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Abstract
Asymmetric dual truncated Toeplitz operators acting between the orthogonal com‑
plements of two (eventually different) model spaces are introduced and studied. They 
are shown to be equivalent after extension to paired operators on L2(� )⊕ L

2(� ) and, 
if their symbols are invertible in L∞(� ) , to asymmetric truncated Toeplitz operators 
with the inverse symbol. Relations with Carleson’s corona theorem are also estab‑
lished. These results are used to study the Fredholmness, the invertibility and the 
spectra of various classes of dual truncated Toeplitz operators.
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1 Introduction

Toeplitz operators have been for a long time one of the most studied classes of 
nonselfadjoint operators [3]. They are defined as compressions of multiplica‑
tion operators on L2(� ) , to the Hardy space of the unit disk H2(�) . Dual Toeplitz 
operators are analogously defined on the orthogonal complement of H2(�) , iden‑
tified as usual with a subspace of L2(� ) , as multiplication operators followed by 
projection onto L2(� )⊖ H2(�) . Although they differ in various ways from Toe‑
plitz operators, they also share many properties, which is not surprising given 
that they are anti‑unitarily equivalent. The algebraic and spectral properties of 
dual Toeplitz operators, and the extent to which their properties are parallel to 
those of Toeplitz operators on H2(�) , were studied in [19].

Truncated Toeplitz operators, defined as compressions of multiplication opera‑
tors to closed subspaces of H2(�) which are invariant for the backward shift S∗ , 
called model spaces, have also generated great interest, partly motivated by Sara‑
son’s paper [17]. Their study, as well as that of asymmetric truncated Toeplitz 
operators later introduced in [6], raised many interesting questions and has led to 
new and sometimes surprising results, see for example [2, 6, 8, 11]. It is natural 
to consider dual truncated Toeplitz operators, defined analogously as compres‑
sions of multiplication operators to the orthogonal complement of a model space 
in L2(� ) . These operators were very recently introduced and studied in [9, 13, 
15]. It turns out that, in this case, they behave very differently from truncated 
Toeplitz operators. For instance, the symbol of a dual truncated Toeplitz operator 
is unique and the only compact operator of that kind is the zero operator, in sharp 
contrast with what happens with truncated Toeplitz operators on model spaces.

In this paper we study the kernels and various spectral properties, such as 
Fredholmness and invertibility, of dual truncated Toeplitz operators. The results 
are applied to describe the spectra of dual truncated Toeplitz operators in sev‑
eral classes including, as particular cases, the dual truncated shift and its adjoint. 
We do this by using a novel approach to dual truncated Toeplitz operators and 
their asymmetric analogues, defined similarly between the orthogonal comple‑
ments of two possibly different model spaces. This involves proving their equiva‑
lence after extension to paired operators in L2(� )⊕ L2(� ) , defined in Sect. 2, and 
establishing connections with the corona theorem. This allows moreover to show 
that, whenever their symbol is invertible in L∞(� ) , dual truncated Toeplitz opera‑
tors are in fact equivalent after extension to truncated Toeplitz operators with the 
inverse symbol.

The paper is organized as follows. In Sect.  1 we introduce asymmetric dual 
truncated Toeplitz operators and present some basic properties, while in Sect. 2 
we recall the concepts of paired operator and equivalence after extension between 
two Banach spaces. In Sect. 3 we study the solvability of certain equations involv‑
ing asymmetric dual truncated Toeplitz operators in connection with equations 
involving paired operators. In Sect. 5 we show that dual truncated Toeplitz opera‑
tors are equivalent after extension to truncated Toeplitz operators with the inverse 
symbol, if the latter is invertible in L∞(� ) . In Sect.  6 we study the kernels of 



1560 M. C. Câmara et al.

asymmetric dual truncated Toeplitz operators in terms of explicitly defined iso‑
morphisms with kernels of other operators. We show in particular that the kernels 
of a dual truncated Toeplitz operator and its adjoint are isomorphic and related 
by the usual conjugation on a model space. In Sect. 7 we present sufficient condi‑
tions for a dual truncated Toeplitz operator to be injective or invertible in terms 
of certain corona pairs, i.e., pairs of functions satisfying the hypotheses of Car‑
leson’s corona theorem [12, 16]. We use the previous results to study the Fred‑
holmness, invertibility and spectra of several classes of dual truncated Toeplitz 
operators.

2  Elementary properties

Let P+, P− be the orthogonal projections from L2 onto H2 and H2
−
= z̄H2 , respec‑

tively. We have P− = I − P+.
Recall that for � ∈ L∞ = L∞(� ) a Toeplitz operator T� ∶ H2

→ H2 is defined 
by T�f = P+(�f ) for f ∈ H2.

For an inner function � define the model space K𝜃 = H2 ⊖ 𝜃H2 and let P� and 
Q� be the orthogonal projections from L2 = L2(� ) onto the model space K� and its 
orthogonal complement (K𝜃)

⊥ = L2 ⊖ K𝜃 = H2
−
⊕ 𝜃H2 , respectively.

Let �, � be inner functions and let � ∈ L2 . An asymmetric truncated Toeplitz 
operator A�,�

�
 is defined by

for f ∈ K� ∩ L∞ (see [6, 8]), whereas the asymmetric dual truncated Toeplitz opera-
tor D�,�

�
 is defined by

for f ∈ (K𝜃)
⊥ ∩ L∞ , which is a dense subset of (K𝜃)

⊥ . If A�,�
�

 or D�,�
�

 have a bounded 
extension to K� or (K𝜃)

⊥ , respectively, we denote them also by A�,�
�

 and D�,�
�

 , respec‑
tively. When � = � instead of A�,�

�
 and D�,�

�
 we write A�

�
 and D�

�
 , respectively.

We start with some elementary properties of asymmetric dual truncated Toe‑
plitz operators. These properties were proved in [9] for � = �.

Proposition 2.1 Let � ∈ L2 . Then D�,�
�

 is bounded if and only if � ∈ L∞ and, in that 
case, ‖D�,�

�
‖ = ‖�‖∞.

Proof Let � ∈ L2 and take f ∈ H∞ . Then 𝜃f ∈ 𝜃H∞ ⊂ 𝜃H2,

and

A�,�
�
f = P��P�f ,

D𝜃,𝛼
𝜑
f = Q𝛼𝜑Q𝜃f = P−

𝜑f + 𝛼P+
�̄�𝜑f

D𝜃,𝛼
𝜑
(𝜃f ) = (P− + 𝛼P+

�̄�)(𝜑𝜃f ) ∈ H2
−
⊕ 𝛼H2
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If D�,�
�

 is bounded, then, for some C > 0 , ‖D�,�
�
(�f )‖2 ⩽ C‖f‖2 , so by the above 

‖T�̄�𝜃𝜑(f )‖2 ⩽ C‖f‖2 . Since this holds for any f ∈ H∞ , it follows that T�̄�𝜃𝜑 is 
bounded in H2 and therefore �̄�𝜃𝜑 ∈ L∞ , which implies that � ∈ L∞ . Moreover, 
‖𝜑‖∞ = ‖T�̄�𝜃𝜑‖ ⩽ ‖D𝜃,𝛼

𝜑
‖.

