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Abstract
During the past decade there have seen substantial progress being made on materials genome related research. However, 
coupling mechanisms across multi-scale microstructure and resulting consequences on property and performance of 
materials remain unsolved problems. Structural hierarchy, which was a concept developed but not quantitatively fulfilled 
in 1970s, is referred to as microstructure genome here and pinpoints the key enabler for materials genome engineering. 
Latest progress in deep learning for image recognition and understanding the underlying mathematical mechanisms 
have revealed the pivotal roles that directional wavelets and invariants play. Hierarchical invariants constructed by a 
wavelet system can provide an inherent descriptor for microstructure genome.
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1  Introduction

The questions regarding possible coupling mechanisms across multiscale microstructure and resulting consequences on 
property and performance of materials remain still an openly challenging problem. However, studies seeking quantitative 
formulations of the structure of materials and trying to understand the ways in which the structure change with composi-
tion and with processing, and the way in which structure relates to useful properties, i.e., the core idea of materials genome 
engineering (MGE), were full of the history and defined the core tenet of materials science and engineering (MSE). It was 
Hooke who first investigated the world of microstructure and published his book Micrographia in 1665 [1]. Two hundred 
years later in 1863, Sorby also discovered that microstructure exists in steel and the strength of it was remarkably affected 
by its corresponding microstructure [2]. Considering only the richest aspects of a large and complicated system of structural 
hierarchy of materials, i.e., the interlock of the smaller parts that generates the larger overarching structures, Smith found 
in 1970s that the analytical approaches at his time were insufficient and hence turned to the artist’s approach [3]. Although 
the recent Materials Genome Initiative (MGI) in US [4] and MGE platform in China [5] have achieved substantial progress, 
Smith’s expectation on a new model that can help to understand the rich and necessary interactions between different 
levels of structural hierarchy remains yet to be solved. It is worth noting the recent progress made in the field of mechanics 
where a concept of structure genome (SG) was proposed by Yu in 2016 and defined as the smallest mathematical building 
block of the structure, to emphasize the fact that it contains all the constitutive information needed for a structure in the 
same fashion that the genome contains all the genetic information for an organism’s growth and development [6]. Although 
the concept of structure genome is useful, the structures considered in the finite element models [7, 8] are only idealized 
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structures tailored for the convenience of mathematical treatment and by no means represent the frequently encountered 
realistic and complex microstructure in metallurgy and MSE. Multiscale materials modeling [9] can generate a plethora of 
useful data, but it still represents the traditional way of problem solving based on logical derivations. There is no doubt that 
a data-driven based approach empowered by artificial intelligence (AI) machine learning (ML) is a true enabler and driver 
for MGI. In the context of the MGI evolving into version 2.0 and being re-energized and scaled up [10], this work serves to be 
a perspective and propose a hierarchical microstructure descriptor expected by Smith since the 1970s through a focused 
review on relevant fields. Without a scientifically sound and robust microstructure descriptor, the vision of the MGI cannot 
be successfully fulfilled.

2 � Wavelet, nonlinearity and invariant

Nowadays, microstructural images have been converted to digital signals, and thus allowing application of modern digital 
image processing tools. LeCun et al. [11] made significant progress on developing computational models of deep learning 
for visual objects recognition in images in 2015. However, the mathematical mechanisms behind such a big success remain 
mysterious. Mallat, a well-known mathematician for his work on multi-resolution framework of wavelet analysis, revealed what 
have been learned in a deep convolutional neural network [12]. Understanding the psychophysics of vision in a mathematical 
way [13] can shed light onto the key ingredients of the underlying mechanisms, i.e., directional wavelets, nonlinearity, large 
receptive fields, and some forms of invariance.

Although not obvious, a pure mathematical object wavelet is inherently connected with material microstructure because 
they both exhibit as multi-scale systems in nature. Discontinuities exist in a wavelet just as interfaces present in microstructure 
composed of different chemical phases. Such a similarity makes wavelet analysis a superior tool to localize, in a systematic 
way, features in microstructure. Unfortunately, it was not wavelet but Fourier analyses that have been used more widely. 
Interfaces in microstructure can cause serious problems for the infinitely smooth Sines and Cosines, and the spatial locations 
of features become lost in Fourier transforms. Microstructure forms in nonlinear physical processes and nonlinearity must 
enter the learning framework aiming to understand it. Recognizing a complex system like material microstructure works in 
the same way as recognizing a person. This process requires a large set of training data, or many encountering occasions, and 
recognition starts first with an overall impression and then progressively towards finer and finer details. A microstructural 
image of 512 × 512 pixels2 represents a vector in a linear space with a dimension of N = 512 × 512 ≈ 3 × 105 . To fill such a 
high-dimensional microstructure space would require an astronautically large number of samples. It is known as “the curse of 
dimensionality”. In addition, microstructural images obtained by either experimental characterizations or computer simula-
tions show a huge variability even inside the same class of material. Therefore, microstructure recognition and classification 
should be based on invariants, which means that the microstructure can be successfully identified even if its features are 
subjected to small deformations or symmetry operations such as translation and rotation.

