Characterizations of continuous operators on $C_{b}(X)$ with the strict topology

Marian Nowak ${ }^{1(1)} \cdot$ Juliusz Stochmal ${ }^{2}$ (D)

Received: 2 September 2020 / Accepted: 7 January 2021 / Published online: 16 February 2021
© The Author(s) 2021

Abstract

Let X be a completely regular Hausdorff space and $C_{b}(X)$ be the space of all bounded continuous functions on X, equipped with the strict topology β. We study some important classes of $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operators from $C_{b}(X)$ to a Banach space $\left(E,\|\cdot\|_{E}\right): \beta$-absolutely summing operators, compact operators and β-nuclear operators. We characterize compact operators and β-nuclear operators in terms of their representing measures. It is shown that dominated operators and β-absolutely summing operators $T: C_{b}(X) \rightarrow E$ coincide and if, in particular, E has the RadonNikodym property, then β-absolutely summing operators and β-nuclear operators coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concerning the relationships between absolutely summing, dominated, nuclear and compact operators on the Banach space $C(X)$, where X is a compact Hausdorff space.

Keywords Spaces of bounded continuous functions $\cdot k$-spaces \cdot Radon vector measures • Strict topologies • Absolutely summing operators • Dominated operators • Nuclear operators • Compact operators • Generalized DF-spaces • Projective tensor product

Mathematics Subject Classification 46G10 • 28A32 • 47B10

[^0]
1 Introduction and preliminaries

The Riesz representation theorem plays a crucial role in the study of operators on the Banach space $C(X)$ of continuous functions on a compact Hausdorff space X. Due to this theorem, different classes of operators on $C(X)$ have been characterized in terms of their representing Radon vector measures.

Absolutely summing operators between Banach spaces have been the object of several studies (see [1, pp. 209-233] and [5, 8, 11, 27, 28, 31, 34]). It originates in the fundamental paper of Grothendieck [17] from 1953. Grothendieck's inequality has equivalent formulation using the theory of absolutely summing operators (see [1, Theorem 8.3.1] and [4, 22]). In the multilinear case, it is also connected with the Bohnenblust-Hille and the Hardy-Littlewood inequalities (see [2]). There is a vast literature on absolutely summing operators from the Banach space $C(X)$ to a Banach space E (see [1], [9, Chap. VI], [11, 34, 43]).

The concept of nuclearity in Banach spaces is due to Grothendieck [17, 18] and Ruston [33] and has the origin in Schwartz's kernel theorem [18]. Many authors have studied nuclear operators between locally convex spaces (see [21, §17.3], [37, Chap. 3, §7], [46, p. 289]) and Banach spaces (see [9, Chap. VI], [11, 16] [46, p. 279]). If F is a Banach space, nuclear operators from the Banach space $C(X, F)$ of F-valued continuous functions on a compact Hausdorff space X to E have been studied intensively by Popa [29], Saab [35], Saab and Smith [36]. In particular, a characterization of nuclear operators from $C(X)$ to E in terms of their representing measures can be found in [9, Theorem 4, pp. 173-174], [34, Proposition 5.30], [43, Proposition 1.2].

The interplay between absolutely summing operators, dominated operators of Dinculeanu (see [12, §19], [13, §1]) and nuclear operators $T: C(X) \rightarrow E$ has been an interesting issue in operator theory. Pietsch [27, 2.3.4, Proposition, p. 41] proved that dominated operators and absolutely summing operators on the Banach space $C(X)$ coincide. It is known that if in particular, E has the Radon-Nikodym property, then absolutely summing and nuclear operators $T: C(X) \rightarrow E$ coincide (see [9, Corollary 5, p. 174]). Moreover, Uhl [44, Theorem 1] showed that if, E has the Radon-Nikodym property, then every dominated operator $T: C(X) \rightarrow E$ is compact.

The aim of this paper is to extend these classical results to the setting, where X is a completely regular Hausdorff k-space.