On the other hand, if � ∈ L∞ , then D�,�
�

 is clearly a bounded operator from (K𝜃)
⊥ 

into (K𝛼)
⊥ . Indeed, for any f ∈ (K𝜃)

⊥ we then have

Moreover, ‖D�,�
�
‖ ⩽ ‖�‖∞ .   ◻

Taking the result of Proposition 2.1 into account, we assume from now on that 
� ∈ L∞ . It is also easy to see that (D�,�

�
)∗ = D

�,�

�
.

Proposition 2.2 For � ∈ L∞ , we have that D�,�
�

 is compact if and only if � = 0.

Proof Assume that D�,�
�

 is compact and let fn ∈ (K𝜃)
⊥ , with fn weakly conver‑

gent to 0 (fn ⇀ 0) . Then ‖D�,�
�
fn‖ → 0 . Note that for fn = 𝜃f̃n with f̃n ∈ H2 , we 

have fn ⇀ 0 (in �H2 ) if and only if f̃n ⇀ 0 (in H2 ). It follows that if f̃n ⇀ 0 , then 
‖D𝜃,𝛼

𝜑
(𝜃f̃n)‖ → 0 . Since ‖T�̄�𝜃𝜑 f̃n‖ ⩽ ‖D𝜃,𝛼

𝜑
(𝜃f̃n)‖ (see the proof of Proposition 2.1), we 

have that ‖T�̄�𝜃𝜑 f̃n‖ → 0 whenever f̃n ⇀ 0 . So, if D�,�
�

 is compact, then T�̄�𝜃𝜑 is also 
compact and therefore � = 0 .   ◻

Remark 2.3 Proposition 2.2 implies, in particular, that the only symbol for the zero 
asymmetric dual truncated Toeplitz operator is � = 0 . Since the question of D�,�

�
 

being the zero operator is equivalent to � being a multiplier from (K𝜃)
⊥ into K� , 

we conclude also that there are no non‑trivial L∞‑multipliers from (K𝜃)
⊥ into K� . In 

contrast with this, the question of whether there are non‑trivial multipliers from K� 
into (K𝜃)

⊥ , which is equivalent to A�,�
�

 being the zero operator, has a positive answer 
[6, 8].

3  Paired operators and equivalence after extension

For a Banach space X denote by L(X) the space of all bounded linear operators 
A ∶ X → X . Let P ∈ L(X) be a projection and let Q = I − P be its complementary 
projection. An operator of the form AP + BQ or PA + QB , where A,B ∈ L(X) , is 
called a paired operator [14].

Paired operators are closely connected with operators of the form PCP| ImP and 
QCQ| ImQ , where C ∈ L(X) , which are called general Wiener–Hopf operators or 
operators of Wiener–Hopf type [14, 18]. To understand this relation, it will be use‑
ful to introduce here the concept of equivalence after extension for operators.

‖D𝜃,𝛼
𝜑
(𝜃f )‖2 = ‖P−

𝜑𝜃f‖2 + ‖𝛼P+
�̄�𝜑𝜃f‖2

= ‖P−
𝜑𝜃f‖2 + ‖P+

�̄�𝜑𝜃f‖2 ⩾ ‖T�̄�𝜃𝜑(f )‖2.

‖D�,�
�
f‖ = ‖Q��f‖ ⩽ ‖�f‖ ⩽ ‖�‖∞‖f‖.
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Definition 3.1 (Equivalence after extension, [1]) Let X, X̃ , Y, Ỹ  be Banach spaces 
and let us use the term operator to mean a bounded linear operator.

The operators T ∶ X → X̃ and S ∶ Y → Ỹ  are said to be (algebraically and topo‑
logically) equivalent if and only if T = ESF where E and F are invertible operators; 
in that case we use the notation T ∼ S.

The operators T and S are equivalent after extension ( T ⋆
∼ S ) if and only if there 

exist (possibly trivial) Banach spaces X0, Y0 , called extension spaces, and invertible 
operators E ∶ Ỹ ⊕ Y0 → X̃ ⊕ X0 , F ∶ X ⊕ X0 → Y ⊕ Y0 , such that

Clearly, if T ∼ S , then T ⋆
∼ S . Operators that are equivalent after extension 

share many properties. In particular we have the following.

Theorem 3.2 [1] Let T and S be two operators, T ∶ X → X̃ , S ∶ Y → Ỹ  , and assume 
that T ⋆

∼ S . Then

1. kerT  is isomorphic to ker S , i.e., kerT ≃ ker S;
2. Im T  is closed if and only if Im S is closed and, in that case, X̃∕ Im T ≃ Ỹ∕ Im S;
3. if one of the operators T, S is generalized (left, right) invertible [14, 18], then the 

other is generalized (left, right) invertible too;
4. T is Fredholm if and only if S is Fredholm and, in that case, dim kerT = dim ker S , 

codim ImT = codim Im S.

It is not difficult to see that PCP| ImP (respectively, QCQ| ImQ ) is equivalent 
after extension to CP + Q (respectively, P + CQ ) and

because

and

where

(and analogously P + CQ ∼ P + QC ∼ P + QCQ).
As an example of two operators which are equivalent after extension we have 

the following.

[
T 0

0 IX0

]
= E

[
S 0

0 IY0

]
F.

(1)CP + Q ∼ PC + Q ∼ PCP + Q,

CP + Q = (PCP + Q)(I + QCP)

PC + Q = (I + PCQ)(PCP + Q),

(I + PCQ)−1 = I − PCQ, (I + QCP)−1 = I − QCP,
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Theorem 3.3 [6] Let � ∈ L∞ and let � , � be inner functions. Then A𝜃,𝛼
𝜑

⋆
∼ T𝛷 where 

A�,�
�

= P��P�|K�
 and T� is the block Toeplitz operator on H2 ⊕ H2 with symbol 

𝛷 =

[
�̄� 0

𝜑 𝛼

]
.

Equivalence after extension for two operators T and S implies that there is a 
strong connection between the solvability of the equations T� = � and Sx = y , in 
particular as regards the existence and uniqueness of solutions.

In the next section we study the relations between the solutions of the equations

and

where AP+ + BP− is a certain paired operator on L2 ⊕ L2 , as a first step in establish‑
ing the equivalence after extension of D�,�

�
 to a paired operator AP+ + BP− . Here 

P±(L2 ⊕ L2) = P±L2 ⊕ P±L2.

