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Abstract
Let X be a completely regular Hausdorff space and C

b
(X) be the space of all bounded 

continuous functions on X, equipped with the strict topology � . We study some 
important classes of (�, ‖ ⋅ ‖

E
)-continuous linear operators from C

b
(X) to a Banach 

space (E, ‖ ⋅ ‖
E
) : �-absolutely summing operators, compact operators and �-nuclear 

operators. We characterize compact operators and �-nuclear operators in terms of 
their representing measures. It is shown that dominated operators and �-absolutely 
summing operators T ∶ C

b
(X) → E coincide and if, in particular, E has the Radon–

Nikodym property, then �-absolutely summing operators and �-nuclear operators 
coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concern-
ing the relationships between absolutely summing, dominated, nuclear and compact 
operators on the Banach space C(X), where X is a compact Hausdorff space.
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1  Introduction and preliminaries

The Riesz representation theorem plays a crucial role in the study of operators on 
the Banach space C(X) of continuous functions on a compact Hausdorff space X. 
Due to this theorem, different classes of operators on C(X) have been character-
ized in terms of their representing Radon vector measures.

Absolutely summing operators between Banach spaces have been the object of 
several studies (see [1, pp. 209–233] and  [5, 8, 11, 27, 28, 31, 34]). It originates 
in the fundamental paper of Grothendieck [17] from 1953. Grothendieck’s ine-
quality has equivalent formulation using the theory of absolutely summing opera-
tors (see [1, Theorem 8.3.1] and [4, 22]). In the multilinear case, it is also con-
nected with the Bohnenblust–Hille and the Hardy–Littlewood inequalities (see 
[2]). There is a vast literature on absolutely summing operators from the Banach 
space C(X) to a Banach space E (see [1], [9, Chap. VI], [11, 34, 43]).

The concept of nuclearity in Banach spaces is due to Grothendieck [17, 18] 
and Ruston [33] and has the origin in Schwartz’s kernel theorem [18]. Many 
authors have studied nuclear operators between locally convex spaces (see [21, 
§17.3], [37, Chap. 3, §7], [46, p. 289]) and Banach spaces (see [9, Chap. VI], [11, 
16] [46, p. 279]). If F is a Banach space, nuclear operators from the Banach space 
C(X, F) of F-valued continuous functions on a compact Hausdorff space X to E 
have been studied intensively by Popa [29], Saab [35], Saab and Smith [36]. In 
particular, a characterization of nuclear operators from C(X) to E in terms of their 
representing measures can be found in [9, Theorem 4, pp. 173–174], [34, Propo-
sition 5.30], [43, Proposition 1.2].

The interplay between absolutely summing operators, dominated operators 
of Dinculeanu (see [12, §19], [13, §1]) and nuclear operators T ∶ C(X) → E has 
been an interesting issue in operator theory. Pietsch [27, 2.3.4, Proposition, p. 41] 
proved that dominated operators and absolutely summing operators on the Banach 
space C(X) coincide. It is known that if in particular, E has the Radon–Nikodym 
property, then absolutely summing and nuclear operators T ∶ C(X) → E coincide 
(see [9, Corollary 5, p. 174]). Moreover, Uhl [44, Theorem 1] showed that if, E 
has the Radon–Nikodym property, then every dominated operator T ∶ C(X) → E 
is compact.

The aim of this paper is to extend these classical results to the setting, where X 
is a completely regular Hausdorff k-space.

Throughout the paper, we assume that (X, T) is a completely regular Hausdorff 
space. By K we denote the family of all compact sets in X. Let Bo denote the �
-algebra of Borel sets in X.

Let Cb(X) (resp. B(Bo)) denote the Banach space of all bounded continuous 
(resp. bounded Bo-measurable) scalar functions on X, equipped with the topology 
�u of the uniform norm ‖ ⋅ ‖∞ . By S(Bo) we denote the space of all Bo-simple sca-
lar functions on X. Let Cb(X)

� stand for the Banach dual of Cb(X).
Following [15, 37] and  [45, Definition 10.4, p. 137] the strict topology � on 

Cb(X) is the locally convex topology determined by the seminorms
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where w runs over the family W of all bounded functions w ∶ X → [0,∞) which van-
ish at infinity, that is, for every 𝜀>0 there exists K∈K such that supt∈X⧵K w(t) ≤ � . 
Let W1 ∶= {w ∈ W ∶ 0 ≤ w ≤ �X} . For w ∈ W1 and 𝜂 > 0 let

Note that the family {Uw(𝜂) ∶ w ∈ W1, 𝜂 > 0} is a local base at 0 for �.
The strict topology � on Cb(X) has been studied intensively (see [15, 20, 38, 

41, 45]). Note that � can be characterized as the finest locally convex Haus-
dorff topology on Cb(X) that coincides with the compact-open topology �c on �u
-bounded sets (see [41, Theorem  2.4]). The topologies � and �u have the same 
bounded sets. This means that (Cb(X), �) is a generalized DF-space (see [38, Cor-
ollary]), and it follows that (Cb(X), �) is quasinormable (see [32, p. 422]). If, in 
particular, X is locally compact (resp. compact), then � coincides with the origi-
nal strict topology of Buck [6] (resp. � = �u).

Recall that a countably additive scalar measure � on Bo is said to be a Radon 
measure if its variation |�| is regular, that is, for every A ∈ Bo and 𝜀 > 0 there 
exist K ∈ K and O ∈ T  with K ⊂ A ⊂ O such that |�|(O⧵K) ≤ � . Let M(X) denote 
the Banach space of all scalar Radon measures, equipped with the total variation 
norm ‖�‖ ∶= ���(X).

The following characterization of the topological dual of (Cb(X), �) will be of 
importance (see [15, Lemma 4.5]), [20, Theorem 2].

Theorem  1.1 For a linear functional Φ on Cb(X) the following statements are 
equivalent:

 (i) Φ is �-continuous.
 (ii) There exists a unique � ∈ M(X) such that

and ‖Φ�‖
� = ���(X) for � ∈ M(X) (here ‖ ⋅ ‖′ denotes the conjugate norm in 

Cb(X)
�).

The following result will be useful (see [41, Theorem 5.1]).

Theorem 1.2 For a subset M of M(X) the following statements are equivalent:

 (i) sup𝜇∈M |𝜇|(X) < ∞ and M is uniformly tight, that is, for each 𝜀 > 0 there 
exists K ∈ K such that sup�∈M |�|(X ⧵ K) ≤ �.

 (ii) The family {Φ� ∶ � ∈ M} is �-equicontinuous.

Recall that a completely regular Hausdorff space (X, T) is a k-space if any sub-
set A of X is closed whenever A ∩ K is compact for all compact sets K in X. In 

pw(u) ∶= sup
t∈X

w(t)|u(t)| for u ∈ Cb(X),

Uw(�) ∶= {u ∈ Cb(X) ∶ pw(u) ≤ �}.

Φ(u) = Φ�(u) = ∫X

u d� for u ∈ Cb(X)
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particular, every locally compact Hausdorff space, every metrizable space and every 
space satisfying the first countability axiom is a k-space (see [14, Chap. 3, § 3]).

From now on, we will assume that (X, T) is a k-space. Then, the space (Cb(X), �) 
is complete (see [15, Theorem 2.4]).

We assume that (E, ‖ ⋅ ‖E) is a Banach space. Let BE′ stand for the closed unit ball 
in the Banach dual E′ of E.

Recall that a bounded linear operator T ∶ Cb(X) → E is said to be absolutely sum-
ming if there exists a constant c > 0 such that for any finite set {u1,… , un} in Cb(X),

The infimum of number of c > 0 satisfying (1.1) denoted by ‖T‖as is called an abso-
lutely summing norm of T.

