissue extraction and homogenization, and must par­
ticipate in the separation and analysis steps of the
procedure [27, 39]. Thus, any losses of endogenous
peptides during these steps and inconsistency in the
analysis are compensated for appropriately.

The criteria for choosing an internal standard de­
mand that its amino acid sequence and chemical and
physical properties are identical to, and its mass is
different from, the native peptide. Thus, stable iso­
tope-labeled compounds are the most ideal internal
standards because they co-elute during HPLC with,
and exhibit the same mass spectrometric response as,
the target peptide. With these criteria in mind, $[^2H_5$-4Phe]-ME (in which the benzene ring hydrogen atoms
of the Phe residue were replaced with deuterium
atoms to shift the mass of $[M+H]^+$ by 5 u) was used
as the internal standard in the present study. Previ­
ous studies from our laboratory have used 18O-isot­
otope-labeled (at the C-terminus carboxylic group) ME
as an internal standard [39]. However, back-exchange
of 18O under basic pH conditions limits its use. Incor­
deporation of deuterium atoms in the benzene ring
overcame that back-exchange problem.

To generate a calibration curve, a series of ME
solutions in the concentration range of 125–4000
pg/μL (corresponding to ca. 220 fmol–7 pmol/μL)
was prepared in the electrospray solvent. Each solu­
tion also contained a fixed amount (1 μg) of $[^2H_5$-4Phe]-ME internal standard. These solutions were an­
alyzed as described in the Experimental section, and
the ion current due to the $[M+H]^+$ ion of ME and
that of $[^2H_5$-4Phe]-ME was recorded. Although se­
lected ion monitoring generally provides more detec­
tion sensitivity than a narrow mass scan, we preferred
the latter in this first case study to ensure by visual
inspection that the indicated masses were free from
any interference. Only 5 μL of the injected peptide
solution was consumed in obtaining these data. A
plot of the ratio of ME/$[^2H_5$-4Phe]-ME $[M+H]^+$ ion
currents versus pmol ME provided the calibration
curve (not shown), with a linear correlation coefftcient
of 0.999. This curve allows detection of as low as ca. 1
pmol ME. The detection sensitivity of the present
method is comparable or superior to the sensitivity of
the previously reported negative ion [40] and positive
ion [27] FAB/MS methods. A significant advantage of
the present electrospray method over those FAB/MS
methods is an improved signal-to-noise ratio, which
increased the confidence level and detection sensitiv­
ity of the measurement. The narrow mass scan of the
$[M+H]^+$ ion of the lowest concentration studied is
shown in Figure 3a to demonstrate the excellent sig­
nal-to-noise level at that low amount of ME.

Figure 3. (a) A narrow-scan electrospray mass spectrum of a
solution containing 125 pg/μL synthetic ME and 4 ng/μL $[^2H_5$-
4Phe]-ME. Approximately 0.625 ng ME (equivalent to ca. 1.1
pmol) was consumed in acquiring this spectrum; (b) the electros­
pray mass spectrum analysis of a human pituitary extract
(sample B).
Table 3. Electrospray mass spectrometry analysis of methionine enkephalin in pituitary extracts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total weight (g)</th>
<th>Proteins (% of total weight)</th>
<th>Methionine enkephalin (pmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human pituitaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.305</td>
<td>15.9</td>
<td>9.1</td>
</tr>
<tr>
<td>B</td>
<td>0.305</td>
<td>15.9</td>
<td>8.2</td>
</tr>
<tr>
<td>C</td>
<td>0.353</td>
<td>17.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Canine pituitary</td>
<td>0.195</td>
<td>20.1</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Analysis of ME in individual human and canine pituitary extracts. Methionine enkephalin–like immunoreactivity was demonstrated in the human pituitary gland [41]. Recently, unambiguous evidence of the presence of ME was reported in human pituitary extracts by FAB and B/E linked-field scan mass spectrometry techniques [27]. The present electrospray mass spectrometry method was applied to quantify endogenous ME in one whole canine and three human pituitaries. To determine the reproducibility of the quantitative method, one human pituitary was divided into two portions (samples A and B). Because the other two human pituitaries were small, they were combined to provide sample C. One microgram of [2Hs-4Phe] ME was added to each sample, and ME was extracted and purified as described above. The canine pituitary was also analyzed in a similar fashion.

Table 3 contains the data from the electrospray mass spectrometry analysis of ME from these pituitary extracts. An electrospray mass spectrum of the solvent blank was also obtained between each sample to ensure that no carryover occurred from the previous sample. A typical example demonstrating the signal-to-noise level of the analysis of a biological sample (sample B) is shown in Figure 3b. The three human pituitary samples A, B, and C contained 9.1, 8.2, and 4.7 pmol ME/mg protein, respectively. The corresponding amount in one canine pituitary was 39.8 pmol ME/mg protein. The variation (ca. ± 5%) in the amounts of ME determined in the two samples A and B of the same pituitary reflects the good reproducibility of the overall experimental steps of this quantification procedure.