4  Solvability relations

Let � ∈ L∞ and let �, � be inner functions. We define

Theorem 4.1 

1. Let f−, g− ∈ H2
−
 , f̃+, g̃+ ∈ H2 . Then

 implies that 

where 𝛷,𝛹 ∈ L2 ⊕ L2 are given by

2. Let 𝛷,𝛹 ∈ L2 ⊕ L2 , � =

[
�1

�2

]
, � =

[
�1

�2

]
. Then

D𝜃,𝛼
𝜑
f = g, f ∈ (K𝜃)

⊥, g ∈ (K𝛼)
⊥

(AP+ + BP−)𝛷 = 𝛹 , 𝛷,𝛹 ∈ L2 ⊕ L2,

A =

[
𝜑𝜃 − 1

𝜑𝜃�̄� 0

]
, B =

[
𝜑 0

�̄�𝜑 − 1

]
.

D𝜃,𝛼
𝜑
(f− + 𝜃f̃+) = g− + 𝛼g̃+

(AP+ + BP−)� = � ,

𝛷 =

[
𝜙1

𝜙2

]
=

[
f− + f̃+

(1 + �̄�)P𝛼𝜑(f− + 𝜃f̃+)

]
,

𝛹 =

[
𝜓1

𝜓2

]
=

[
g− + 𝛼g̃+
�̄�g− + g̃+

]
.
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implies that

where f−, g− ∈ H2
−
 and f̃+, g̃+ ∈ H2 are given by

Proof To prove (1) assume that f−, g− ∈ H2
−
 and f̃+, g̃+ ∈ H2 . Since by definition 

D𝜃,𝛼
𝜑
(f− + 𝜃f̃+) = Q𝛼𝜑(f− + 𝜃f̃+) , the equality D𝜃,𝛼

𝜑
(f− + 𝜃f̃+) = g− + 𝛼g̃+ means that 

there exists �+ ∈ K� such that

Note that 𝜓+ ∈ K𝛼 = H2 ⊖ 𝛼H2 if and only if �̄�𝜓+ ∈ �̄�H2 ⊖ H2 ⊂ H2
−
 (see [5, 6]). 

Hence equivalently, there exist �+ ∈ H2 and �− ∈ H2
−
 such that

i.e.,

This last system of equations can be written in matrix form as

with

and

Now the result for � follows from the fact that

and

(AP+ + BP−)� = �

D𝜃,𝛼
𝜑
(f− + 𝜃f̃+) = g− + 𝛼g̃+,

f− = P−
𝜙1, g− = P−

𝜓1,

f̃+ = P+
𝜙1, g̃+ = P+

𝜓2.

𝜑(f− + 𝜃f̃+) = g− + 𝛼g̃+ + 𝜓+.

{
𝜑f− + 𝜑𝜃f̃+ = g− + 𝛼g̃+ + 𝜓+,

�̄�𝜓+ = 𝜓−,

{
𝜑𝜃f̃+ − 𝜓+ + 𝜑f− = g− + 𝛼g̃+,

𝜃�̄�𝜑f̃+ + �̄�𝜑f− − 𝜓− = �̄�g− + g̃+.

([
𝜑𝜃 − 1

𝜑𝜃�̄� 0

]
P+ +

[
𝜑 0

�̄�𝜑 − 1

]
P−

)[
𝜙1

𝜙2

]
=

[
𝜓1

𝜓2

]

𝛹 =

[
𝜓1

𝜓2

]
=

[
g− + 𝛼g̃+
�̄�g− + g̃+

]

𝛷 =

[
𝜙1

𝜙2

]
=

[
f− + f̃+
𝜓− + 𝜓+

]
=

[
f− + f̃+

(1 + �̄�)(𝜑f− + 𝜑𝜃f̃+ − g− − 𝛼g̃+)

]
.

g− = P−(𝜑f− + 𝜑𝜃f̃+)
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To prove (2) let 𝛷 =

[
𝜙1

𝜙2

]
∈ L2 ⊕ L2 , 𝛹 =

[
𝜓1

𝜓2

]
∈ L2 ⊕ L2 and put �i± = P±�i , 

i = 1, 2 . Then (AP+ + BP−)� = � can be written as a system of equations

which is equivalent to

Moreover, the above is equivalent to

The first equation in the system above implies that

and the second equation gives

that is,

  ◻

The relations in Theorem 4.1 imply that D�,�
�

 and AP+ + BP− share many proper‑
ties. Indeed, in the next section we show that the former is equivalent after extension 
to the latter.

5  Equivalence after extension of D�,˛

'
 to a paired operator

Let us introduce some notations (see [4]). If H , K1 , K2 are Hilbert spaces and 
A1 ∶ H → K1 , A2 ∶ H → K2 , B1 ∶ K1 → H , B2 ∶ K2 → H are bounded linear oper‑
ators, we define

and

g̃+ = P+
�̄�(𝜑f− + 𝜑𝜃f̃+).

{
𝜑𝜃𝜙1+ − 𝜙2+ + 𝜑𝜙1− = 𝜓1,

𝜃�̄�𝜑𝜙1+ + �̄�𝜑𝜙1− − 𝜙2− = 𝜓2,

{
𝜑𝜙1− + 𝜑𝜃𝜙1+ = 𝜓1 + 𝜙2+,

�̄�(𝜑𝜙1− + 𝜑𝜃𝜙1+) = 𝜓2 + 𝜙2−.

{
𝜑(𝜙1− + 𝜃𝜙1+) = 𝜓1 + 𝜙2+,

�̄�(𝜓1 + 𝜙2+) = 𝜓2 + 𝜙2−.

D𝜃,𝛼
𝜑
(𝜙1− + 𝜃𝜙1+) = Q𝛼𝜑(𝜙1− + 𝜃𝜙1+)

= Q𝛼(𝜓1 + 𝜙2+) = P−
𝜓1 + 𝛼P+

�̄�(𝜓1 + 𝜙2+)

𝛼P+
�̄�(𝜓1 + 𝜙2+) = 𝛼P+

𝜓2,

D�,�
�
(P−

�1 + �P+
�1) = P−

�1 + �P+
�2.

A1 ⋄ A2 ∶ H → K1 ⊕K2, (A1 ⋄ A2)h = A1h⊕ A2h,
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In what follows, � and � are inner functions, � ∈ L∞ and

as at the beginning of Sect. 4.

Proposition 5.1 Let � ∈ L∞ and let � , � be inner functions. Then

where Q𝛼𝜑Q𝜃 ⊞ P𝛼 ∶ (K𝜃)
⊥ ⊕ K𝛼 → L2.