It is known that a bounded linear operator T ∶ Cb(X) → E is absolutely summing 
if and only if T maps unconditionally convergent series in Cb(X) into absolutely con-
vergent series in E (see [9, Definition 1, p. 161 and Proposition 2, p. 162]).

For t ∈ X , let �t stand for the point mass measure, that is, �t(A) ∶= �A(t) 
for A ∈ Bo . Then �t ∈ M+(X) and ∫

X
u d�t = u(t) for u ∈ Cb(X) . Clearly, 

‖�t‖ = �t(X) = 1.

Lemma 1.3 For a bounded linear operator T ∶ Cb(X) → E , the following statements 
are equivalent: 

 (i) T is absolutely summing.
 (ii) There exists c > 0 such that for any set {u1,… , un} in Cb(X) , 

Proof (i)⇒(ii) There exists c > 0 such that for any set {u1,… , un} in Cb(X),

Note that we have (see [1, p. 205]),

Hence, we get,

(1.1)
n�

i=1

‖T(ui)‖E ≤ c sup

�
n�

i=1

�Φ(ui)� ∶ Φ ∈ BCb(X)
�

�

.

n�

i=1

‖T(ui)‖E ≤ c sup

�
n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ���(X) ≤ 1

�

.

n�

i=1

‖T(ui)‖E ≤ c sup

�
n�

i=1

�Φ(ui)� ∶ Φ ∈ BCb(X)
�

�

.

sup

{
n∑

i=1

|Φ(ui)| ∶ Φ ∈ BCb(X)
�

}

= sup

{
‖
‖
‖
‖

n∑

i=1

�iui
‖
‖
‖
‖∞

∶ (�i) ∈ {−1, 1}n

}

.
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(ii)⇒(i) This is obvious.   ◻

The general theory of absolutely summing operators between locally convex 
spaces was developed by Pietsch [27].

Following [27, 1.2, pp. 23–24], we say that a sequence (un) in Cb(X) is � -weakly 
summable if 

∑∞

n=1
� ∫

X
un d𝜇� < ∞ for every � ∈ M(X) . By �1

w
(Cb(X), �) , we denote 

the linear space of all �-weakly summable sequences in Cb(X).
Let (un) ∈ �

1
w
(Cb(X), �) . Then, in view of [27, 1.2.3, pp. 23–24] for each w ∈ W1 

and 𝜂 > 0 there exists 𝜚w,𝜂 > 0 such that

where Uw(�)
0 stands for the polar of Uw(�) with respect to the pairing ⟨Cb(X),M(X)⟩ . 

Then, Ew,� is a seminorm on �1
w
(Cb(X), �) and the family {Ew,𝜂 ∶ w ∈ W1, 𝜂 > 0} 

generates the so-called E -topology on �1
w
(Cb(X), �) (see [27, 1.2.3]).

Let F(ℕ) denote the family of all finite sets in ℕ , the set of all natural numbers. 
By �1

s
(Cb(X), �) we denote the E-closed subspace of �1

w
(Cb(X), �) consisting of all 

� -summable sequences in Cb(X) (see [27, 1.3]). In view of [27, Theorem  1.3.6] 
a sequence (un) ∈ �

1
s
(Cb(X), �) if and only if the net (sM)M∈F(ℕ) of partial sums 

sM ∶=
∑

i∈M ui forms a �-Cauchy sequence in Cb(X) , where F(ℕ) is directed by 
inclusion.

Let �1(E) stand for the linear space of all absolutely summable sequences in E, 
i.e., (en) ∈ �

1(E) if 
∑∞

n=1
‖en‖E < ∞ . Then, �1(E) can be equipped with the norm 

�E((en)) ∶=
∑∞

n=1
‖en‖E (see [27, 1.4]).

According to [27, 2.1], we have

Definition 1.4 A (�, ‖ ⋅ ‖E)-continuous linear operator T ∶ Cb(X) → E is said to be � 
-absolutely summing if 

∑∞

n=1
‖T(un)‖E < ∞ whenever (un) ∈ �

1
s
(Cb(X), �).

Recall that a linear operator T ∶ Cb(X) → E is said to be � -compact (resp. � 
-weakly compact) if there exists a �-neighborhood V of 0 such that T(V) is a rela-
tively norm compact (resp. relatively weakly compact) subset of E.

n�

i=1

‖T(ui)‖E ≤ c sup

�
�
�
�
�

n�

i=1

�iui
�
�
�
�∞

∶ (�i) ∈ {−1, 1}n

�

= c sup

�
�
�
�
�

n�

i=1

�iui(t)
�
�
�
�
∶ (�i) ∈ {−1, 1}n, t ∈ X

�

≤ c sup

�
n�

i=1

�ui(t)� ∶ t ∈ X

�

= c sup

�
n�

i=1

�
�
�
��X

ui d�t
�
�
�
�
∶ t ∈ X

�

≤ c sup

�
n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ���(X) ≤ 1

�

.

Ew,�((un)) ∶= sup

{
∞∑

n=1

|
|
|
|�X

un d�
|
|
|
|
∶ � ∈ Uw(�)

0

}

≤ �w,� ,
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We will say that an operator T ∶ Cb(X) → E is compact (resp. weakly compact) 
if T is �u-compact (resp. �u-weakly compact).

Proposition 1.5 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator. 
Then, the following statements are equivalent: 

 (i) T is weakly compact (resp. compact).
 (ii) T is �-weakly compact (resp. �-compact).

Proof (i)⇒(ii) Assume that (i) holds. Topologies � and �u have the same bounded 
sets in Cb(X) , so T maps �-bounded sets onto relatively weakly compact (resp. norm 
compact) sets in E. Since the space (Cb(X), �) is quasinormable, by the Grothendieck 
classical result (see [32, p.  429]), we obtain that T is �-weakly compact (resp. �
-compact).

(ii)⇒(i) This is obvious because 𝛽 ⊂ 𝜏u .   ◻

Following [12, § 19, Section 3], [13, § 1, Section H] one can distinguish an 
important class of linear operators on Cb(X).

Definition 1.6 A linear operator T ∶ Cb(X) → E is said to be dominated if there 
exists � ∈ M+(X) such that

Then, we say that T is dominated by �.

According to [25, Proposition 3.1] we have.

Proposition 1.7 Every dominated operator T ∶ Cb(X) → E is (�, ‖ ⋅ ‖E)-continuous 
and weakly compact.

Following [37, Chap. 3, §7] (see also [21, §17.3, p.  376]) and using Theo-
rem 1.2 we have the following definition.

Definition 1.8 A linear operator T ∶ Cb(X) → E is said to be � -nuclear, if there 
exist a uniformly bounded and uniformly tight sequence (�n) in M(X), a bounded 
sequence (en) in E and a sequence (�n) ∈ �

1 such that

If T ∶ Cb(X) → E is �-nuclear operator, let us put

‖T(u)‖E ≤ �X

�u� d� for u ∈ Cb(X).

