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Abstract
Purpose of Review The world-wide demand for agricultural products is rapidly growing. However, despite the growing popu-
lation, labor shortage becomes a limiting factor for agricultural production. Further automation of agriculture is an important
solution to tackle these challenges.
Recent Findings Selective harvesting of high-value crops, such as apples, tomatoes, and broccoli, is currently mainly performed
by humans, rendering it one of the most labor-intensive and expensive agricultural tasks. This explains the large interest in the
development of selective harvesting robots. Selective harvesting, however, is a challenging task for a robot, due to the high levels
of variation and incomplete information, as well as safety.
Summary This review paper provides an overview of the state of the art in selective harvesting robotics in three different
production systems; greenhouse, orchard, and open field. The limitations of current systems are discussed, and future research
directions are proposed.
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Introduction

The world’s demand for agricultural products is growing at an
unprecedented scale. An estimated 50% increase in agricul-
tural productivity is needed in the next 30 years to provide the
world population with sufficient food, feed, fuel, and fibers
[1]. Despite the growing population, expecting to reach almost
ten billion people by 2050, there is a growing labor shortage in
agriculture, due to an aging farmer population and urbaniza-
tion. Moreover, agricultural tasks are often physically de-
manding and highly repetitive and dull. To meet the growing
demand and to compensate for the labor shortage, there is a
strong need in the agricultural industry for increased automa-
tion and robotization.

Crops like wheat, corn, and potato ripen uniformly on the
field, which allows efficient mass harvesting of the crop at a
single moment in time by big machines. In contrast, high-
value crops like apples, tomatoes, and broccoli ripen hetero-
geneously and require selective harvesting of only the ripe
fruits. Multi-annual crops, like apple and grapes, furthermore,
require that the plant is not damaged during the harvesting
process. Selective harvesting turned out to be difficult to au-
tomate and therefore is currently mainly performed by human
labor. This makes selective harvesting currently one of the
most labor-intensive and expensive tasks on the farm. This
stimulates the development of robotic systems for selective
harvesting.

Apart from the labor and cost aspects, there are more
advantages of robotic harvesting. Where humans have var-
iable quality of operation, robots operate very consistently
without individual or temporal variations. Furthermore,
parallel to the harvesting task, robots can inspect the crop
to detect diseases and monitor crop development, which
allows improved farm management and can optimize the
food-production chain.

The task of selective harvesting, however, is not an easy
one for robots, which is illustrated by the fact that there are
hardly any selective-harvesting robots on the market. We
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identify three main challenges in developing a selective-
harvesting robot: variation, incomplete information, and safe-
ty [2]:

Variation. Different from robots operating in the
manufacturing industry that work in highly controlled
environment with known artificial objects, agricultural
robots need to operate in uncontrolled environments with
natural objects. These environments give rise to different
types of variation. Firstly, there is object variation. Every
plant and fruit is unique with different appearance, geom-
etry, and mechanical properties from other instances. In
addition, the appearance of the crop may change over
time during the growing season. Secondly, there is envi-
ronmental variation caused by the weather or indoor cli-
mate control, causing variation in, for instance, illumina-
tion, humidity, and temperature. Thirdly, there is varia-
tion in the cultivation system. Farmers have individual
preferences in how they cultivate their crops, with differ-
ences in, for instance, infrastructure, irrigation, soil type,
and pruning methods, resulting in different growth pat-
terns. Finally, there is task variation. A robot solely de-
signed for harvesting has limited value, which can be
greatly improved if it can also perform other plant-
management tasks, such as, pruning, thinning, pest con-
trol, monitoring, and providing nutrients.
Incomplete information. The environment of a selective
harvesting robot is often highly complex and cluttered,
giving rise to many occlusions. The partial observability
causes that the robot has to operate with incomplete and
uncertain information. The objects of interest for the ro-
bot’s task might be partially or completely occluded; the
to-be-harvested produce will often be covered by other
elements of the plant or tree, such as, leaves. Moreover,
sensor data is often noisy and information about the
weather, crop development, and the presence of pests
and diseases are incomplete and uncertain.
Safety. Harvesting robots need to be inherently safe for
their environment. Most of the fruits and vegetables are
very delicate and the plants on which they grow are frag-
ile. Damage to the fruits will devaluate the produce. At
worst, damage to the plant could mean the end of the
production of that plant. Selective harvesting robots,
therefore, need to have a soft touch, being able to grasp
and manipulate the objects with care. Moreover, there
will also be humans in the production environment with
whom the robots should be able to collaborate in a safe
manner.