Throughout the paper, we assume that (X, \mathcal{T}) is a completely regular Hausdorff space. By \mathcal{K} we denote the family of all compact sets in X. Let \mathcal{B} o denote the σ -algebra of Borel sets in X.

Let $C_{b}(X)$ (resp. $B(\mathcal{B o})$) denote the Banach space of all bounded continuous (resp. bounded $\mathcal{B} o$-measurable) scalar functions on X, equipped with the topology τ_{u} of the uniform norm $\|\cdot\|_{\infty}$. By $\mathcal{S}(\mathcal{B} o)$ we denote the space of all $\mathcal{B} o$-simple scalar functions on X. Let $C_{b}(X)^{\prime}$ stand for the Banach dual of $C_{b}(X)$.

Following [15, 37] and [45, Definition 10.4, p. 137] the strict topology β on $C_{b}(X)$ is the locally convex topology determined by the seminorms

$$
p_{w}(u):=\sup _{t \in X} w(t)|u(t)| \text { for } u \in C_{b}(X),
$$

where w runs over the family \mathcal{W} of all bounded functions $w: X \rightarrow[0, \infty)$ which vanish at infinity, that is, for every $\varepsilon>0$ there exists $K \in \mathcal{K}$ such that $\sup _{t \in X \backslash K} w(t) \leq \varepsilon$. Let $\mathcal{W}_{1}:=\left\{w \in \mathcal{W}: 0 \leq w \leq \mathbb{1}_{X}\right\}$. For $w \in \mathcal{W}_{1}$ and $\eta>0$ let

$$
U_{w}(\eta):=\left\{u \in C_{b}(X): p_{w}(u) \leq \eta\right\} .
$$

Note that the family $\left\{U_{w}(\eta): w \in \mathcal{W}_{1}, \eta>0\right\}$ is a local base at 0 for β.
The strict topology β on $C_{b}(X)$ has been studied intensively (see [15, 20, 38, 41, 45]). Note that β can be characterized as the finest locally convex Hausdorff topology on $C_{b}(X)$ that coincides with the compact-open topology τ_{c} on τ_{u} -bounded sets (see [41, Theorem 2.4]). The topologies β and τ_{u} have the same bounded sets. This means that $\left(C_{b}(X), \beta\right)$ is a generalized DF-space (see [38, Corollary]), and it follows that $\left(C_{b}(X), \beta\right)$ is quasinormable (see [32, p. 422]). If, in particular, X is locally compact (resp. compact), then β coincides with the original strict topology of Buck [6] (resp. $\beta=\tau_{u}$).

Recall that a countably additive scalar measure μ on $\mathcal{B} o$ is said to be a Radon measure if its variation $|\mu|$ is regular, that is, for every $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist $K \in \mathcal{K}$ and $O \in \mathcal{T}$ with $K \subset A \subset O$ such that $|\mu|(O \backslash K) \leq \varepsilon$. Let $M(X)$ denote the Banach space of all scalar Radon measures, equipped with the total variation norm $\|\mu\|:=|\mu|(X)$.

The following characterization of the topological dual of $\left(C_{b}(X), \beta\right)$ will be of importance (see [15, Lemma 4.5]), [20, Theorem 2].

Theorem 1.1 For a linear functional Φ on $C_{b}(X)$ the following statements are equivalent:
(i) Φ is β-continuous.
(ii) There exists a unique $\mu \in M(X)$ such that

$$
\Phi(u)=\Phi_{\mu}(u)=\int_{X} u d \mu \text { for } u \in C_{b}(X)
$$

and $\left\|\Phi_{\mu}\right\|^{\prime}=|\mu|(X)$ for $\mu \in M(X)$ (here $\|\cdot\|^{\prime}$ denotes the conjugate norm in $\left.C_{b}(X)^{\prime}\right)$.