(1.2)T(u) =

∞∑

n=1

�n

(

∫X

u d�n

)

en for u ∈ Cb(X).
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where the infimum is taken over all sequences (�n) in M(X), (en) in E and (�n) ∈ �
1 

such that T admits a representation (1.2).
Every �-nuclear operator T ∶ Cb(X) → E is (�, ‖ ⋅ ‖E)-continuous and �-compact 

(see [37, Chap. 3, §7, Corollary 1]).
In [24], the theory of integral representation of continuous operators on Cb(X) , 

equipped with the strict topology � has been developed. Making use of the results 
of [24], we study �-absolutely summing operators, compact operators and �-nuclear 
operators T ∶ Cb(X) → E . We characterize compact operators and �-nuclear opera-
tors T ∶ Cb(X) → E in terms of their representing measures (see Theorems 4.1 
and 5.1 below). It is shown that dominated operators and �-absolutely summing 
operators T ∶ Cb(X) → E coincide (see Corollary  3.4) and if, in particular, E has 
the Radon–Nikodym property, then �-absolutely summing and �-nuclear operators 
T ∶ Cb(X) → E coincide (see Corollary 5.2). We prove that a natural kernel operator 
T ∶ Cb(X) → C(K) is �-nuclear (see Theorem 6.3).

2  Integral representation

In this section, we collect basic concepts and facts concerning integral representa-
tion of operators on Cb(X) that will be useful (see [24] for notation and more details).

Let m ∶ Bo → E be a finitely additive measure. By |m|(A) (resp. ‖m‖(A)) , we 
denote the variation (resp. the semivariation) of m on A ∈ Bo (see [9, Definition 4, 
p. 2]). Then, ‖m‖(A) ≤ �m�(A) for A ∈ Bo.

For e� ∈ E� , let

Then,

where |me� |(A) stands for the variation of me′ on A ∈ Bo.
Recall that a countably additive measure m ∶ Bo → E is called a Radon measure 

if its semivariation ‖m‖ is regular, i.e., for each A ∈ Bo and 𝜀 > 0 there exist K ∈ K 
and O ∈ T  with K ⊂ A ⊂ O such that ‖m‖(O⧵K) ≤ � (see [24, Definition 3.3]).

We will need the following result (see [12, §15.6, Proposition 19]).

Lemma 2.1 Assume that m ∶ Bo → E is a Radon measure and |m|(X) < ∞ . Then, 
|m| ∈ M+(X).

Assume that m ∶ Bo → E is a finitely additive measure with ‖m‖(X) < ∞ . Then, 
for every v ∈ B(Bo) , one can define the so-called immediate integral ∫

X
v dm ∈ E by

‖T‖�- nuc ∶= inf
� ∞�

n=1

��n���n�(X)‖en‖E

�

,

me� (A) ∶= e�(m(A)) for A ∈ Bo.

‖m‖(A) = sup
e�∈BE�

�me� �(A),
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where (sn) is a sequence in S(Bo) such that ‖sn − v‖∞ → 0 (see [9, p. 5], [13, § 1, 
Section G]). Then, for v ∈ B(Bo),

For e� ∈ E� , we have

Let ca(Bo) denote the Banach space of all countably additive scalar measures on Bo , 
equipped with the total variation norm ‖�‖ ∶= ���(X) . For � ∈ ca(Bo)+ , let L1(�) 
denote the space of all �-integrable scalar functions on X, equipped with the semi-
norm ‖v‖1 ∶= ∫

X
�v� d� for v ∈ L

1(�) . Then

Assume that m ∶ Bo → E is a countably additive measure of finite variation |m|, i.e., 
|m|(X) < ∞ . Then |m| ∈ ca(Bo)+ (see [9, Proposition 9, p. 3]). Since S(Bo) is ‖ ⋅ ‖1
-dense in L1(|m|) , for every

where (sn) is a sequence in S(Bo) such that ‖sn − v‖1 → 0 (see [13, § 2, Sect. D]).
Note that for v ∈ B(Bo) ⊂ L

1(|m|) , the integral ∫
X
v dm defined in (2.3) coincides 

with the immediate integral defined in (2.1). We have

Hence, the corresponding integration operator Tm ∶ L
1(|m|) → E given by

is (‖ ⋅ ‖1, ‖ ⋅ ‖E)-continuous.
Let Cb(X)

�
�
 and Cb(X)

��
�
 denote the dual and the bidual of (Cb(X), �) . Since �

-bounded subsets of Cb(X) are �u-bounded, the strong topology �(Cb(X)
�
�
,Cb(X)) in 

Cb(X)
�
�
 coincides with the ‖ ⋅ ‖′-norm topology in Cb(X)

� restricted to Cb(X)
�
�
 . Hence, 

we have Cb(X)
��
�
= (Cb(X)

�
�
, ‖ ⋅ ‖�)� and we get Ψ ∈ Cb(X)

��
�

‖Ψ‖�� = sup{�Ψ(Φ)� ∶ Φ ∈ C
b
(X)�

�
, ‖Φ‖� ≤ 1}.  Then, one can embed isometrically 

B(Bo) into Cb(X)
��
�
 by the mapping � ∶ B(Bo) → Cb(X)

��
�
 , where for v ∈ B(Bo),

(2.1)∫X

v dm ∶= lim∫X

sn dm,

�
�
�
��X

v dm
�
�
�
�E

≤ ‖v‖∞ ‖m‖(X).

(2.2)e�
(

∫X

v dm

)

= ∫X

v dme� for v ∈ B(Bo).

Cb(X) ⊂ B(Bo) ⊂ L
1(𝜇).

(2.3)∫X

v dm ∶= lim∫X

sn dm,

(2.4)
‖
‖
‖
‖�X

v dm
‖
‖
‖
‖E

≤ �X

|v| d|m| for v ∈ L
1(|m|).

Tm(v) ∶= ∫X

v dm for v ∈ L
1(|m|)
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Note that Cb(X)
�
�
 is a closed subspace of (Cb(X)

�, ‖ ⋅ ‖�) (see [24, p. 847]).
Let iE ∶ E → E�� stand for the canonical injection, that is, iE(e)(e�) ∶= e�(e) for 

e ∈ E , e� ∈ E� . Let jE ∶ iE(E) → E denote the left inverse of iE , i.e., jE(iE(e)) ∶= e 
for e ∈ E.

Assume that T ∶ Cb(X) → E is a (�, ‖ ⋅ ‖E)-continuous linear operator. Then we 
can define the biconjugate mapping

by putting T ��(Ψ)(e�) ∶= Ψ(e�◦T) for Ψ ∈ Cb(X)
��
�
 and e� ∈ E� . Then T ′′ is 

(‖ ⋅ ‖��, ‖ ⋅ ‖E�� )-continuous. Let

Then, T̂  is (‖ ⋅ ‖∞, ‖ ⋅ ‖E�� )-continuous.
For A ∈ Bo , let

Hence, m̂ ∶ Bo → E�� is a finitely additive bounded measure (i.e., ‖m̂‖(X) < ∞) and 
is called a representing measure of T. For every e� ∈ E� , let

Then for every v ∈ B(Bo) , we have (see [24, Theorem 3.1])

where m̂e� ∈ M(X) for every e� ∈ E� . From the general properties of the operator T ′′ 
it follows that T̂(Cb(X)) ⊂ iE(E) and

According to [24, Theorem 4.2], we have the following characterization of (�, ‖ ⋅ ‖E)
-continuous weakly compact operators T ∶ Cb(X) → E.

Theorem  2.2 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator and 
m̂ ∶ Bo → E�� be its representing measure. Then the following statements are 
equivalent:

 (i) T is weakly compact.
 (ii) m̂(A) ∈ iE(E) for every A ∈ Bo.
 (iii) m̂ ∶ Bo → E�� is a Radon measure.
 (iv) m̂ ∶ Bo → E�� is countably additive.

�(v)(Φ�) ∶= ∫X

v d� for � ∈ M(X).

T �� ∶ Cb(X)
��

�
→ E��

T̂ ∶= T ��
◦𝜋 ∶ B(Bo) → E��.

m̂(A) ∶= T̂(�A).

m̂e� (A) ∶= m̂(A)(e�) for A ∈ Bo.