In this review, in the “State of the art in Selective
Harvesting” section, we provide an overview of how current
selective harvesting robots deal with these challenges.
Limitations of these systems, trends, and future research

directions are discussed in the “Limitations, Trends, and
Future Research” section.

State of the art in Selective Harvesting

Applications of selective harvesting can be divided in three
major application areas: greenhouse (protective cultivation),
orchard, and open field. In this section, the state of the art in
academia and industry in these application domains will be
described.

Greenhouse

A greenhouse provides a protected and controlled environ-
ment for optimal crop production. The enclosed structure al-
lows to control environmental factors, such as temperature,
humidity, carbon dioxide, and to a certain extend also the light
level, to set optimal conditions for year-round production. In
addition, plants generally do not root in soil, but in an artificial
growing medium offering the plant optimal concentrations of
water and nutrients. As illustrated in Fig. 1, there are different
cultivation systems to support and guide plant growth, which
are optimized for light interception, space, and in some cases
automation. van Henten [3] and van Henten et al. [4] describe
different activities during the greenhouse production cycle,
including greenhouse preparation, planting, crop mainte-
nance, harvesting, grading, and packing, which can potential-
ly be robotized.

State of the art in Research

Concerning selective harvesting of high-valued crops, a thor-
ough review of 50 robots developed in the past three decades
was made in [5]. On average, the systems had a harvest suc-
cess rate of 66% with a cycle time of 33 s. Success rates for
fruit localization and detachment were respectively 85% and
75%. However, it must be noted that different studies cannot
be compared as they were all applied in different experimental
setups. Moreover, many studies modified the crop to simplify
the task.

To illustrate recent work, we discuss work on sweet pepper,
strawberry, and tomato harvesting. In the EU projects Crops
and follow-up SWEEPER (www.sweeper-robot.eu), a robotic
system for sweet-pepper harvesting was developed (see Fig.
2). The system composed of one 6 DOF industrial manipula-
tor with a specially designed end effector, RGB-D camera
with GPU computer, programmable logic controllers, and a
small container to store harvested fruit. Over a period of
4 weeks, the system was evaluated on 262 fruits [6] showing
a harvest success rate of 61% in optimal crop conditions and
18% in current commercial conditions, illustrating the need
for cultivation systems that are specifically designed for
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robotic harvesting. Average cycle time was 24 s including
fruit discharge and platform navigation. If the objects of inter-
est were in the camera view, deep-learning techniques could
successfully be applied for image segmentation and detection
[7•, 8, 9]. However, due to the high level of occlusion, fruit
detection and approach often failed in the commercial crop
conditions. Another issue in these conditions was the end-
effector colliding with the plant. In a similar project, the robot
Harvey was developed and evaluated on 68 sweet peppers
[10]. They reached a harvesting success rate of 76.5% in a
modified crop and 47% in an unmodified crop with a cycle
time of 36.9 s, excluding platform navigation. The fruit and
peduncle detection system based on deep learning and 3D
processing worked well in themodified crop but suffered from
clutter and occlusion in the unmodified crop. Similarly, the
customized harvesting tool suffered from the complex unmod-
ified conditions resulting in fruit and plant damage and rela-
tively low attachment and detachment rates. In a third project,
an image-based closed-loop control systemwas developed for
sweet pepper harvesting, achieving a 53.3% overall successful
rate and average cycle time of 51.1 s [11].