The following result will be useful (see [41, Theorem 5.1]).
Theorem 1.2 For a subset \mathcal{M} of $M(X)$ the following statements are equivalent:
(i) $\sup _{\mu \in \mathcal{M}}|\mu|(X)<\infty$ and \mathcal{M} is uniformly tight, that is, for each $\varepsilon>0$ there exists $K \in \mathcal{K}$ such that $\sup _{\mu \in \mathcal{M}}|\mu|(X \backslash K) \leq \varepsilon$.
(ii) The family $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is β-equicontinuous.

Recall that a completely regular Hausdorff space (X, \mathcal{T}) is a k-space if any subset A of X is closed whenever $A \cap K$ is compact for all compact sets K in X. In
particular, every locally compact Hausdorff space, every metrizable space and every space satisfying the first countability axiom is a k-space (see [14, Chap. 3, §3]).

From now on, we will assume that (X, \mathcal{T}) is a k-space. Then, the space $\left(C_{b}(X), \beta\right)$ is complete (see [15, Theorem 2.4]).

We assume that $\left(E,\|\cdot\|_{E}\right)$ is a Banach space. Let $B_{E^{\prime}}$ stand for the closed unit ball in the Banach dual E^{\prime} of E.

Recall that a bounded linear operator $T: C_{b}(X) \rightarrow E$ is said to be absolutely summing if there exists a constant $c>0$ such that for any finite set $\left\{u_{1}, \ldots, u_{n}\right\}$ in $C_{b}(X)$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\Phi\left(u_{i}\right)\right|: \Phi \in B_{C_{b}(X)^{\prime}}\right\} . \tag{1.1}
\end{equation*}
$$

The infimum of number of $c>0$ satisfying (1.1) denoted by $\|T\|_{\text {as }}$ is called an absolutely summing norm of T.

It is known that a bounded linear operator $T: C_{b}(X) \rightarrow E$ is absolutely summing if and only if T maps unconditionally convergent series in $C_{b}(X)$ into absolutely convergent series in E (see [9, Definition 1, p. 161 and Proposition 2, p. 162]).

For $t \in X$, let δ_{t} stand for the point mass measure, that is, $\delta_{t}(A):=\mathbb{1}_{A}(t)$ for $A \in \mathcal{B} o$. Then $\delta_{t} \in M^{+}(X)$ and $\int_{X} u \mathrm{~d} \delta_{t}=u(t)$ for $u \in C_{b}(X)$. Clearly, $\left\|\delta_{t}\right\|=\delta_{t}(X)=1$.

Lemma 1.3 For a bounded linear operator $T: C_{b}(X) \rightarrow E$, the following statements are equivalent:
(i) T is absolutely summing.
(ii) There exists $c>0$ such that for any set $\left\{u_{1}, \ldots, u_{n}\right\}$ in $C_{b}(X)$,

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}
$$

Proof (i) \Rightarrow (ii) There exists $c>0$ such that for any set $\left\{u_{1}, \ldots, u_{n}\right\}$ in $C_{b}(X)$,

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\Phi\left(u_{i}\right)\right|: \Phi \in B_{C_{b}(X)^{\prime}}\right\}
$$

Note that we have (see [1, p. 205]),

$$
\sup \left\{\sum_{i=1}^{n}\left|\Phi\left(u_{i}\right)\right|: \Phi \in B_{C_{b}(X)^{\prime}}\right\}=\sup \left\{\left\|\sum_{i=1}^{n} \varepsilon_{i} u_{i}\right\|_{\infty}:\left(\varepsilon_{i}\right) \in\{-1,1\}^{n}\right\}
$$

Hence, we get,

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} & \leq c \sup \left\{\left\|\sum_{i=1}^{n} \varepsilon_{i} u_{i}\right\|_{\infty}:\left(\varepsilon_{i}\right) \in\{-1,1\}^{n}\right\} \\
& =c \sup \left\{\left|\sum_{i=1}^{n} \varepsilon_{i} u_{i}(t)\right|:\left(\varepsilon_{i}\right) \in\{-1,1\}^{n}, t \in X\right\} \\
& \leq c \sup \left\{\sum_{i=1}^{n}\left|u_{i}(t)\right|: t \in X\right\}=c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \delta_{t}\right|: t \in X\right\} \\
& \leq c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}
\end{aligned}
$$

(ii) \Rightarrow (i) This is obvious.