T̂(v) = ∫X

v dm̂ and T̂(v)(e�) = ∫X

v dm̂e� for every e� ∈ E�,

(2.5)T(u) = jE
(
T̂(u)

)
= jE

(

∫X

u dm̂

)

for u ∈ Cb(X).
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 (v) T(un) → 0 whenever (un) is a uniformly bounded sequence in Cb(X) such that 
un(t) → 0 for every t ∈ X.

 (vi) T(un) → 0 whenever (un) is a uniformly bounded sequence in Cb(X) such that 
supp uk ∩ supp un = � for n ≠ k.

The following result will be useful.

Theorem  2.3 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator and 
m̂ ∶ Bo → E�� be its representing measure. Then the following statements hold:

 (i) If T is weakly compact, then m ∶= jE◦m̂ ∶ Bo → E is a Radon measure and

 (ii) If |m̂|(X) < ∞ , then T is weakly compact and m̂ is a Radon measure with 
|m̂| ∈ M+(X).

Proof (i) See [24, Theorem 3.5] and Theorem 2.2.
(ii) Assume that |m̂|(X) < ∞ . Then m̂ is strongly additive (see [9, Proposition 

15, p. 7]) and hence the operator T̂ ∶ B(Bo) → E�� is weakly compact (see [9, Theo-
rem 1, p. 148]). Therefore, in view of (2.5), the operator T ∶ Cb(X) → E is weakly 
compact and by Theorem  2.2, m̂ is a Radon measure. Using Lemma  2.1, we get 
|m̂| ∈ M+(X) .   ◻

3  Absolutely summing operators

In this section, we characterize �-absolutely summing operators T ∶ Cb(X) → E 
and show that �-absolutely summing operators and dominated operators on Cb(X) 
coincide.

We will need the following lemma.

Lemma 3.1 For a sequence (un) in Cb(X) , the following statements are equivalent: 

 (i) sup
�
‖
∑

i∈M 𝜀i ui‖∞ ∶ 𝜀i = ±1,M ∈ F(ℕ)
�
< ∞.

 (ii) 
∑∞

n=1
�Φ(un)� < ∞ for all Φ ∈ Cb(X)

�.
 (iii) 

∑∞

n=1
�
� ∫X un d𝜇�� < ∞ for all � ∈ M(X).

Proof (i)⇔(ii) It is well known (see [10, Chap. 5, Theorem 6, p. 44]).
(ii)⇒(iii) This follows from Theorem 1.1 because 𝛽 ⊂ 𝜏u.
(iii)⇒(i) Assume that (iii) holds. Then, for �i = ±1 , M ∈ F(ℕ) and � ∈ M(X) , we 

have

T(u) = ∫X

u dm for u ∈ Cb(X).
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This means that {
∑

i∈M �i ui ∶ �i = ±1, M ∈ F(ℕ)} is �(Cb(X),M(X))-bounded, 
and hence it is �-bounded. It follows that sup{‖

∑
i∈M �i ui‖∞ ∶ �i = ±1 , 

M ∈ F(ℕ)} < ∞ because �u and � have the same bounded sets.   ◻

The following theorem characterizes �-absolutely summing operators 
T ∶ Cb(X) → E (see [9, Proposition 2, p.  162], [22, Proposition 3.1] if X is 
compact).

Theorem  3.2 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator. Then 
the following statements are equivalent:

 (i) There exists c > 0 such that for any finite set {u1,… , un} in Cb(X) , 

 (ii) 
∑∞

n=1
‖T(un)‖E < ∞ if 

∑∞

n=1
� ∫

X
un d𝜇� < ∞ for every � ∈ M(X).

 (iii) 
∑∞

n=1
‖T(un)‖E < ∞ if 

∑∞

n=1
un is unconditionally �-convergent.

 (iv) T is �-absolutely summing.

Proof (i)⇒(ii) Assume that (i) holds. Let (un) be a sequence in Cb(X) such 
that 

∑∞

n=1
� ∫

X
un d𝜇� < ∞ for every � ∈ M(X) . Then, by Lemma 3.1, we have 

∑∞

n=1
�Φ(un)� < ∞ for all Φ ∈ Cb(X)

� . Hence, by [27, 1.2.3, pp. 23–24], we get

Hence, for every n ∈ ℕ , we have

and it follows that 
∑∞

n=1
‖T(un)‖E < ∞ , as desired.

(ii)⇒(iii) Assume that (ii) holds and the series 
∑∞

n=1
un is unconditionally �-con-

vergent in Cb(X) . Then 
∑∞

n=1
� ∫

X
un d𝜇� < ∞ for every � ∈ M(X) and it follows that 

∑∞

n=1
‖T(un)‖E < ∞.

(iii)⇒(iv) Assume that (iii) holds and (un) ∈ �
1
s
(Cb(X), �) . Then a net (sM)M∈F(ℕ) 

is a �-Cauchy sequence, where sM ∶=
∑

i∈M ui for M ∈ F(ℕ) . Let � be a permu-
tation of ℕ . Let w ∈ W1 and 𝜀 > 0 be given. Then, there exists M ∈ F(ℕ) such 

|
|
|
|�X

(
∑

i∈M

𝜀i ui

)

d𝜇
|
|
|
|
=
|
|
|
|

∑

i∈M
�X

𝜀i ui d𝜇
|
|
|
|
≤ ∑

i∈M

|
|
|
|�X

ui d𝜇
|
|
|
|

≤
∞∑

n=1

|
|
|
|�X

un d𝜇
|
|
|
|
< ∞.

n�

i=1

‖T(ui)‖E ≤ c sup

�
n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ���(X) ≤ 1

�

.

‖(un)‖
w
1
∶= sup

�
∞�

n=1

�Φ(un)� ∶ Φ ∈ Cb(X)
�, ‖Φ‖� ≤ 1

�

< ∞.

n�

i=1

‖T(ui)‖E ≤ c sup

�
n�

i=1

�Φ(ui)� ∶ Φ ∈ Cb(X)
�, ‖Φ‖� ≤ 1

�

≤ c ‖(un)‖
w
1
,
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that pw(
∑

j∈L uj) ≤ � for every L ∈ F(ℕ) with L ∩M = � . Choose k ∈ ℕ such 
that M ⊂ {𝜎(i) ∶ 1 ≤ i ≤ k} . Then for n,m ∈ ℕ with m > n > k , we have 
pw

�∑m

i=n
u�(i)

� ≤ � . This means that the partial sums 
∑n

i=1
u�(i) form a �-Cauchy 

sequence in Cb(X) . Since the space (Cb(X), �) is complete, we obtain that the series 
∑∞

n=1
un is unconditionally �-convergent in Cb(X) . Hence, we get 

∑∞

n=1
‖T(un)‖E < ∞

.
(iv)⇒(i) Assume that (iv) holds. Let w ∈ W1 . Then in view of [27, Theo-

rem 2.1.2] there exists cw > 0 such that �E((T(vn))) =
∑∞

n=1
‖T(vn)‖E ≤ cw whenever 

(vn) ∈ �
1
w
(Cb(X), �) with Ew,1((vn)) ≤ 1 . Hence for (vn) ∈ �

1
w
(Cb(X), �) , we have

Let ui ∈ Cb(X) for i = 1,… , n . Define vi = ui for i = 1,… , n and vi = 0 for i > n . 
Then

Note that B∞(1) ∶= {u ∈ Cb(X) ∶ ‖u‖∞ ≤ 1} ⊂ Uw(1) . Hence, Uw(1)
0 ⊂ B∞(1)

0 , 
where the polars are taken with respect to the pairing ⟨Cb(X),M(X)⟩ . In view of The-
orem 1.1 for � ∈ M(X) , we have

It follows that B∞(1)
0 = {� ∈ M(X) ∶ |�|(X) ≤ 1} . By (3.1) we get

Thus (i) holds.   ◻

We show that dominated operators and �-absolutely summing operators on 
Cb(X) coincide (see [27, 2.3.4, Proposition, p. 41]).