Xiong et al. [12] focused on strawberry harvesting and
developed a low-cost dual-arm harvesting robot. Their system
wasmore resilient to lighting variations due to the modeling of
color against light intensity. In order to deal with occlusions

and clutter the robot could use the gripper to push aside sur-
rounding obstacles to pick strawberries that are located in
clusters. The pick success rate ranged from 20% for the most
complex scenarios with one ripe strawberry in a cluster of
unripe fruits to 100% for situations with one isolated ripe
strawberry. In two-arm mode, the system had a cycle time of
4.6 s. For tomato harvesting, Ling et al. [13] developed a dual-
arm robot using a binocular vision sensor for fruit detection
and localization. In a greatly simplified experimental setup,
the success rate of this robot was 87.5% with a harvesting
cycle time excluding platform navigation of 29 s.

State of the art in Industry

Although harvesting robots are not commercially successful
yet, there are several pre-commercial R&D initiatives [14•],
such as for strawberry harvesting—Agrobot (www.agrobot.
com), Octinion (www. http://octinion.com), DogTooth
(https://dogtooth.tech), and Shibuya Seiki (www.shibuya-
sss .co . jp)— tomato harves t ing—Panasonic [15] ,
MetroMotion-GroW (metomotion.com), RootAI (root-ai.
com)—and de-leafing—Privia Kompano-DLR [16]) and
SAIA(https://www.saia-agrobotics.com/). Although great
progress has been made in the past years, these initiatives do
not yet meet the requirements on success rate and speed.

Conclusion of Current Robotics in Greenhouses

There have been many academic and industrial projects on the
development of selective-harvesting robots for greenhouses to
date. Although performance of the robots is slowly improving,
due to, for instance, advances in deep learning andmechanical
engineering, to date, the harvesting success and operational
speed are too low for commercial application. A key challenge
is dealing with the highly cluttered crop environment, illus-
trated by the fact that performance greatly improves when the
crop is simplified by removing some leaves and fruits.

(a) Pepper ‘V’ system (b) Tomato high wire system (c) Strawberry ‘Table-top’ system

Fig. 1 Examples of different
plants cultivation systems. a
Pepper “V” system. b Tomato
high wire system. c Strawberry
“Table-top” system

Fig. 2 Prototype of the sweet-pepper-harvesting robot SWEEPER
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Orchard

In the orchard environment, the environmental parameters are
uncontrolled, making the variation in natural conditions more
prominent. In addition, the layout of an orchard is much less
structured than a greenhouse, especially in mountainous envi-
ronments, making robot navigation more challenging.
Different from greenhouse crops, orchard crops grow for
many years and are relatively sturdy, which reduces the risk
on damage of the harvesting robot. Where the trees in tradi-
tional orchards are large globular 3D structures, the trees are
pruned, trimmed, and trained extensively in modern orchards,
providing flat, 2D-like structures, optimizing light intercep-
tion, and simplifying robotic operations [17], see Fig. 3.
Activities in the orchard are similar to the greenhouse, with
the addition of more thorough pruning and training of the
trees.

State of the art in Research

When all fruits can be harvested from a tree at once and when
they are allowed to get damaged, for instance for the juice
market or for nuts, simple mechanical solutions—tree
shakers—are commercially available [17]. Selective harvest-
ing of fruits for the fresh market, however, is a much more
complex and delicate operation that is actively being
researched. Deep learning has revolutionized the detection
of fruits in camera images. Sa et al. [18], for instance, showed
the successful application of a deep neural network to detect
different types of fruits, including apple, avocado, mango, and
orange, with F1-scores above 0.93 and an average of 393-ms
processing time per image. Moreover, the results indicated
that the network could generalize to new environments and
camera setups.