Proof An easy computation shows that

where F1 ∶ (K𝜃)
⊥ ⊕ K𝛼 → ((K𝜃)

⊥ ⊕ K𝛼)⊕ {0} is defined for f− ∈ H2
−
 , f̃+ ∈ H2 and 

g� ∈ K� by

and E1 ∶ L2 ⊕ {0} → (K𝛼)
⟂ ⊕ K𝛼 is defined for f ∈ L2 by

Clearly, F1 and E1 are invertible.   ◻

Theorem 5.2 Let � ∈ L∞ and let � , � be inner functions. Then

where AP+ + BP− ∶ L2 ⊕ L2 → L2 ⊕ L2 is a paired operator with A, B given by (2).

Proof Given the result of Proposition 5.1 and the fact that ⋆∼ is an equivalence rela‑
tion and thus transitive, we only have to prove that

To this end, we note that Q𝛼𝜑Q𝜃 ⊞ P𝛼 is obviously equivalent after extension to

Using the relations from Sect. 4 and rewriting them appropriately, we get (as can be 
verified independently)

B1 ⊞ B2 ∶ K1 ⊕K2 → H, (B1 ⊞ B2)(f + g) = B1f + B2g.

(2)A =

[
𝜑𝜃 − 1

𝜑𝜃�̄� 0

]
, B =

[
𝜑 0

�̄�𝜑 − 1

]
,

D𝜃,𝛼
𝜑

⋆
∼ Q𝛼𝜑Q𝜃 ⊞ P𝛼 ,

[
D𝜃,𝛼

𝜑
0

0 IK𝛼

]
= E1

[
Q𝛼𝜑Q𝜃 ⊞ P𝛼 0

0 I{0}

]
F1,

F1((f− + 𝜃f̃+)⊕ g𝛼) = [(f− + 𝜃f̃+)⊕ g𝛼]⊕ 0,

E1(f ⊕ 0) = Q𝛼f ⊕ P𝛼f .

D𝜃,𝛼
𝜑

⋆
∼ AP+ + BP−,

Q𝛼𝜑Q𝜃 ⊞ P𝛼

⋆
∼ AP+ + BP−.

[
Q𝛼𝜑Q𝜃 ⊞ P𝛼 0

0 IL2

]
∶ ((K𝜃)

⊥
⊕ K𝛼)⊕ L2 → L2 ⊕ L2.



1567Invertibility, Fredholmness and kernels of dual truncated…

where F ∶ ((K𝜃)
⊥ ⊕ K𝛼)⊕ L2 → L2 ⊕ L2,

and E ∶ L2 ⊕ L2 → L2 ⊕ L2,

The operators F and E are invertible by Lemmas 5.3 and 5.4 below.   ◻

The proofs of the following two lemmas are straightforward.

Lemma 5.3 The operator F ∶ ((K𝜃)
⊥ ⊕ K𝛼)⊕ L2 → L2 ⊕ L2,

is invertible and F−1 ∶ L2 ⊕ L2 → ((K𝜃)
⊥ ⊕ K𝛼)⊕ L2,

Lemma 5.4 The operator E ∶ L2 ⊕ L2 → L2 ⊕ L2,

is invertible and E−1 = E.

Corollary 5.5 Let � be an inner function. Then

where

In what follows GL∞ will denote the set of all invertible elements of the algebra 
L∞.

[
Q𝛼𝜑Q𝜃 ⊞ P𝛼 0

0 IL2

]
= E

[
𝜑P− + 𝜑𝜃P+ − P+

�̄�𝜑P− + 𝜑�̄�𝜃P+ − P−

]
F,

F =

[
(P− + P+�̄�)⊞ 0 0

(P−𝜑�̄� + P+𝜑)Q𝜃 ⊞ (−P𝛼) − (P− + 𝛼P+)

]
,

E =

[
𝛼P−�̄� 𝛼P+

P+�̄� P−

]
.

F =

[
(P− + P+�̄�)⊞ 0 0

(P+𝜑 + P−𝜑�̄�)Q𝜃 ⊞ (−P𝛼) − (P− + 𝛼P+)

]
,

F−1 =

[
(P− + 𝜃P+) ⋄ P𝛼𝜑(P

− + 𝜃P+) 0 ⋄ (−P𝛼)

𝜑�̄�(P− + 𝜃P+) − (P− + P+�̄�)

]
.

E =

[
𝛼P−�̄� 𝛼P+

P+�̄� P−

]
,

D𝜃

𝜑

⋆
∼ A0P

+ + B0P
−,

(3)A0 =

[
𝜑𝜃 − 1

𝜑 0

]
, B0 =

[
𝜑 0

�̄�𝜑 − 1

]
.
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Corollary 5.6 The operator D�,�
�

 is semi-Fredholm (respectively Fredholm) if and 
only if AP+ + BP− is semi-Fredholm (respectively Fredholm) on L2 ⊕ L2 and, in that 
case, we have � ∈ GL∞.

Proof The equivalence is a consequence of Theorems 3.2 and 5.2. To prove that � 
is invertible note that | detA| = | detB| = |�| . Since a necessary condition for the 
operator AP+ + BP− to be semi‑Fedholm is that

([14, Chapter V, Theorem  5.1]), we conclude that if D�,�
�

 is semi‑Fredholm, then 
� ∈ GL∞ .   ◻

In particular, we conclude that if D�

�
 is invertible, then � ∈ GL∞ ([9, Proposition 

2.4]) and then, denoting by �(� ) the essential range of � ∈ L∞ , we have

(see also [15, Theorem 4.1]).

6  Equivalence relations between D�,˛

'
 and truncated Toeplitz 

operators

In view of Corollary 5.6, the case where � is an invertible element of L∞ becomes 
particularly interesting. Assume then that

This implies that, for A, B defined by (2), we have A,B ∈ G(L∞)2×2 with

In that case

where B (identified with multiplication by B on L2 ⊕ L2 ) is invertible, as well as 
I + P−B−1AP+ because

Therefore AP+ + BP− is equivalent to P+CP+ + P− , where

ess inf
t∈�

| detA(t)| > 0, ess inf
t∈�

| detB(t)| > 0

(4)𝜑(� ) ⊂ 𝜎e(D
𝜃

𝜑
) ⊂ 𝜎(D𝜃

𝜑
)

� ∈ GL∞.

A−1 =

[
0 �̄�𝛼𝜑−1

−1 𝛼

]
, B−1 =

[
𝜑−1 0

�̄� − 1

]
.

AP+ + BP− = B(P+B−1AP+ + P−)(I + P−B−1AP+),

(I + P−B−1AP+)−1 = I − P−B−1AP+.