We will need the following lemma.

Lemma 3.3 Assume that � ∈ M(X) . Then for O ∈ T  , we have

Proof For u ∈ Cb(X) with ‖u‖∞ = 1 and supp u ⊂ O , we have

�E((T(vn))) =

∞�

n=1

‖T(vn)‖E ≤ cw Ew,1((vn)).

(3.1)
n�

i=1

‖T(ui)‖E ≤ cw sup

�
n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ Uw(1)

0

�

.

���(X) = sup

�
�
�
�
��X

u d�
�
�
�
�
∶ u ∈ Cb(X), ‖u‖∞ ≤ 1

�

.

n�

i=1

‖T(ui)‖E ≤ cw sup

�
n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ��� (X) ≤ 1

�

.

(3.2)�𝜇�(O) = sup

�
�
�
�
�∫X

u d𝜇
�
�
�
�
∶ u ∈ Cb(X), ‖u‖∞ = 1 and supp u ⊂ O

�

.

�
�
�
��O

u d�
�
�
�
�
≤ ‖u‖∞ ���(O) ≤ ���(O).
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Now let 𝜀 > 0 be given. Then there exists a Bo-partition (Ai)
n
i=1

 of O such that

For i = 1,… , n choose Ki ∈ K with Ki ⊂ Ai such that |�|(Ai⧵Ki) ≤ �

3n
 for i = 1,… , n . 

Choose pairwise disjoint Oi ∈ T  with Ki ⊂ Oi for i = 1,… , n such that 
|�|(Oi⧵Ki) ≤ �

3n
 . For i = 1,… , n choose ui ∈ Cb(X) with 0 ≤ ui ≤ �X , ui||Ki

≡ 1 and 
ui
|
|X⧵(Oi∩O)

≡ 0 . Let u ∶=
∑n

i=1
ui . Then ‖u‖∞ = 1 with supp u ⊂ O and

Then

that is, |�|(O) ≤ | ∫
O
u d�| + � . Thus (3.2) holds.   ◻

Now we can state our main result (see [27, 2.3.4, Proposition, p. 41]).

Corollary 3.4 Assume that T ∶ Cb(X) → E is a (�, ‖ ⋅ ‖E)-continuous linear opera-
tor and m̂ ∶ Bo → E�� is its representing measure. Then the following statements are 
equivalent: 

 (i) |m̂|(X) < ∞.
 (ii) T is dominated.
 (iii) T is �-absolutely summing.
 (iv) T is absolutely summing.

In this case, ‖T‖as = �m̂�(X).
Proof (i)⇔(ii) This follows from [25, Theorem 3.1].

(ii)⇒(iii) Assume that (ii) holds. Then T is dominated by |m̂| , so

Let u1,… , un ∈ Cb(X) . Then we have

|�|(O) −
�

3
≤ |
|
|
|

n∑

i=1

�(Ai)
|
|
|
|
.

∫O

u d� =

n∑

i=1
∫O

ui d� =

n∑

i=1
∫Oi∩O

ui d�.

|�|(O) −
�

3
≤ |
|
|
|

n∑

i=1

�(Ai) −

n∑

i=1

�(Ki)
|
|
|
|

+
|
|
|
|

n∑

i=1
�Ki

ui d� −

n∑

i=1
�Oi∩O

ui d�
|
|
|
|
+
|
|
|
|�O

u d�
|
|
|
|

≤
n∑

i=1

|�| (Ai⧵Ki) +

n∑

i=1

|�| ((Oi ∩ O)⧵Ki) +
|
|
|
|�O

u d�
|
|
|
|

≤ �

3
+

�

3
+
|
|
|
|�O

u d�
|
|
|
|
,

‖T(u)‖E ≤ �X

�u� d �m̂� for u ∈ Cb(X).
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In view of Theorem 3.2 T is �-absolutely summing and ‖T‖as ≤ �m̂�(X).
(iii)⇒(i) Assume that (iii) holds. Then in view of Theorem 3.2, there exists c > 0 

such that for every u1,… , un ∈ Cb(X) , we have

Let (un) be a sequence in Cb(X) such that supn ‖un‖∞ = a < ∞ and 
supp un ∩ supp uk = � if n ≠ k . Then, for � ∈ M(X) with |�|(X) ≤ 1 , we have

Then 
∑∞

n=1
‖T(un)‖E ≤ ca < ∞ , so ‖T(un)‖E → 0 and according to Theorem 2.2 T is 

weakly compact. Hence by Theorem 2.3 m ∶= jE◦m̂ ∶ Bo → E is a Radon measure 
and

Now, we shall show that |m|(X) = |m̂|(X) < ∞ . In fact, let (Ai)
n
i=1

 be a Bo-partition of 
X and 𝜀 > 0 be given. Choose e�

1
,… , e�

n
∈ BE� such that ‖m‖(Ai) ≤ �me�

i
�(Ai) +

�

4n
 for 

i = 1,… , n . Hence

For each i = 1,… , n one can choose Ki ∈ K with Ki ⊂ Ai such that |me� |(Ai⧵Ki) ≤ �

4n
 . 

Hence |me� |(Ai) ≤ |me�
i
|(Ki) +

�

4n
 for i = 1,… , n . Then we can choose pairwise dis-

joint open sets Oi with Ki ⊂ Oi for i = 1,… , n . According to Lemma 3.3 for each 
i = 1,… , n there exists ui ∈ Cb(X) with ‖ui‖∞ = 1 and supp ui ⊂ Oi such that

Hence, by (2.2) and Lemma 3.3, we have

n�

i=1

‖T(ui)‖E ≤
n�

i=1
�X

�ui� d �m̂� ≤ �X

� n�

i=1

�ui�

�

d �m̂�

≤ sup
t∈X

� n�

i=1

�ui(t)�

�

�m̂�(X) = sup
t∈X

� n�

i=1

�
�
�
��X

ui d𝛿t
�
�
�
�

�

�m̂�(X)

≤ sup

� n�

i=1

�
�
�
��X

ui d𝜇
�
�
�
�
∶ 𝜇 ∈ M(X), �𝜇�(X) ≤ 1

�

�m̂�(X).

n�

i=1

‖T(ui)‖E ≤ c sup

� n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ���(X) ≤ 1

�

.

n�

i=1

�
�
�
��X

ui d�
�
�
�
�
≤

n�

i=1

‖ui‖∞ ���(supp ui) ≤ a

n�

i=1

��� (supp ui)

= a ���

� n�

i=1

supp ui

�

≤ a ���(X) ≤ a.

T(u) = ∫X

u dm for u ∈ Cb(X).

(3.3)
n�

i=1

‖m(Ai)‖E ≤
n�

i=1

‖m‖(Ai) ≤
n�

i=1

�me�
i
�(Ai) +

�

4
.

(3.4)|me�
i
|(Oi) ≤ |

|
|
|�X

ui dme�
i

|
|
|
|
+

�

2n
.
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Hence using (3.3) and (3.4), we have

It follows that 
∑n

i=1
‖m(Ai)‖E ≤ c , so |m|(X) ≤ c . Thus, |m̂|(X) ≤ c and hence 

�m̂�(X) ≤ ‖T‖as.
(iii)⇔(iv) This follows from Lemma 1.3 and Theorem 3.2.   ◻

Let � ∈ L1(�) , where � ∈ M+(X) . We define the multiplication opera-
tor M� ∶ Cb(X) → L1(�) by M�(u) ∶= � u for u ∈ Cb(X) . For A ∈ Bo , let 
m�(A) ∶= ��A.