Harvesting of apple and orange has been studied most in-
tensively, see Fig. 4. Silwal et al. [19•] presented the design
and evaluation of a robotic system for harvesting of fresh-
market apples. The system integrated a global camera set-up,
seven degrees-of-freedom (DOF) manipulator, and grasping
end-effector to execute fruit picking with open-loop control.
The overall success rate of this robot was 84%, with an aver-
age picking time of 6.0 s per fruit. Zhao et al. [20] developed a

manipulator with a custom 5DOF structure to simplify control
and obstacle avoidance. A spoon-shaped end-effector includ-
ing a pressure sensor to control the grasping force and a cut-
ting knife was designed to harvest the fruits. In a field test with
39 apples, a success rate of 77% was shown, with an average
cycle time of approximately 15 s. Baeten et al. [21] presented
an Autonomous Fruit Picking Machine (AFPM) for apple
harvesting, which combined an industrial manipulator with
an eye-in-hand camera. To simplify perception, they used a
cover to shield sunlight and provide more controlled illumi-
nation. Results showed the productivity to be close to the
workload of about 6 workers, which makes the machine eco-
nomically viable.

For orange harvesting robot, a robust image-based visual-
servo controller for closed-loop control of a robotic manipu-
lator was developed in [22, 23] to approach a target fruit in the
presence of unknown fruit motion. An efficient and robust
lighting system, with low-power image acquisition and pro-
cessing hardware, and a reduced inspection chamber were
developed by Cubero et al. [24]. Neither of these studies re-
ported the specific harvest success rate and cycle time.

Research on orchard harvesting robotics cover a wide
range of different crops, such as grape [25], litchi [26], kiwi-
fruit [27], cherry [28], peach, pear [29], and coconut [30].

State of the art in Industry

Despite decades of research, there are still no selective robotic
harvesters in commercial use. Some initiatives seem to be
close to commercialization [14•]. FFRobotics developed an
apple harvesting robot with multiple arms and a three-
fingered gripper that removes the apple with a twisting motion
(www.ffrobotics.com). Abundant Robotics developed an
apple-harvesting robot using vacuum-based end-effector to
detach the fruits from the plant (www.abundantrobotics.
com). Energid developed a citrus harvesting robot (www.
energid.com).

Conclusion of Current Robotics in Orchards

The biggest opportunity for robotic selective harvesting exists
in the fresh market [17]. The limitations of robotic systems

(a) Wall system (b) Y-Trellised system (c) UFO system

Fig. 3 Examples of different
orchard training systems. a Wall
system. b Y-trellised system. c
UFO system
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have been well documented in [5] and include insufficient
cycle time, challenges with fruit detection in the presence of
occlusions, and limitations with robust manipulation for fruit
detachment.

Open Field

In open-field farming, the crops are produced on designated
strips of land (fields) in the open air, where the plants grow in
rows. Many open-field crops, such as wheat, maize, and po-
tato, are being mass-harvested at a single moment of time and
with the destruction of the plant. For these crops, efficient
mechanical harvesters exist. Selective harvesting is required
for crops that grow less homogeneously or are multi-annual,
such as asparagus, broccoli, lettuce, and melon. Robotic har-
vesting of open-field crops poses more challenges than the
harvesting in protected crop production (greenhouse, indoor
cultivation), mainly due to environmental variations (light,
wind, rain) and less consistent plant development [5].

State of the art in Research

Different from greenhouse and orchard harvesting where har-
vesting robots typically observe the crop from the side, open-
field harvesters typically take a top view. To mitigate environ-
mental variations, most systems use a cover to shield direct
sunlight and to protect against rain.

Several efforts have been made to develop a selective har-
vesting robot for asparagus [31–33]. Chatzimichali et al. [31]
presented a robot design for the selective harvest of white
asparagus (which grows below the soil surface). Their design
consisted of a caterpillar robot platform and two cameras for
the identification of the tips of the asparagus. Leu et al. [33]
presented a harvesting robot for green asparagus (which
grows above the soil surface). Their robotic system consisted
of a four-wheeled platform, one RGB-D camera, and two
robotic harvesting tools (Fig. 5). The green asparagus were
detected and tracked using a 3D point-cloud algorithm. The
robotic harvesting tool consisted of an end effector with two
rubber claws and two blades that could cut one asparagus in
approximately 2 s. With two harvesting tools, an average of

five asparagus plants could be harvested per meter. Leu et al.
[33] reported a harvest success of 90% when tested on green
asparagus fields. A video of the field performance can be
found online [34].