3 � Microstructure genome

Mallat proposed in 2016 the following way to construct hierarchical invariants under translation using Morlet wavelets [7]. 
The image x first convolves with a scaling function � to obtain the zeroth order invariant, which is essentially the average 
of the image; next, the image convolves with directional wavelets �j,� at the scale j and orientation angle � . The nonlinear 
operator modulus | ⋅ | then enters to introduce nonlinearity and contract the microstructure space. To construct an invari-
ant, the scaling function must be used again. By the averaging process, high frequency information is lost and to recover it 
successive wavelets in the wavelet system are used. To construct the next order invariant, the modulus operator and scaling 
function must be used again. The above procedure forms a loop and generates the required hierarchical invariants under 
translation, i.e., the zeroth order S0 , the first order S1 , the second order S2 and so on:

(1)S0x(u) = x ⋆ 𝜙J(2
Ju)

(2)S1x(j1, 𝜃1, u) = |x ⋆ 𝜓j1,𝜃1
| ⋆ 𝜙J(2

Ju)

(3)S2x(j1, j2, 𝜃1, 𝜃2, u) = ||x ⋆ 𝜓j1,𝜃1
| ⋆ 𝜓j2,𝜃2

| ⋆ 𝜙J(2
Ju)
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where x(u) is the image with u the spatial position index, and S0x(u) is the zeroth order invariant of x(u). The symbol ⋆ 
represents convolution and J the spatial scale of the transform.

Smith urged metallographer to use quantitative methods wherever appropriate [14], but the methods available at 
his time were essentially lower order statistical measures, e.g. measuring the grain size by counting the number of grain 
boundaries intercepted by a traverse of known length. Unfortunately, such methods are still widely adopted today. 
Figure 1e plots the hierarchical descriptors, constructed by using the above-mentioned wavelet zoom and invariants, 
of three images, shown in Fig. 1a–c, reported in Smith’s work on metallic artifacts in 1967 [14]. Morlet wavelets span-
ning 6 spatial scales with each scale consisting of 8 orientations, shown in Fig. 1d, are used to construct the hierarchical 
descriptors. Note that each colored line in Fig. 1e connects 48 data points and represents a hierarchical description of 
one microstructural image. Each data point shows the total sum in a log10 scale of the invariant S1 at a specific scale j1 
and orientation �1 according to Eq. (2). In other words, each data point is the total sum in a log10 scale of the averaged 
version of the modulus (or absolute value) of the image (or matrix) resulted from the convolution of the microstructural 
image with one of the directional wavelets, as shown in Fig. 1d. Therefore, the value at each data point measures the 

Fig. 1   Plots of the total sum 
of the first order hierarchical 
invariant S1x in logarithmic 
scale versus its serial number 
in e of three metallic artefacts 
with microstructure shown 
in a–c respectively using a 
Morlet wavelet system with 
six spatial scales and eight 
orientations as displayed in d. 
The corresponding micro-
structural images (magnifica-
tion ×500, 800 × 800 pixels2 ) 
of: a spheroidized carbides in 
a Luristan sword; b slag inclu-
sions in an iron clamp from 
Persepolis (ca. 530 B.C.); and 
c slag inclusions in Luristan 
dagger are after Smith’s work 
in 1967 [14] and replotted 
according to a colormap. In d, 
the scaling function � is plot-
ted at (row 1, column 1) and 
the real parts of the wavelet 
system � are plotted with 
the spatial scale J increasing 
from 0 to 5 for row indices 
running from 1 to 6 and the 
orientation angle increasing 
from 1 to 8 for column indices 
running from 2 to 9. The 
imaginary parts of the wavelet 
system are plotted in columns 
10 to 17 in the same manner. 
In e, there are eight invariants 
constructed according to Eq. 
(2) using the eight directional 
wavelets at each scale