Proposition 3.5 Assume that � ∈ L1(�) , where � ∈ M+(X) . Then the following 
statements hold: 

 (i) |m�|(A) = ∫
A
|�| d� for A ∈ Bo and |m�| ∈ M+(X).

 (ii) ‖M�(u)‖1 = ∫
X
�u� d �m�� for u ∈ Cb(X) , that is, M� is dominated by |m�|.

 (iii) m� ∶ Bo → L1(�) is a Radon measure and 

 (iv) M� is �-absolutely summing.

Proof (i) Let A ∈ Bo and (Ai)
n
i=1

 be a finite Bo-partition of A. Then

Hence, |m�|(A) = ∫
A
|�| d� and it follows that |m�| is countably additive. Since 

|m𝜑| ≪ 𝜇 and � ∈ M+(X) , we obtain that |m�| ∈ M+(X).
(ii) From (i) it follows that |�| = d|m�|

d�
 (= the Radon–Nikodym derivative of |m�| 

with respect to � ). Since Cb(X) ⊂ L1(𝜇) , in view of [7, Theorem C.8, p. 380] for 
u ∈ Cb(X) , we get

n�

i=1

�
�
�
��X

ui dme�
i

�
�
�
�
=

n�

i=1

�e�
i
(T(ui))� ≤

n�

i=1

‖T(ui)‖E

≤ c sup

� n�

i=1

�
�
�
��X

ui d�
�
�
�
�
∶ � ∈ M(X), ��� (X) ≤ 1

�

≤ c sup

� n�

i=1

��� (Oi) ∶ � ∈ M(X), ��� (X) ≤ 1

�

≤ c.

n�

i=1

‖m(Ai)‖E ≤
n�

i=1

�me�
i
� (Ai) +

�

4
≤

n�

i=1

�

�me�
i
� (Ki) +

�

4n

�

+
�

4

≤
n�

i=1

�me�
i
� (Oi) +

�

2
≤

n�

i=1

�
�
�
��X

ui dme�
i

�
�
�
�
+

�

2
+

�

2
≤ c + �.

M�(u) = ∫X

u dm� for u ∈ Cb(X).

n�

i=1

‖m�(Ai)‖1 =

n�

i=1
∫X

��� �Ai
d� = ∫A

��� d�.
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(iii) Since ‖m�‖(A) ≤ �m��(A) for A ∈ Bo and |m�| ∈ M+(X) , we obtain that m� is a 
Radon measure. Note that for s ∈ S(Bo) , ∫

X
s dm� = � s.

Let u ∈ Cb(X) and choose a sequence (sn) in S(Bo) such that ‖u − sn‖∞ → 0 . 
Hence

This means that M�(u) = ∫
X
u dm�.

(iv) In view of (ii) and Proposition  1.7 M� is (�, ‖ ⋅ ‖1)-continuous. Hence, by 
Corollary 3.4 M� is �-absolutely summing.   ◻

The next result shows that every �-absolutely summing operator T ∶ Cb(X) → E 
admits a factorization through L1-space (see [9, Corollary 7, pp. 164–165], [11, 
Corollary 2.5], [43, Theorem 1.8] if X is compact).

Corollary 3.6 Let T ∶ Cb(X) → E be a �-absolutely summing operator and 
m̂ ∶ Bo → E�� be its representing measure. Then, m ∶= jE◦m̂ ∶ Bo → E is a Radon 
measure with |m| ∈ M+(X) and the following statements hold: 

 (i) The inclusion map I ∶ Cb(X) → L1(|m|) is a �-absolutely summing operator 
with ‖I‖as = �m�(X).

 (ii) The integration operator S ∶ L1(|m|) → E defined by 

 is bounded with ‖S‖ ≤ 1 and T = S◦I.

Proof In view of Theorem  2.3 m ∶= jE◦m̂ ∶ Bo → E is a Radon measure with 
|m| ∈ M+(X).

(i) Since |m| ∈ M+(X) in view of Proposition 3.5, I is �-absolutely summing and 
‖I‖as = ∫

X
�X d�m̂� = �m̂�(X) = �m�(X).

(ii) In view of Theorem 2.3 we have that T(u) = ∫
X
u dm for u ∈ Cb(X).

Thus, we get T = S◦I , where by (2.4) ‖S‖ ≤ 1 .   ◻

4  Compact operators

The tensor product ca(Bo)⊗ E consists of all measures m ∶ Bo → E of the 
form m =

∑n

i=1
(𝜇i ⊗ ei) , where �i ∈ ca(Bo) and ei ∈ E for i = 1,… , n . Then 

m(A) =
∑n

i=1
�i(A)ei for A ∈ Bo.

‖M�(u)‖1 = ∫X

�� u� d� = ∫X

�u� d�m��.

‖M�(u) − �sn‖1 = �X

��u − �sn� d� ≤ �X

��� d� ‖u − sn‖∞.

S(v) ∶= ∫X

v dm for all v ∈ L1(|m|)



Characterizations of continuous operators on Cb(X)... Page 17 of 26 28

Now, we can state a characterization of �-compact operators T ∶Cb(X)→E in 
terms of their representing measures m̂ ∶ Bo → E�� (see [9, Theorem  18, p.  161], 
[34, Theorem 5.27] if X is compact).

Theorem  4.1 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator and 
m̂ ∶ Bo → E�� be its representing measure. Then the following statements are 
equivalent:

 (i) T is �-compact.
 (ii) m̂ has a relatively norm compact range in E′′.

Proof (i)⇒(ii) Assume that (i) holds. Then T �� ∶ Cb(X)
��
→ E�� is compact and hence 

T̂ ∶= T ��
◦𝜋 ∶ B(Bo) → E�� is compact. Since

we obtain that m̂(Bo) is relatively norm compact in E′′.
(ii)⇒(i) Assume that (ii) holds. Since m̂(Bo) is weakly compact, the cor-

responding integration operator T̂ ∶ B(Bo) → E�� is weakly compact (see [19, 
Theorem  7]). Then, in view of (2.5), T is weakly compact, and by Theorem  2.3 
m ∶= jE◦m̂ ∶ Bo → E is countably additive and m(Bo) is relatively norm compact 
in E. According to the proof of [34, Theorem 5.18], there exists a sequence (mk) in 
ca(Bo)⊗ E such that ‖m − mk‖ → 0.

For each k ∈ ℕ , let Tk ∶ Cb(X) → E be the finite rank operator defined by 
Tk(u) ∶= ∫

X
u dmk . For u ∈ Cb(X) , we have

and it follows that ‖Tk − T‖ → 0 . Hence, T is a compact operator and using Proposi-
tion 1.5 we have that T is �-compact.   ◻

5  Nuclear operators

We state our main result that characterizes �-nuclear operators T ∶ Cb(X) → E in 
terms of their representing measures (see [9, Theorem 4, p. 179], [34, Proposition 
5.30], [43, Proposition 1.2] if X is a compact Hausdorff space).

Let (Ω,Σ,�) be a finite measure space. Recall that a bounded linear operator 
S ∶ L1(�) → E is said to be representable if there exists an essentially bounded �
-Bochner integrable function f ∶ Ω → E such that S(v) = ∫

Ω
v(�)f (�) d� for all 

v ∈ L1(�).