Three research projects aimed to develop a selective har-
vesting robot for brassica crops (specifically broccoli and cau-
liflower). Kusumam et al. [35] developed a 3D-vision algo-
rithm using machine learning to detect broccoli heads in
RGB-D images. Blok et al. [36] studied the detection of broc-
coli heads using deep learning with a specific focus on the
generalization of the method to the selective harvesting of
new cultivars. Klein et al. [37] presented a feasibility study
for the development of a selective harvesting robot for cauli-
flower. Their prototype robot consisted of an aluminum frame
with LED lights, three RGB-D cameras for crop detection and
maturity evaluation, and two dexterous robotic arms to cut and
pick the cauliflower.

Birrell et al. [38] presented Vegebot, a selective-harvesting
robot for iceberg lettuce. Vegebot was equipped with two
RGB cameras and one robotic arm with a custom-made end-
effector. For the image analysis, two convolutional neural net-
works (CNNs) were used. The first network localized the ice-
berg lettuces, whereas the second one classified the detected
lettuces in three classes (harvest-ready, immature, infected).
The lettuce was harvested with a pneumatic end-effector that
was equipped with a camera, a belt drive, and a soft gripper. A
force-feedback control system was used to detect whether the
gripper reached the ground plane. Then, the iceberg lettuce

Fig. 4 Examples of apple-harvesting robots. aWSU apple picking robot
(From: Silwal et al. [19•], with permission from JohnWiley and Sons), b
JSU apple harvesting robot (From: Zhao et al. [20], with permission from

Elsevier), and c AFRM robot (From: Baeten et al. [21], with permission
from Springer Nature)

Fig. 5 A close-up of the end-effector that harvests the green asparagus
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was cut by a knife. In field tests, a 88% harvest success and an
average harvest time of 31.7 s was reported.

Foglia, Reina [39] developed a prototype robot for the se-
lective harvest of radicchio. The robot consisted of a pneumat-
ic manipulator and gripper with an embedded RGB camera.
The image analysis was based on color filtering and morpho-
logical operators. The gripper had two bucket-like cutting fin-
gers that were triggered by the resistance of the soil to cut the
radicchio 10 mm underground. In laboratory conditions, the
detection error was less than 6.3% with an average harvest
time of 6.5 s.

Edan [40] presented a selective harvesting robot for melon.
The robot was constructed as an implement that was drawn by
a tractor. The robot was equipped with two black-and-white
cameras, a Cartesian manipulator and a pneumatic gripper.
The melons were detected with a texture- and shape-based
image algorithm. For the path planning of the robot, the trav-
eling salesman algorithm was used. The pneumatic gripper
was equipped with a proximity sensor that detected whether
the ground plane was reached. Then, the melon was grabbed
and lifted so that the stem of the melon was stretched before it
was cut by two knives. Edan et al. [41] tested the robot during
two seasons and reported a 93% detection rate and a 86%
harvest success. The average harvest time was 15 s.

State of the art in Industry

To the best of our knowledge, the asparagus harvesting robot
Sparter from Cerescon (www.cerescon.com) is the only open-
field harvesting robot that is commercially available. The ro-
bot is equipped with underground sensors to detect the aspar-
agus and two harvesting tools per row. The operating speed is
approximately 0.3 ha/h. Another robot that is almost on the
market is RoboVeg (www.roboveg.com), a selective broccoli
harvesting robot.

Conclusion of Current Robotics on the Open Field

All presented robots were developed since the 1990s and
were specifically built for the selective harvest of vegeta-
bles (asparagus, broccoli, cauliflower, lettuce, radicchio,
and melon). Except for the Sparter robot, all robots used
cameras to detect and localize the crops. The most recently
developed robots used deep learning for robust image anal-
ysis. Two of the six presented robot manipulators were
self-made, and the other four manipulators were pur-
chased. Every end-effector was custom-made and per-
formed the cutting action by some kind of a robotic knife.
The harvest success and speed are high compared to the
greenhouse and orchard settings due to the less complex
structure of open-field crops.