a b

d

e

c
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degree of structural similarity between the microstructure and one of the 48 wavelets, which play the role of structure 
genomes. Since wavelets capture changes or interfaces (boundaries) in microstructure, the bigger the S1 values, the 
larger the interface amount. The microstructure in Fig. 1a contains a large amount of homogenously distributed fine 
spheroidized carbides. The details of interfaces between the carbides and matrix, where abrupt changes occur, are 
supposed to be captured by wavelets. Among the three microstructural images in Fig. 1, panel a contains the largest 
number of interface and, therefore, it exhibits the largest S1 features up to the scale 3. It is obvious that both structures 
in Fig. 1b, c contain interfaces at multiple scales, some of which are larger than those in Fig. 1a. The flatter blue curve in 
Fig. 1e indicates that Fig. 1a contains a more homogeneous microstructure with the scales of carbides ranging from 0 
to 3, but drops dramatically at the scales 4 and 5. In contrast, the hierarchical features of the slag inclusions in Fig. 1b, c 
show the following pronounced characteristics: the maximum of the S1 features at each scale increases as the scale index 
J increases and the S1 features vary significantly with the orientation index � . Furthermore, the maxima of the S1 features 
at larger scale indices from 3 to 5 stabilize at the � indices of 4 and 7 for Fig. 1b, c, respectively. Similar characteristics 
are not observed in Fig. 1a, but match well with our visual impression that larger scales of slag inclusions dominate and 
obviously orientational features present in both Fig. 1b, c. It is worth noting that the spatial locations of the features 
are not presented in Fig. 1, but in fact available. It is remarkable that a sequence of 48 numbers serves to quantitatively 
describe the structure hierarchy for an image with around 300,000 pixels. The author believes that this could be some-
thing that Smith was expecting at his time. If the S1 features are not sufficient, higher order invariants or even invariants 
under both translation and rotation can be extracted with the same principle. Figure 2 demonstrates the S2 features of 
the seven microstructural images shown in Figs. 1 and 3. Although the images are not zoomed to the same scale, the 
spiky spectrums containing a sequence of 384 numbers supply high frequency information missed in S1 . The hierarchi-
cal invariants themselves establish as a system and provide a physically matchable descriptor for structure hierarchy. 
In the same spirit as coining the term “materials genome” and “structure genome”, a system of hierarchical invariants 
that serves as an inherent descriptor for structural hierarchy of microstructure is denoted as a “microstructure genome”.

4 � Materials genome

As Kalidindi pointed out, it is the microstructure space that should be used to quantitatively establish the linkage with 
chemical compositions and processing parameters on the one end and property and performance indicators the other 
[15]. Now that we have an inherent descriptor for microstructure genome and would it enable our search for the materials 
genomes? The following example can provide some hints. Figure 3a–d show typical microstructure of copper from no 

Fig. 2   Plots of the total sum of the second order hierarchical invariant S2x versus its serial number of the seven microstructural images 
shown in both Figs. 1 and 3. A Morlet wavelet system with four spatial scales and eight orientations is used, thus resulting 384 invariants of 
the second order. The first seven curves from top to bottom correspond to microstructural images in Figs. 1a–c, and 3a–d, respectively. The 
last four curves correspond to �1 , �2 multiplied by a factor of 3, and j1 , j2 multiplied by a factor of 6, respectively, for a better illustration. The 
curves are each filled with a color according to the average value of that curve. The symbols �1 , �2 , j1 , and j2 are referred to Eq. (3)
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reduction in area to 68% reduction when copper grains become squashed in the direction of working [16]. Before rolling, 
the descriptor shows a decreasing step increase as the scale increases from 0 to 3. As rolling continues, a quadruple-well 
structure develops more pronounced in the descriptor curve. If the depth of well is defined as the difference in S1 between 
the vertical, i.e., � = 1 , and horizontal, i.e., � = 5 , orientation at each scale, it is found that the depth of well increases at all 
scales from 0 to 3 as deformation proceeds forward. On the property side, experimental data suggested that elongation 
decreased while hardness continued to rise as the copper grains became deformed and squashed more. Figures 4 and 5 
provide additional examples of using the hierarchical descriptor on literature data to connect microstructure with prop-
erty. Figure 4 shows the 64 hierarchical invariants S1 of multicomponent (TiZrHfNbTaMo)C high entropy ceramics pres-
surelessly sintered at different temperatures studied by Zhang et al. [17]. The authors claimed that the grain size increases 
from microstructure a to d by counting the number of grains with the assistance of a software package. In contrast, the 
hierarchical invariants in Fig. 4 provide rich information about the grains at different scales. For example, microstruture 
b contains almost equiaxed grains at scales from 1 to 4 and it contains less grains at scales 6 and 7, while microstructure 
c and d contains larger grains since the hierarchical invariants increase at scale 6 and 7. Examining the property data 
only finds little difference in hardness of the four ceramics and therefore connecting the microstructure descriptor with 
hardness is not attempted here. Figure 5 also plots the 64 hierarchical invariants S1 of twelve microstructural images of 
Sn–Ag and Sn–Cu alloys after solidification with different cooling rates studied by Seo et al. [18], in which six are Sn–Ag 
alloys denoted by labels “AgNN” with the two digits “NN” following “Ag” indicating the row and column numbers of the 
image in the original reference and the other six are Sn–Cu alloys denoted as “CuNN”. The row number indicates cooling 
rate, i.e., row 1 represents “quenched”, row 2 “air-cooled”, and row 3 “furnace-cooled”, and the column number indicates 
composition with 1 and 4 for 0 and 1.8wt% Ag for Sn–Ag and 0.5 and 2.0wt%Cu for Sn–Cu, respectively. In this case, it is 
interesting to find a correlation between the hierarchical descriptor and the hardness data. The hardness of composition 
4 is consistently larger than composition 1 for both Sn–Ag and Sn–Cu alloys and for all of the cooling rates. In Fig. 5, the 
hierarchical descriptors clearly show that the curve of an alloy with a larger hardness is consistently above the one with 
a lower hardness at scales range from 0 to 5 at least. For the two “furnace-cooled” Sn–Cu alloys with the least difference 
in hardness, the two hierarchical descriptors coincide with each other from scales 0 to 2, but the curve of the alloy with 
slightly larger hardness climbs above the curve of the alloy with lower hardness from scales 3 to 7.