�
m̂(A) ∶ A ∈ Bo

�
=
�
T̂(�A) ∶ A ∈ Bo

�
⊂
�
T̂(v) ∶ v ∈ B(Bo), ‖v‖∞ ≤ 1

�
,

‖Tk(u) − T(u)‖E =
�
�
�
��X

u d(mk − m)
�
�
�
�E

≤ ‖u‖∞ ‖mk − m‖(X),
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Theorem  5.1 Let T ∶ Cb(X) → E be a (�, ‖ ⋅ ‖E)-continuous linear operator and 
m̂ ∶ Bo → E�� be its representing measure. Then the following statements are 
equivalent:

 (i) T is �-nuclear.
 (ii) |m̂|(X) < ∞ and m has a |m|-Bochner integrable derivative.
 (iii) |m̂|(X) < ∞ and there exists a representable operator S ∶ L1(|m|) → E such 

that T = S◦I , where I ∶ Cb(X) → L1(|m|) denotes the inclusion map.

In this case, ‖T‖𝛽- nuc = �m̂�(X) = �m�(X).
Proof (i)⇒(ii) This follows from [26, Theorem 3.1].

(ii)⇒(i) Assume that (ii) holds, that is, |m̂|(X) < ∞ and there exists a function 
f ∈ L1(|m|,E) such that m(A) = ∫

A
f (t) d|m| for A ∈ Bo . Then, �m�(X) = ‖f‖1 . 

Hence, we easily obtain that

Let L1(|m|)⊗̂E denote the projective tensor product of L1(|m|) and E, equipped with 
the norm � defined for w ∈ L1(|m|)⊗̂E by

where the infimum is taken over all sequences (vn) in L1(|m|) and (en) in E with 
limn ‖vn‖1 = 0 = limn ‖en‖E and (�n) ∈ �

1 such that w =
∑∞

n=1
𝜆n(vn ⊗ en) (see [34, 

Proposition 2.8, pp. 21–22]). It is known that L1(|m|)⊗̂E is isometrically isomor-
phic to the Banach space (L1(�m�,E), ‖ ⋅ ‖1) throughout the isometry J, where

(see [9, Example 10, p. 228], [34, Example 2.19, p. 29]).
Let 𝜀 > 0 be given. Then, there exist sequences (vn) in L1(|m|) and (en) in E with 

limn ‖vn‖1 = 0 = limn ‖en‖E and (�n) ∈ �
1 such that

and

Hence

T(u) = ∫X

u(t)f (t) d|m| for u ∈ Cb(X).

�(w) ∶= inf
� ∞�

n=1

��n�‖vn‖1‖en‖E

�

,

J(v⊗ e) ∶= v(⋅)⊗ e for v ∈ L1(|m|), e ∈ E,

J−1(f ) =

∞∑

n=1

𝜆n(vn ⊗ en) in (L1(|m|)⊗̂E, 𝛾)

(5.1)
∞�

n=1

��n�‖vn‖1‖en‖E ≤ �(J−1(f )) + � = ‖f‖1 + �.

f = J
� ∞�

n=1

𝜆n(vn ⊗ en)
�

=

∞�

n=1

𝜆n(vn ⊗ en) in (L1(�m�,E), ‖ ⋅ ‖1)
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and we obtain that

For n ∈ ℕ , let

Note that �n ∈ M(X) and ��n�(X) = ‖vn‖1 . Then we have 
supn �𝜇n�(X) = supn ‖vn‖1 < ∞ . To show that the family {�n ∶ n ∈ ℕ} is uni-
formly tight, let 𝜀 > 0 be given. Since ‖vn‖1 → 0 , we can choose n� ∈ ℕ such that 
|�n|(X) ≤ � for n > n𝜀 . For n = 1,… , n� choose Kn ∈ K such that |�n|(X⧵Kn) ≤ � . 
Denote K ∶=

⋃n�
n=1

Kn . Then, |�n|(X⧵K) ≤ � for every n ∈ ℕ , as desired.
Clearly for n ∈ ℕ , we have (see [7, Theorem C.8]),

Hence, we have

and this means that T is �-nuclear. By (5.1) we get

(ii)⇒(iii) Assume that (ii) holds, that is, |m̂|(X) < ∞ and there exists a |m|-Bochner 
integrable function f ∶ X → E such that m(A) = ∫

A
f (t) d|m| for A ∈ Bo . Let

Then, S(u) = T(u) for u ∈ Cb(X) and m(A) = S(�A) for A ∈ Bo . Hence, by [9, 
Lemma 4, p. 62] f is essentially bounded and

(iii)⇒(ii) This is obvious.
Thus, (i)⇔(ii)⇔(iii) hold. Moreover, if T is �-nuclear and 𝜀 > 0 is given, then 

there exist a uniformly bounded and uniformly tight sequence (�n) in M(X), a 
bounded sequence (en) in E and a sequence (�n) ∈ �

1 such that

T(u) =

∞∑

n=1

�n

(

∫X

u vn d|m|
)

en for u ∈ Cb(X).

�n(A) ∶= ∫A

vn d|m| for A ∈ Bo.

∫X

u vn d|m| = ∫X

u d�n for u ∈ Cb(X).

T(u) =

∞∑

n=1

�n

(

∫X

u d�n

)

en for u ∈ Cb(X),

(5.2)‖T‖�- nuc ≤ ‖f‖1 = �m�(X).

S(v) ∶= ∫X

v dm for all v ∈ L1(|m|).

S(v) = ∫X

v(t)f (t) d|m| for all v ∈ L1(|m|).

T(u) =

∞∑

n=1

�n

(

∫X

u d�n

)

en for u ∈ Cb(X)
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and

Following the proof of [26, Theorem 3.1], we have

Now, if Π is a finite Bo-partition of X, then

Thus, in view of (5.3), we get

Hence using (5.2) we have ‖T‖𝛽- nuc = �m�(X) = �m̂�(X) . Thus the proof is complete.  
 ◻

In view of Theorem 5.1 and Corollary 3.4, we get (see [9, Corollary 5, p. 174]).

Corollary 5.2 Assume that T ∶ Cb(X) → E is a (�, ‖ ⋅ ‖E)-continuous linear operator. 

 (i) If the operator T is �-nuclear, then T is �-absolutely summing and 
‖T‖as = ‖T‖�- nuc.

 (ii) If E has the Radon–Nikodym property, then T is �-absolutely summing if and 
only if T is �-nuclear.

As a consequence of Corollarys 3.4 and 5.2, we have

Corollary 5.3 Let T ∶ Cb(X) → E be a dominated operator. If E has the Radon–
Nikodym property, then T is �-compact.

Remark 5.4 If X is a compact Hausdorff space, the related result to Corollary 5.3 
was obtained in the different way by Uhl [44, Theorem 1].

Remark 5.5 A relationship between vector measures m ∶ Σ → E with a �-Bochner 
integrable derivatives (with respect to a finite measure � ) and the nuclearity of the 
corresponding integration operators Tm ∶ L∞(�) → E has been studied by Swartz 
[42] and Popa [30].

(5.3)
∞�

n=1

��n���n�(X)‖en‖E ≤ ‖T‖�- nuc + �.

m(A) =

∞∑

i=1

�n �n(A) en for A ∈ Bo.

�

A∈Π

‖m(A)‖E =
�

A∈Π

�
�
�

∞�

n=1

�n �n(A) en
�
�
�E

≤ �

A∈Π

∞�

n=1

��n���n(A)�‖en‖E

=

∞�

n=1

��n�

��

A∈Π

��n(A)�
�

‖en‖E ≤
∞�

n=1

��n���n�(X)‖en‖E.