C = B−1A =

[
𝜃 − 𝜑−1

0 − �̄�

]
.
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It follows from Theorem 5.2 that the operator D�,�
�

 is equivalent after extension to 
P+CP+ + P− . It is easy to see that P+CP+ + P− ∼ P+GP+ + P− , where

(since G and C differ by constant factors). Therefore we have that

where we took Theorem 3.3 into account. We have thus proved the following:

Theorem 6.1 Let � , � be inner functions. If � ∈ GL∞ , then D𝜃,𝛼
𝜑

⋆
∼ A

𝛼,𝜃

𝜑−1
.

Corollary 6.2 If � ∈ GL∞ , then D𝜃

𝜑

⋆
∼ A𝜃

𝜑−1
.

Corollary 6.3 The operator D�

�
 is Fredholm (respectively, invertible) if and only if 

� ∈ GL∞ and A�

�−1
 is Fredholm (respectively, invertible).

Proof If D�

�
 is Fredholm, then by Corollary  5.6 we have � ∈ GL∞ and since 

D𝜃

𝜑

⋆
∼ A𝜃

𝜑−1
 , it follows that A�

�−1
 is Fredholm. Conversely, if � ∈ GL∞ and A�

�−1
 is 

Fredholm, then Corollary 6.2 implies that D�

�
 is also Fredholm. The proof for invert‑

ibility is analogous.   ◻

7  Kernel isomorphisms

By Theorem 3.2, the kernels of two operators that are equivalent after extension, 
are isomorphic. Using the relations from Sect.  2, we describe here several of 
those isomorphisms. We use the same notation as in Sect. 4.

Theorem 7.1 The map

is an isomorphism and

where P1

([
x

y

])
= x.

Proof Since

G =

[
0 1

1 0

]
C

[
0 1

−1 0

]
=

[
�̄� 0

𝜑−1 𝜃

]

D𝜃,𝛼
𝜑

⋆
∼ P+GP+ + P− ⋆

∼ P+GP+|H2⊕H2 = TG
⋆
∼ A

𝛼,𝜃

𝜑−1
,

N ∶ kerD𝜃,𝛼
𝜑

→ ker(AP+ + BP−),

N(f− + 𝜃f̃+) =

[
f− + f̃+

𝜑(1 + �̄�)(f− + 𝜃f̃+)

]
, where f− ∈ H2

−
, f̃+ ∈ H2,

kerD�,�
�

= (P− + �P+)P1(ker(AP
+ + BP−)),
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it follows from Theorem 4.1 that D𝜃,𝛼
𝜑
(f− + 𝜃f̃+) = 0 if and only if

Thus N  is well defined and injective. To see that N  is also surjective note that if

then

which means that �2 is determined by �1 . Thus by Theorem 4.1(2), if � =

[
�1

�2

]
 is in 

ker(AP+ + BP−) , then � = N(P−�1 + �P+�1) .   ◻

Theorem 7.2 The map

is an isomorphism.

Proof We have (D𝜃,𝛼
𝜑
)∗ = D

𝛼,𝜃

�̄�
 and (AP+ + BP−)∗ = P+A∗ + P−B∗ , where A∗ = ĀT , 

B∗ = B̄T and we identify A∗ and B∗ with the corresponding multiplication operators 

on L2 ⊕ L2 . Now, let 𝛷 =

[
𝜙1

𝜙2

]
∈ L2 ⊕ L2 . Then (AP+ + BP−)∗� = 0 if and only if 

P+A∗� = 0 and P−B∗� = 0 . The last two conditions are equivalent to

that is,

In other words, �1 ∈ H2
−
 , �2 ∈ H2 and

(1 + �̄�)P𝛼𝜑(f− + 𝜃f̃+) = 𝜑(1 + �̄�)(f− + 𝜃f̃+) − (1 + �̄�)D𝜃,𝛼
𝜑
(f− + 𝜃f̃+),

(AP+ + BP−)

[
f− + f̃+

𝜑(1 + �̄�)(f− + 𝜃f̃+)

]
=

[
0

0

]
.

(AP+ + BP−)

[
�1

�2

]
=

[
0

0

]
,

𝜙2 = 𝜑𝜃P+
𝜙1 + 𝜑P−

𝜙1 + 𝜑𝜃�̄�P+
𝜙1 + �̄�𝜑P−

𝜙1

= 𝜑(P−
𝜙1 + 𝜃P+

𝜙1) + 𝜑�̄�(P−
𝜙1 + 𝜃P+

𝜙1)

= 𝜑(1 + �̄�)(P−
𝜙1 + 𝜃P+

𝜙1),

N∗ ∶ ker(D𝜃,𝛼
𝜑
)∗ → ker(AP+ + BP−)∗,

N∗(g− + 𝛼g̃+) =

[
g−
g̃+

]
, where g− ∈ H2

−
, g̃+ ∈ H2,

A∗
𝛷 ∈ (H2

−
⊕ H2

−
) and B∗

𝛷 ∈ (H2
⊕ H2),

[
�̄��̄� �̄��̄�𝛼

−1 0

] [
𝜙1

𝜙2

]
∈ (H2

−
⊕ H2

−
), and

[
�̄� 𝛼�̄�

0 − 1

] [
𝜙1

𝜙2

]
∈ (H2

⊕ H2).

{
�̄�(�̄�𝜙1 + 𝛼�̄�𝜙2) ∈ H2

−
,

�̄�𝜙1 + 𝛼�̄�𝜙2 ∈ H2.
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The two conditions above can be written as �̄�(𝜙1 + 𝛼𝜙2) ∈ K𝜃 . Therefore, 
(AP+ + BP−)∗� = 0 if and only if �1 ∈ H2

−
 , �2 ∈ H2 and D𝛼,𝜃

�̄�
(𝜙1 + 𝛼𝜙2) = 0 . This 

implies that N∗ is well defined and surjective. It is now easy to see that N∗ is injec‑
tive.   ◻

A conjugation on a Hilbert space H is an antilinear isometric involution 
(see for instance [10]). In what follows let C� ∶ L2 → L2 denote the conjugation 
defined as

The conjugation C� preserves both the model space K� and its orthogonal comple‑
ment (K�)

⟂ , (i.e., C�P� = P�C� ), and therefore induces a conjugation in K� and in 
(K�)

⟂ , which we also denote by C� . This conjugation plays an important role in the 
study of truncated Toeplitz operators.

Theorem 7.3 The map

is an isomorphism and

Proof Let f− ∈ H2
−
 and f̃+ ∈ H2 . Then D𝜃

𝜑
(f− + 𝜃f̃+) = 0 if and only if 

𝜑(f− + 𝜃f̃+) ∈ K𝜃 , that is, if and only if

The above means that

with g− = zf̃+ ∈ H2
−
 , g̃+ = zf− ∈ H2 (i.e., g− + 𝜃g̃+ = ND(f− + 𝜃f̃+) ). Thus ND is an 

isomorphism and we have

  ◻

Corollary 7.4 If D�

�
 is Fredholm, then it has Fredholm index 0.