Fig. 3   Plots of the total sum 
of the first order hierarchical 
invariant S1x versus its serial 
number in e of typical micro-
structure of copper ( 512 × 512 
pixels2 , replotted accord-
ing to a colormap) from no 
reduction in area a, to b 23%, 
c 42%, and d 68% reduction 
when copper grains become 
squashed in the direction of 
working [16]. A Morlet wavelet 
system with four spatial scales 
and eight orientations is used. 
Noted that a quadruple-well 
structure develops more 
pronounced in curves as 
deformation continues from 
b to d 

a b c d

e
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The above examples demonstrate the possibility to establish a quantitative linkage between the microstructure 
genome and property using neural networks if sufficient data have been accumulated. Note that the hierarchical micro-
structure descriptor overcomes the major difficulty in microstructure recognition, i.e., the curse of dimensionality. After 
all, a microstructure genome consisting of less than 100 hierarchical invariants is much easier to deal with than a matrix 
with approximately 300,000 numbers. Furthermore, latest progress on understanding the mathematics behind deep 
learning suggests that extensive computing involved in deep convolutional neural networks only finds out that the 
optimized coefficients for the layers of neurons are directional wavelets. Therefore, using the hierarchical invariants 
proposed in this work means substantially less computation to search for materials genomes. In a data-driven approach, 
the decision on exactly what constitutes the set of important salient features is not taken in a static manner—instead it is 
taken objectively based on the actual available data. It is continuously refined as more data become available [19]. With 
the microstructure genome and its quantitative linkages with chemical composition and processing parameters on the 
one end and property and performance indicators on the other end, we are then in a much better position to answer 
the opening question regarding the coupling mechanisms across multiscale microstructure and resulting consequences 
on property and performance.

Fig. 4   Hierarchical descriptor 
of the microstructure of mul-
ticomponent (TiZrHfNbTaMo)
C high entropy ceramics con-
structed using a Morlet wave-
let system with eight spatial 
scales and eight orientations. 
The ceramics are pressureless 
sintered at a temperature of a 
2200 °C, b 2300 °C, c 2400 °C, 
and d 2500 °C. Microstructural 
images and hardness data are 
referred Figs. 4 and 6 in refer-
ence [17] respectively

Fig. 5   Hierarchical descriptor of cross polarized images of Sn–Ag and Sn–Cu solder alloys with different compositions and cooling rates 
during solidification. Hierarchical invariants are constructed using a Morlet wavelet system with eight spatial scales and eight orientations. 
Cross polarized images and hardness data are referred Figs. 1, 6, and 12 in reference [18] respectively. The labels AgNN and CuNN in the 
legend with Ag or Cu indicating Sn–Ag or Sn–Cu alloys respectively and the following 2 digits indicating the row and column numbers of 
the image in Figs. 1 and 6. Only half of the images in Figs. 1 and 6 are shown to clearly demonstrate the hierarchical descriptors and avoid 
overlapping of data
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5 � Outlook

Zhang pointed out that a dataset can be fitted with different equations with more or less the same goodness of fitting 
due to the noises contained in the experimental data [20]. The author believes that the same principle is applicable on 
the road to search for materials genomes. The bottom line is that the materials genomes that we search should be under-
standable and interpretable, but not treated as a mysterious Blackbox. Although the microstructure genome is discussed 
in a deterministic way in this work, a probabilistic approach based on Bayesian inference, in which a hierarchical invariant 
may correspond to a class of microstructure with a certain possibility, could also be adopted. The author believes that 
microstructure genomes targeting at anticipated property and performance can be generated on computers first by 
artificial intelligence and then physically fulfilled with the advancement of MGE in near future.
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