�m�(X) ≤
∞�

n=1

��n���n�(X)‖en‖E ≤ ‖T‖�- nuc + �.
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6  Nuclearity of kernel operators

It is well known that if K is a compact Hausdorff space, � ∈ M+(K) and 
k(⋅, ⋅) ∈ C(K × K) , then the corresponding kernel operator T ∶ C(K) → C(K) 
between Banach spaces, defined by

is nuclear (see [16, Theorem V.22, p. 99] if X = [a, b]).
Now as an application of Theorem  5.1, we extend this result to the setting, 

where X is a k-space and the kernel operator T ∶ Cb(X) → C(K) is acting from the 
space (Cb(X), �) to a Banach space (C(K), ‖ ⋅ ‖∞) , where K is a compact Hausdorff 
space.

From now on we assume that � ∈ M+(X) and k(⋅, ⋅) ∈ Cb(K × X) with 
supt∈K |k(t, s)| ≥ c for every s ∈ X and some c > 0.

We start with the following lemma.

Lemma 6.1 For every v ∈ B(Bo) , the mapping Ψv ∶ X ∋ s ↦ v(s)k(⋅, s) ∈ C(K) is 
(T, ‖ ⋅ ‖∞)-continuous.

Proof Let s0 ∈ X and 𝜀 > 0 be given. Then for every t ∈ K there exist a neighbor-
hood Vt of t and a neighborhood Wt of s0 such that

Hence there exist t1,… , tn ∈ K such that K =
⋃n

i=1
Vti

 . Let us put W ∶=
⋂n

i=1
Wti

 . 
Let t ∈ K and choose i0 with 1 ≤ i0 ≤ n such that t ∈ Vti0

 . Then for s ∈ W , we have 
�k(t, s) − k(t, s0)� ≤ �

‖v‖∞
 . Hence

This means that Ψv is (T, ‖ ⋅ ‖∞)-continuous.   ◻

Let L1(�,C(K)) stand for the Banach space of �-Bochner integrable functions on 
X with values in C(K). In view of [23, Theorem 5.1] we have

Hence, in view of Lemma 6.1, we can define the kernel operator S ∶ B(Bo) → C(K) 
by

For t ∈ K , let �t(w) ∶= w(t) for w ∈ C(K) . Then �t ∈ C(K)� and using Hille’s theo-
rem (see [13, §1, Section J, Theorem 36]), we get

T(u)(t) = ∫X

u(s)k(t, s) d�(s) for u ∈ C(K), t ∈ K,

�k(z, s) − k(t, s0)� ≤ �

‖v‖∞
for all z ∈ Vt, s ∈ Wt.

‖Ψv(s) − Ψv(s0)‖∞ ≤ ‖v‖∞ sup
t∈K

�k(t, s) − k(t, s0)� ≤ �.

Cb(X,C(K)) ⊂ L1(𝜇,C(K)).

S(v) ∶= ∫X

Ψv(s) d�(s) = ∫X

v(s)k(⋅, s) d�(s) for all v ∈ B(Bo).
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Then for v ∈ B(Bo),

that is, S is a (‖ ⋅ ‖∞, ‖ ⋅ ‖∞)-bounded operator.
Define a measure mk ∶ Bo → C(K) by

Then,

and for A ∈ Bo , t ∈ K , we have

Proposition 6.2 The measure mk has the following properties: 

 (i) mk is of bounded variation and for every A ∈ Bo , 

 (ii) |mk| ∈ M+(X) and mk is a Radon measure and 

 where the function X ∋ s ↦
k(⋅,s)

supt∈K |k(t,s)|
∈ C(K) belongs to L1(|mk|,C(K)).

Proof (i) See [9, Theorem 4, p. 46].
(ii) Note that |mk|(A) ≤ �(A) sup{|k(t, s)| ∶ t ∈ K, s ∈ X} for A ∈ Bo . Then 

|mk| ∈ M+(X) and hence mk is a Radon measure. From (i) it follows that 
supt∈K |k(t, ⋅)| =

d|mk|

d�
 (= the Radon–Nikodym derivative of |mk| with respect to � ). 

Since |mk| ∈ M+(X) , using [23, Theorem 5.1] we get Cb(X,C(K)) ⊂ L1(|mk|,C(K)).
Let v(s) ∶= 1

supt∈K |k(t,s)|
 for s ∈ X . Then v ∈ B(Bo) and by Lemma 6.1 the function

S(v)(t) = ∫X

v(s)k(t, s) d�(s) for all v ∈ B(Bo), t ∈ K.

‖S(v)‖∞ = sup
t∈K

�S(v)(t)� ≤ sup
t∈K �X

�v(s)��k(t, s)� d�(s)

≤ �X

�v(s)� sup
t∈K

�k(t, s)� d�(s) ≤ ‖v‖∞ sup
t∈K, s∈X

�k(t, s)��(X),

mk(A) ∶= S(�A) = ∫A

k(⋅, s) d�(s) for A ∈ Bo.

S(v) = ∫ v dmk for all v ∈ B(Bo)

mk(A)(t) = ∫A

k(t, s) d�(s).

|mk|(A) = ∫A

sup
t∈K

|k(t, s)| d�(s).

mk(A) = ∫A

k(⋅, s)

supt∈K |k(t, s)|
d|mk|(s) for all A ∈ Bo,
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belongs to L1(|mk|,C(K)) . Hence we can define the measure m0 ∶ Bo → C(K) by

Using Hille’s theorem and [7, Theorem C.8] for A ∈ Bo and each � ∈ K , we get

Thus mk(A) = m0(A) ∶= ∫
A

k(⋅,s)

supt∈K |k(t,s)|
d|mk|(s) for every A ∈ Bo .   ◻

Define the kernel operator T ∶ Cb(X) → C(K) by

Let us consider the mapping � ∶ K ∋ t ↦ �t ∈ M(X) , where for t ∈ K,

Then

that is, T is a kernel operator in the sense of Sentilles (see [39, 40]) with the kernel � 
and T(u)(t) = �(u)(t) for u ∈ Cb(X) , t ∈ K.

Now, we are ready to state our desire result.

Theorem 6.3 The kernel operator T ∶ Cb(X) → C(K) is �-nuclear and

Proof For every u ∈ Cb(X) , using Proposition 6.2, we get

X ∋ s ↦
k(⋅, s)

supt∈K |k(t, s)|
∈ C(K)

m0(A) ∶= ∫A

k(⋅, s)

supt∈K |k(t, s)|
d|mk|(s) for A ∈ Bo.

m0(A)(�) = ��(m0(A)) = ��

(

∫
X

�
A
(s)k(⋅, s)

sup
t∈K |k(t, s)|

d|m
k
|(s)

)

= ∫
X

�
A
(s)k(�, s)

sup
t∈K |k(t, s)|

d|m
k
|(s)

= ∫
X

�
A
(s)k(�, s)

sup
t∈K |k(t, s)|

sup
t∈K

|k(t, s)| d�(s)

= ∫
A

k(�, s) d�(s) = m
k
(A)(�).

T(u) ∶= ∫X

u(s)k(⋅, s) d�(s) for all u ∈ Cb(X).

�t(A) ∶= ∫A

k(t, s) d�(s) for all A ∈ Bo.

T(u)(t) = ∫X

u(s) d�t(s) for all u ∈ Cb(X), t ∈ K,

‖T‖�- nuc = ∫X

sup
t∈K

�k(t, s)� d�(s).
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Hence, T is dominated, and by Proposition  1.7 T is (�, ‖ ⋅ ‖∞)-continuous and 
weakly compact. In view of Theorem 2.3,

where m ∶= jC(K)◦m̂ and m̂ is the representing measure of T.
On the other hand,

and since mk and m are Radon measures, we derive that mk = m . In view of Proposi-
tion 6.2 and Theorem 5.1, we obtain that T is a �-nuclear operator and

  ◻
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