Corollary 7.5 If D�

�
 is Fredholm, then it is invertible if and only if kerD�

�
= {0}.

Theorem 7.6 If � ∈ GL∞ , then the map

C𝜃(f ) = 𝜃z̄f̄ for f ∈ L2.

ND ∶ kerD𝜃

𝜑
→ ker(D𝜃

𝜑
)∗,

ND(f− + 𝜃f̃+) = zf̃+ + 𝜃zf−, where f− ∈ H2
−
, f̃+ ∈ H2,

ker(D�

�
)∗ = C�(kerD

�

�
).

𝜃z̄𝜑(f− + 𝜃f̃+) = �̄� (zf̃+ + 𝜃 zf−) ∈ K𝜃 .

D𝜃

�̄�
(g− + 𝜃g̃+) = 0

ker(D𝜃

𝜑
)∗ = 𝜃z̄kerD𝜃

𝜑
= C𝜃(kerD

𝜃

𝜑
).
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is an isomorphism and

Proof Let f ∈ L2 . Then f ∈ kerD�,�
�

 if and only if f ∈ (K𝜃)
⊥ and �f ∈ K� . In other 

words, g = �f ∈ K� and 𝜑−1g = f ∈ (K𝜃)
⊥ , that is, g ∈ kerA

�,�

�−1
 .   ◻

8  Dual truncated Toeplitz operators and the corona theorem

Corona problems, seen as left invertibility problems, have a strong connection 
with the invertibility and Fredholmness of block Toeplitz operators (see for 
instance [7] and references in it). In this section we extend some of those connec‑
tions to paired operators and apply them to the study of injectivity and invertibil‑
ity of dual truncated Toeplitz operators.

Let CP± denote the sets of corona pairs, i.e., pairs of functions satisfying the so 
called corona conditions in � and ℂ⧵(𝔻 ∪ 𝕋 ) , denoted here by �± , respectively:

Obviously, �− ∈ CP− if and only if �− ∈ CP+.
By the corona theorem �± ∈ CP± if and only if there exist �̃± with 

�̃+ ∈ (H∞ ⊕ H∞) and �̃− ∈ H∞ ⊕ H∞ such that

Theorem  8.1 Let A,B ∈ (L∞)2×2 be such that detA = �f+ and detB = �f− , where 
� ∈ GL∞ and f+, f− ∈ H∞⧵{0} . If there exist �± ∈ CP± satisfying

with A�+(t) ≠ 0 a. e. on �  , then the operator AP+ + BP− is injective in L2 ⊕ L2.

Proof Let 𝛷 =

[
𝜙1

𝜙2

]
∈ ker(AP+ + BP−) ⊂ L2 ⊕ L2 . Taking �± = P±� we have

So, using (6), we can write

NDA ∶ kerD𝜃,𝛼
𝜑

→ kerA
𝛼,𝜃

𝜑−1
,

NDA(f− + 𝜃f̃+) = 𝜑(f− + 𝜃f̃+), where f− ∈ H2
−
, f̃+ ∈ H2,

kerD�,�
�

= �
−1 kerA

�,�

�−1
.

CP+ =

{
�+ =

[
h1+
h2+

]
∈ (H∞

⊕ H∞) ∶ inf
z∈�+

(|h1+(z)| + |h2+(z)|) > 0

}
.

CP− =

{
�− =

[
h1−
h2−

]
∈ (H∞ ⊕ H∞) ∶ inf

z∈�−
(|h1−(z)| + |h2−(z)|) > 0

}
.

(5)(�̃±)
T�± = 1 in �

±.

(6)A�+ + B�− = 0

(7)A�+ = −B�−.
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Taking determinants on both sides, we get

which, since � ∈ GL∞ , is equivalent to

Moreover, since the left hand side of the above equality represents a function in H2 
while the right hand side represents a function in H2

−
 , both sides must be zero. It fol‑

lows that

so there exist non‑zero linear combinations, with �1± and �2± defined a. e. on � ,

Multiplying on the left by (�̃±)T , by (5) we have

Therefore there exist �± ≠ 0 a. e. on �  such that

From (6) and (8), A�+ = −B�− if and only if �+A�+ = −�−B�− , or 
(�+ − �−)A�+ = 0 . This however happens if and only if �+ = �− (as A�+(t) ≠ 0 a. e. 
on �  ). Since 𝛿+ = (�̃+)

T𝛷+ ∈ H2 , 𝛿− = (�̃−)
T𝛷− ∈ H2

−
 and �+ = �− , we have �± = 0 

and therefore �± = 0 .   ◻

Theorem  8.2 Assume that A,B ∈ (L∞)2×2 are invertible matrices such that 
det(B−1A) = f−z

kf+ with f+, f− ∈ GH∞ , k ∈ ℤ . If there exist �± ∈ CP± satisfying

then AP+ + BP− is invertible, injective (and not surjective), or surjective (and not 
injective) if and only if k = 0 , k > 0 or k < 0 , respectively.

Proof If �± satisfy (9), then B−1A�+ = −�− , where det(B−1A) = f−z
kf+ with 

f+, f− ∈ GH∞ , k ∈ ℤ and �± ∈ CP± . Therefore, by [7, Theorem 4.5] and the proof 
given there, we have that the Toeplitz operator TB−1A ∶ (H2 ⊕ H2) → (H2 ⊕ H2) 
is invertible, only injective, or only surjective if and only if k = 0 , k > 0 or k < 0 , 
respectively. We conclude that the same holds for AP+ + BP− because (by (1)),

  ◻

A
[
�+ �+

]
= −B

[
�− �−

]
.

�f+ det
[
�+ �+

]
= −�f− det

[
�− �−

]
,

f+ det
[
�+ �+

]
= −f− det

[
�− �−

]
.

det
[
�± �±

]
= 0,

�1±�± + �2±�± = 0.

𝛿1± = −𝛿2±(�̃±)
T
𝛷±.

(8)�± = �±�± on � .

(9)A�+ + B�− = 0,

TB−1A

⋆
∼ B−1AP+ + P− ∼ AP+ + BP−.
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Taking Theorem 5.2 into account, we also have the following.

Theorem 8.3 Let �, � be inner functions such that � ⩽ � (i.e., � divides � ). 

1. If � ∈ GL∞ , and there exist h1+, h2+, h2− ∈ H∞ satisfying

and

then kerD�,�
�

= {0}.
2. If, moreover, 𝜃�̄� is a finite Blaschke product of degree k, then D�,�

�
 is injective; it 

is invertible if and only if � = c� with c ∈ ℂ, |c| = 1 ; so in particular D�

�
 is invert-

ible.