Limitations, Trends, and Future Research

Robotics has been extremely successful in production industry
building on a long tradition of improving production efficiency
by separating tasks, implementing well-structured and -
controlled working environments with low variation in working
conditions, and, last but not least, reducing variation in the ob-
jects. Essentially, Henry Ford’s famous phrase “Any customer
can have a car painted any color that he wants so long as it is
black” together with assembly-linemanufacturing paved theway
for robotic operation. Compared with production industry, robot-
ics in agriculture lags behind significantly. In the next sections,
the main technical challenges of agricultural robotic systems will
be identified and solution directions will be described.

Current State of Selective Harvesting Robotics

The “State of the art in Selective Harvesting” section provided
an overview of the state of the art in selective harvesting ro-
botics in greenhouse, orchard, and open-field conditions.
Despite a few decades of research, selective harvesting robots
are currently do not meet the requirements of commercial
success in terms of harvest success and speed. For the harvest-
ing success, the critical components are perception (the detec-
tion of the produce and other plant parts) and the harvesting
tool and operation. Looking at the challenges for agricultural
robotics posed in the “Introduction” section, a number of ob-
servations can be drawn from the state-of-the-art overview:

Perception. Recent advances in the field of deep learning
greatly improved perception, making it more robust to the
challenge of variation. Deep-learning-based detection algo-
rithms have been shown to be robust to variations in the
appearance of the objects and environmental conditions.
The methods also generalize quite well to new cultivars
and environments. Dealing with incomplete information
due to occlusions is still a big challenge when operating in
complex commercial production environments. This is es-
pecially the case in the greenhouse and the orchard, as plants
there are more complex compared to the open field.
Harvesting tool and operation. There is no clear para-
digm visible in the design of the end-effector. Every
study developed its own custom harvesting tool. Most
harvesting tools were quite rigid and bulky. Detachment
was usually performed with an automated cutting knife
and in some cases with a twisting motion or suction. In
complex, cluttered environments, harvesting success
dropped, often due to the tool not being able to reach
the right location due to collisions with the plant, or due
to not being able to localize the correct location due to
perception limitations. In addition, the plant and fruits
were frequently damaged by the tools.

100 Curr Robot Rep (2021) 2:95–104

http://www.cerescon.com
http://www.roboveg.com


Operation speed. Cycle times of greenhouse and orchard
robots are typically in the range of half a minute, which is
significantly slower than human operation, obstructing
commercial application. Due to the simpler situation, ro-
botic harvesting of vegetables on the field can typically
be done much faster than in the greenhouse.
Complexity of environment. In some greenhouse studies,
when the crop was modified to reduce clutter by remov-
ing some leaves and fruits, harvesting success rate dras-
tically improved. Detection success of the perception al-
gorithms improved significantly as occlusions occurred
less frequently, and the harvesting operation was more
successful now that the tool had more space for a
collision-free approach.
Task variation. All robots discussed in this review are de-
signed only for the harvesting task. Though outside the
scope of this paper, harvesting is only one task in the whole
crop-production process. Various crop maintenance opera-
tions need to be addressed when considering fully automat-
ed farming in the future (Kootstra et al., 2020). Although in
a very rudimentary fashion, bi-functionality of a robotic
platform was demonstrated by van Henten et al. [42] and
van Henten et al. [43] for harvesting as well as leaf removal
of cucumber plants grown in a high wire cultivation system.
Safety. Safety of the robot for its plant/fruit environment
was evaluated in a number of studies, where damage to
the fruit and plant was occasionally reported. Safety is-
sues of autonomous robotics systems in open-field culti-
vation have received some attention (e.g., [44, 45]), yet
safety in human robot co-working is not an active field of
research yet.