Quantification of β-Endorphin

β-Endorphin is an opioid-active peptide consisting of 31 amino acids, and is derived metabolically from its large precursor, pro-opiomelanocortin [42]. Although several other forms of βE exist endogenously (e.g., acetyl-βE, acetyl- and non-acetyl-βE fragments 1-26 and 1-27), opioid activity is attributable to βE1-31. Therefore, a clear understanding of the physiological functions of βE demands a precise and accurate knowledge of its distribution in body tissues and fluids.

Because of the hydrophilic character of βE, as measured by the Bull and Breese index [43] (Δ = +930 for βE [44]), it has been difficult to analyze by FAB/MS. Furthermore, the M, (= 3463 Da) of βE is beyond the most sensitive mass range of many mass spectrometers. To circumvent these difficulties, we previously trypsinolyzed βE to cleave it into smaller peptide fragments [44, 45]. The [M + H]^+ ion of the tryptic peptide βE21-24 (NAlIK) [44] and the transition [NAlIK + H]^+ → θAlK^+ [45] were monitored separately by FAB/MS to quantify endogenous human βE. The detection sensitivities of these two quantification methods were 86 and 580 fmol βE, respectively.

Another feasible approach to quantifying βE is to monitor multiply charged molecular ions. The ion current due to the [M + 2H]^+ ion of βE was recorded by Voyksner and Pack [46] using thermospray mass spectrometry and by us using FAB/MS [45]. These two methods were capable of quantifying βE down to 10 and 3 pmol, respectively.

As discussed above and shown in Figure 2, electrospraying βE generates several different multiply charged species of intact βE. An ion bearing five positive charges (m/z 694) is the most dominant of these multiply charged species. This abundant ion is the logical choice to quantify endogenous βE. For these measurements, the electrospray spectrum was acquired in the narrow mass range (again to show absence of interference) encompassing the [M + 5H]^5+ ion. An external calibration curve (not shown; linear correlation coefficient = 0.999) in the concentration range of 5 fmol–50 pmol was obtained by plotting the ion current due to the [M + 5H]^5+ ion versus the amount of βE. The detection sensitivity of the present method is ca. 5 fmol of synthetic βE. Thus, the present method is approximately 17 times more sensitive than our previously reported FAB/MS method [44] and also does not require the trypsinolysis step.

The electrospray mass spectrometry analysis (see inset of Figure 4) of the βE fraction indicated 660 fmol βE/mg protein.

Full-Scan Electrospray Mass Spectra of Pituitary Extract

A biological sample is always complex in nature and may contain different impurities, even after several chromatographic steps [27]. The chemical noise due to these impurities and the liquid matrix is a limiting factor in the FAB/MS analysis of peptides. Although we were able to obtain a good electrospray mass spectrometry signal for the [M + H]^+ ion of ME in the pituitary extract of sample B (Figure 3b) when a narrow mass range was used for data acquisition, it was also important to determine the electrospray mass spectrometry response of ME compared to the solvent and biological impurities. The full-scan positive ion electrospray mass spectra in the mass range 200–1000 u of the ME RP-HPLC fractions of the two separate pituitary samples B and C are illustrated in Figure 5.
Both spectra exhibit low background noise compared to FAB/MS, and display strong signals due to the \([M + H]^{+}\) ions of ME and \([\text{H}_{5}-\text{Phe}]^{-}\text{ME}\), with a signal-to-noise ratio greater than 3:1 for the \([M + H]^{+}\) ion of ME. These spectra were acquired with one-tenth the original amount of ME present in those samples. The amount of \([\text{H}_{5}-\text{Phe}]^{-}\text{ME}\) present in these two samples was ca. 170 pmol.

We also obtained the full-scan electrospray mass spectrum of the \(\beta E\) fraction from the gradient RP-HPLC step. That mass spectrum (shown in Figure 4) is characterized by the presence of a large number of non-\(\beta E\) ions. No difficulty, however, was encountered in identifying \(\beta E\) in that mass spectrum. The multiply charged molecular ions characteristic of \(\beta E\), corresponding to the addition of 6, 5, 4, and 3 protons, were clearly distinguishable in that spectrum at \(m/z\) 578, 694, 867, and 1156, respectively. It is significant to note that FAB analysis of a similar pituitary sample failed to produce any ion related to \(\beta E\).

Conclusions

The data presented in this article demonstrate the utility of electrospray mass spectrometry in characterizing and quantifying opioid peptides extracted from a biological matrix. Highlights of the technique are low background noise and formation of abundant multiply charged molecular species. The advantage of electrospray is that an instrument with a limited mass range can be used effectively to quantify even large peptides, as demonstrated here in the case of human \(\beta E\). Although the multiply charged molecular ions are characteristic of an analyte, they do not provide any amino acid sequence information of the target peptide. Only MS/MS can furnish unambiguous sequence-specific information from a selected molecular ion [26, 27, 39, 40]. Our future plans to quantify ME and \(\beta E\) include the use of electrospray in combination with selected reaction monitoring and collision-activated dissociation to monitor a sequence-specific ion formed in a field-free region.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Institutes of Health (GM 26666) and the Molecular Resource Center (R. Sumrada) for the synthesis of \([\text{H}_{5}-\text{Phe}]^{-}\text{ME}\).

References