Proof To prove (1) note that for A, B given by (2), we have

where 𝜃�̄� ∈ H∞ . For h1− = �̄�h1+ ∈ H∞ , we have from (11) that

which can be written as

By (10), 
[
h2+
h1+

]
∈ CP+ and 

[
h2−
h1−

]
∈ CP− , so Theorem 8.1 implies that AP+ + BP− is 

injective. By Theorems 3.2 and 5.2 the operator D�,�
�

 is also injective.
Now we prove (2). If 𝜃�̄� is a finite Blaschke product of degree k, then we can fac‑

torize 𝜃�̄� = R−z
kR+ , where R± are rational functions such that R+, R̄− ∈ GH∞ . Since 

det(B−1A) = −𝜃�̄� , the result follows from Theorems 8.2 and 5.2.   ◻

Dual truncated Toeplitz operators can also be related to corona problems by using 
Corollary 6.2 and the known relations between truncated Toeplitz operators and the 
corona theorem [5, 6], as in the following theorem which will be used in the next 
section to describe the spectrum of a class of dual truncated Toeplitz operators with 
analytic symbols.

Theorem  8.4 Let � be an inner function. If � ∈ GL∞ and there exist 
�+ ∈ H∞ ⊕ H∞, �− ∈ CP+ such that G�+ = �− with

(10)
[
h1+
h2+

]
∈ CP+,

[
�̄�h1+
h2−

]
∈ CP−

(11)�(h2− + �h2+) = h1+,

detA = 𝜑𝜃�̄�, detB = −𝜑,

{
𝜑𝜃h2+ + 𝜑h2− − h1+ = 0,

�̄�𝜑𝜃h2+ + �̄�𝜑h2− − h1− = 0,

A

[
h2+
h1+

]
+ B

[
h2−
h1−

]
= 0.
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then D�

�
 is invertible if and only if �+ ∈ CP+.

Proof In this case D�

�
 is invertible if and only if A�

�−1
 is invertible, and this is equiva‑

lent to the Toeplitz operator TG being invertible. The result now follows from Theo‑
rem 3.11 in [5].   ◻

9  Fredholmness, invertibility and spectra of dual truncated Toeplitz 
operators

In this section we apply the previous results to study several classes of dual trun‑
cated Toeplitz operators. In what follows � is always an inner function.

9.1  Analytic symbols

We start by using the results of Theorem  8.4 to describe the spectrum of dual 
truncated Toeplitz operators with analytic symbols of a particular type.

Theorem 9.1 If � ∈ H∞ and �̄�𝜑 ∈ H∞ , then �(D�

�
) = clos�(�).

Proof If � ∈ �(� ) , then � − � ∉ GL∞ , so D�

�−�
 is not Fredholm. If � ∉ �(� ) , then 

� − � ∈ GL∞ and we have

Since the right hand side of the above equality belongs to CP− , by Theorem 8.4 we 

have that D�

�−�
 in invertible if and only if 

[
� − �

0

]
∈ CP+ . The latter is equivalent to 

(� − �) ∈ GH∞ , i.e.,

Since 𝜑(� ) ⊂ clos𝜑(�) , we conclude that �(D�

�
) = clos�(�) .   ◻

The assumptions of Theorem  9.1, are satisfied in particular if � ∈ Kz� ∩ L∞ 
since, in that case, � ∈ H∞ and �̄�𝜑 ∈ H2 ∩ L∞ = H∞ (see [15, Theorem 4.3]).

Several other results regarding analytic symbols will be obtained from the 
properties studied below.

G =

[
�̄� 0

𝜑−1 𝜃

]
,

[
�̄� 0
1

𝜑−𝜆
𝜃

][
𝜑 − 𝜆

0

]
=

[
�̄�(𝜑 − 𝜆)

1

]
.

inf
z∈�

|𝜑(z) − 𝜆| > 0.
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9.2  Symbols with analytic or co‑analytic inverse

We consider now symbols � ∈ GL∞ such that �−1 is in H∞ or in H∞ . In that case, by 
Corollary 6.2, D�

�
 is equivalent after extension to a truncated Toeplitz operator A�

�−1
 ; 

therefore we start by recalling the following.

Theorem 9.2 [5, 6] Let g+ ∈ H∞ and denote by gi
+
 the inner factor of g+ . Then:

1. A�

g+
 is Fredholm if and only if � = GCD (�, gi

+
) is a finite Blaschke product and 

�̄�

[
𝜃

g+

]
∈ CP+,

2. A�

g+
 is invertible if and only if 

[
�

g+

]
∈ CP+,

3. kerA�

g+
=

�

�
K�.

Using Theorem 3.2 and Corollary 6.2 we now obtain the following.

Theorem 9.3 Let � ∈ GL∞ . Assume that �−1 ∈ H∞ and let �−1 = �a+ be its stand-
ard inner–outer decomposition ( �‑inner, a+‑outer). Denote � = GCD (�, �) . Then

1. D�

�
 is Fredholm if and only if � is a finite Blaschke product,

2. D�

�
 is invertible if and only if 

[
�

�

]
∈ CP+,

3. kerD𝜃

𝜑
= 𝛽a+

𝜃

𝛾
K𝛾 ⊂

𝜃𝛽

𝛾
H2.

Proof Parts (1) and (2) follow from Theorems 9.2, 3.2 and Corollary 6.2. Note that 

the condition 
[
�

�

]
∈ CP+ in (2) is equivalent to 

[
�

�−1

]
∈ CP+ in this case. On the 

other hand, by Theorem 7.6,

  ◻

Corollary 9.4 If � ∈ GH∞ , then D�

�
 is invertible.

Proof In this case � ∈ ℂ with |�| = 1 , therefore 
[
�

�

]
∈ CP+ .   ◻

Corollary 9.5 If � is a singular inner function, then D�

�
 is Fredholm if and only if it is 

invertible.

Proof Using the same notation as in Theorem 9.3 we have that � = GCD (�, �) is 
either a constant or a singular inner function. So either kerD�

�
= {0} and in that case 

kerD�

�
= �

−1 kerA�

�−1 = �a+
�

�
K� .
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the Fredholmness of D�

�
 is equivalent to its invertibility by Corollary 7.5, or kerD�

�
 

is infinite dimensional and in this case D�

�
 is neither Fredholm nor invertible.   ◻

Corollary 9.6 Let � be an inner function and let � = GCD (�, �) . Then 
kerD𝜃

𝛽
= 𝛽

𝜃

𝛾
K𝛾 . The operator D𝜃

𝛽
 is Fredholm if and only if � is a finite Blaschke 

product, and it is invertible if and only if 
[
�

�

]
∈ CP+.

It follows from Corollary 9.6 that we have

and 𝜃 ∈ kerD𝜃

�̄�
 if and only if �(0) = 0 (cf. [9, Example 2.5]).