Solution Directions for Technical Challenges

Essentially, three solution directions offer opportunities in
dealing with uncertainty and variation in agricultural robotics:

Reducing variation and uncertainty in the environment as
well as in the plant population. Despite advances in the field
of deep learning, the performance of machine-vision sys-
tems remains sensitive to variations in the illumination of
the operational scene. Flooding the operating scene under a
hood with artificial light has successfully mitigated this
weakness in many applications. Operation at night is anoth-
er option, although it reduces the operation time of the robot
to nighttime only. To reduce the complexity of the scene,
breeding for robotics is an alternative pathway. There is a
keen interest from plant breeders to select cultivars that are
both productive as well as better suited for robotic treatment
during production. Also, modification and standardization
of the cultivation systems offer opportunities to reduce

variation and uncertainty in the working environment of
robotic farming systems [5, 42, 46].
Enhancing robotic technology. There are various ways to
tackle variability and uncertainty in agricultural robotics.
One way is to include more domain knowledge in the de-
sign and operation of robotic capabilities. This requires
modeling of the world in which the robot has to operate,
thus providing potential clues about the structure of the
working environment, the presence and absence of objects,
and the evolution of such characteristics in time due to
growth and development. Another way is to extent the sens-
ing capabilities beyond the common machine-vision sys-
tems operating in the visible and near-infra-red spectrum.
Tactile sensing is an alternative that has hardly received
attention in the agricultural robotics community.
Combining different sensing modalities in a multi-modal
sensing frameworkmight literarily providemore insight into
thework scene of the robot. Also, active perception inwhich
the robot resolves uncertainty in the environment by actively
gathering new sensory input by changing perspective and
manipulating objects has potential in dealingwith uncertain-
ty and variation, as for instance proposed in [47, 48]. The
current quite rigid gripping technology in agri-food does not
work well in conditions that demand short cycle times while
dealing with variability in product size and softness.
Compliant actuators and end-effectors combining different
grasp types and using tactile sensing and control to realize
different force distributions and grasp stiffness are needed to
deal with these challenges.
Human-robot collaboration. Variation and uncertainty in
agriculture together with the relatively immature status of
robotic technology when it comes to dealing with these
challenges prohibit rapid deployment of fully autono-
mous robotic technology in agriculture. An intermediate
step towards autonomy might be the combination of ro-
botic skills with human capabilities in a human-robot co-
working framework [49–51].

Trends in Agricultural Robotics: a Wider Perspective

This paper provided an overview of robotic technology for se-
lective harvesting in agriculture. Societal needs, state of the art of
technology, technical challenges, and potential solution direc-
tions were addressed. Yet, that is only part of the story when it
comes to adoption of robotic technology in agricultural practice.

Economic viability is a key issue in the adoption of tech-
nology. Yet, economic viability should be addressed from a
wider perspective than just balancing direct costs and benefits
of a certain technology. Novel technology may provide ad-
vantages with no directly accountable economic return. The
freedom to attend to other tasks and to develop a social life has
been key success factors in the adoption of the milking robot.
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When it comes to economic viability, discussions on robotic
technology are often based on the reasoning that novel tech-
nology should successfully replace human labor for 100% to
be economically viable. Given the above listed technical chal-
lenges, this line of reasoning hampers innovation. Partial re-
placement of human labor or human-robot co-working is po-
tential alternatives when farmers are willing to rethink the
procedures used in their farming operation.

There is clearly some tension between the romantic image
of agricultural food production and the use of robotic technol-
ogy. While advancing technology should remain to rank high
on the research agendas to meet the challenges faced by soci-
ety, this progress should be accompanied with thorough
thought on the consequences of such technologies for society.
The discussion on robot ethics also in the framework of
agrifood deserves attention [52].

Finally, agricultural production systems are developing.
Stimulated by growing concerns about the long-term sustainabil-
ity of current large-scale mono-cropping cultures, intercropping
and pixel-farming are revisited as better alternatives [53]. Yet,
this requires rethinking farming at large as well as specifically the
technology used in farming. Given current and future limitations
in availability of human labor, robotic technologymight facilitate
and support such developments in agronomy. Yet, this intro-
duces even more variation and uncertainty, and thus additional
challenges for robotic technology, both in selective harvesting, as
well as in crop production as a whole.
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