If � ∈ GL∞ and �−1 ∈ H∞ , then we can reduce the study of Fredholmness and 
invertibility of D�

�
 to that of (D𝜃

𝜑
)∗ = D𝜃

�̄�
 and use Theorem 9.3. Regarding the kernel, 

we have the following:

Corollary 9.7 Let � ∈ GL∞ . Assume that �−1 ∈ H∞ and let �−1 = �a+ be its stand-
ard inner–outer decomposition ( �–inner, a+–outer). Denote � = GCD (�, �) . Then

9.3  Rational symbols

Let now � be continuous on the unit circle �  , � ∈ C(� ) . In this case we can describe 
the essential spectrum of D�

�
 (see also [15, Theorem 4.3]).

For an inner function �,

Theorem 9.8 If � ∈ C(� ) , then �e(D�

�
) = �(� ).

Proof By (4), we have 𝜑(� ) ⊂ 𝜎e(D
𝜃

𝜑
) . Conversely, if � ∈ ℂ⧵�(𝕋 ) , then 

� − � ∈ GL∞ and D�

�
 is Fredholm if and only if A�

1

�−�

 is Fredholm. By Theorem 5.3 

in [5] we have that this happens if and only if 0 ∉ g(�(�) ∩ � ) with g =
1

�−�
 , which 

is always true.   ◻

Corollary 9.9 If � ∈ C(� ) , then D�

�
 is Fredholm if and only if � is invertible in C(� ).

We can obtain further results if � is rational and continuous on �  , i.e., � ∈ R . 
We start by describing the kernels of dual truncated Toeplitz operators with rational 
symbols.

kerD𝜃

�̄�
= 𝜃K𝜃

kerD𝜃

𝜑
= C𝜃(ker(D

𝜃

𝜑
)∗) =

(
𝛽

𝛾

)
a+z̄K𝛾 ⊂

(
𝛽

𝛾

)
H2

−
.

�(�) = {w ∈ clos� ∶ lim inf
z→w

|�(z)| = 0}.
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Theorem  9.10 Let R ∈ R and R = P∕Q , where P and Q are polynomials with-
out common zeros. Then f ∈ kerD�

R
 if and only if there is a decomposition 

f = f− + 𝜃f̃+ , f− ∈ H2
−
, f̃+ ∈ H2 such that there are polynomials P1 , P2 with 

deg(P2) ⩽ max{deg(P), deg(Q)} − 1 such that

Proof Let f = f− + 𝜃f̃+ with f− ∈ H2
−
 , f̃+ ∈ H2 . Then f ∈ kerD�

R
 if and only if 

R(f− + 𝜃f̃+) ∈ K𝜃 . The latter happens if and only if there exist k+ ∈ H2 and k− ∈ H2
−
 

such that

or equivalently,

By a generalization of Liouville’s theorem, both sides of the first equation in (13) 
must be equal to a polynomial P1 such that P1

P
∈ H2

−
 and, analogously, both sides of 

the second equation in (13) must be equal to a polynomial P2 such that P2

P
∈ H2 and 

P2 = Qk− − P�̄�f− . So the degree of P2 is appropriate and

Conversely, if P1 and P2 are polynomials satisfying desired conditions, then for 
f− =

P1

P
 , f̃+ =

P2

P
 we have that f− ∈ H2

−
 , f̃+ ∈ H2 and

so that f = f− + 𝜃f̃+ ∈ kerD𝜃

R
 .   ◻

The previous theorem enables us to characterize the points � ∈ �(D�

R
) for R ∈ R , 

as follows.

Theorem 9.11 If R ∈ R , then

Proof From Theorem 9.8 we have 𝜎e(D𝜃

R
) = R(� ) ⊂ 𝜎(D𝜃

R
) . If � ∉ R(� ) , then D�

R−�
 

is Fredholm, so it is invertible if and only if it is injective by Corollary 7.5. There‑
fore � ∈ �(D�

R
) if and only if kerD�

�−�
≠ {0} , i.e., � is an eigenvalue of D�

�
 .   ◻

As an application we study the spectra of the dual truncated shift D�

z
 and its 

adjoint – the dual truncated backward shift D𝜃

z̄
 . We start by studying their kernels. 

The next result is a consequence of Theorems 9.10 and 9.11.

(12)f− =
P1

P
, f̃+ =

P2

P
,

P1

Q
+ 𝜃

P2

Q
∈ K𝜃 .

{
P

Q
f− +

P

Q
𝜃f̃+ = k+,

�̄�k+ = k−,

(13)
{

Pf− = k+Q − P𝜃f̃+,

Pf̃+ = k−Q − �̄�Pf−.

k+ =
P1

Q
+ 𝜃

P

Q
f̃+ =

P1

Q
+ 𝜃

P2

Q
∈ K𝜃 .

R(f− + 𝜃f̃+) =
P

Q

(
P1

P
+ 𝜃

P2

P

)
=

P1

Q
+ 𝜃

P2

Q
∈ K𝜃 ,

�(D�

R
) = R(� ) ∪ �p(D

�

R
) = �e(D

�

R
) ∪ �p(D

�

R
).
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Theorem  9.12 If � ∈ � ∪ �
− or if � ∈ � and �(0) ≠ 0 then 

kerD𝜃

z−𝜆
= kerD𝜃

z̄−�̄�
= {0} . If � ∈ � , �(0) = 0 , then

and

Proof By Theorem  9.10, f ∈ kerD�

z−�
 if and only if there are constants A,B ∈ ℂ 

such that f = f− + 𝜃f̃+ with f− =
A

z−�
 and f̃+ =

B

z−𝜆
 . Note that if � ∈ � ∪ �

− , then 
A = 0 , and if � ∈ � ∪ � , then B = 0 . Therefore 

1. if � ∈ �  , then kerD�

z−�
= {0};

2. if � ∈ �
− , then kerD�

z−�
= {�

B

z−�
∶ B ∈ ℂ, �B ∈ K�};

3. if � ∈ � , then kerD�

z−�
= {

A

z−�
∶ A ∈ ℂ ∩ K�} = {0}.

So kerD�

z−�
= {0} unless � ∈ � and �(0) = 0 . By Theorem  7.3, we have 

kerD𝜃

z̄−�̄�
= C𝜃(kerD

𝜃

z−𝜆
) .   ◻

Corollary 9.13 

1. 𝜎e(D
𝜃

z
) = 𝜎e(D

𝜃

z̄
) = � ;

2. �(D�

z
) and 𝜎(D𝜃

z̄
) are the disjoint union of �  with 𝜎p(D𝜃

z
) = 𝜎p(D

𝜃

z̄
) , where 

�p(D
�

z
) = � if �(0) ≠ 0 and �p(D�

z
) = � if �(0) = 0.
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