The general theory of absolutely summing operators between locally convex spaces was developed by Pietsch [27].

Following [27, 1.2, pp. 23-24], we say that a sequence $\left(u_{n}\right)$ in $C_{b}(X)$ is β-weakly summable if $\sum_{n=1}^{\infty}\left|\int_{X} u_{n} \mathrm{~d} \mu\right|<\infty$ for every $\mu \in M(X)$. By $\ell_{w}^{1}\left(C_{b}(X), \beta\right)$, we denote the linear space of all β-weakly summable sequences in $C_{b}(X)$.

Let $\left(u_{n}\right) \in \ell_{w}^{1}\left(C_{b}(X), \beta\right)$. Then, in view of [27, 1.2.3, pp. 23-24] for each $w \in \mathcal{W}_{1}$ and $\eta>0$ there exists $\varrho_{w, \eta}>0$ such that

$$
\mathcal{E}_{w, \eta}\left(\left(u_{n}\right)\right):=\sup \left\{\sum_{n=1}^{\infty}\left|\int_{X} u_{n} \mathrm{~d} \mu\right|: \mu \in U_{w}(\eta)^{0}\right\} \leq \varrho_{w, \eta},
$$

where $U_{w}(\eta)^{0}$ stands for the polar of $U_{w}(\eta)$ with respect to the pairing $\left\langle C_{b}(X), M(X)\right\rangle$. Then, $\mathcal{E}_{w, \eta}$ is a seminorm on $\ell_{w}^{1}\left(C_{b}(X), \beta\right)$ and the family $\left\{\mathcal{E}_{w, \eta}: w \in \mathcal{W}_{1}, \eta>0\right\}$ generates the so-called \mathcal{E}-topology on $\ell_{w}^{1}\left(C_{b}(X), \beta\right)$ (see [27, 1.2.3]).

Let $\mathcal{F}(\mathbb{N})$ denote the family of all finite sets in \mathbb{N}, the set of all natural numbers. By $\ell_{s}^{1}\left(C_{b}(X), \beta\right)$ we denote the \mathcal{E}-closed subspace of $\ell_{w}^{1}\left(C_{b}(X), \beta\right)$ consisting of all β-summable sequences in $C_{b}(X)$ (see [27, 1.3]). In view of [27, Theorem 1.3.6] a sequence $\left(u_{n}\right) \in \ell_{s}^{1}\left(C_{b}(X), \beta\right)$ if and only if the net $\left(s_{M}\right)_{M \in \mathcal{F}(\mathbb{N})}$ of partial sums $s_{M}:=\sum_{i \in M} u_{i}$ forms a β-Cauchy sequence in $C_{b}(X)$, where $\mathcal{F}(\mathbb{N})$ is directed by inclusion.

Let $\ell^{1}(E)$ stand for the linear space of all absolutely summable sequences in E, i.e., $\left(e_{n}\right) \in \ell^{1}(E)$ if $\sum_{n=1}^{\infty}\left\|e_{n}\right\|_{E}<\infty$. Then, $\ell^{1}(E)$ can be equipped with the norm $\pi_{E}\left(\left(e_{n}\right)\right):=\sum_{n=1}^{\infty}\left\|e_{n}\right\|_{E}($ see $[27,1.4])$.

According to [27, 2.1], we have

Definition 1.4 $\mathrm{A}\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator $T: C_{b}(X) \rightarrow E$ is said to be β -absolutely summing if $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$ whenever $\left(u_{n}\right) \in \ell_{s}^{1}\left(C_{b}(X), \beta\right)$.

Recall that a linear operator $T: C_{b}(X) \rightarrow E$ is said to be β-compact (resp. β -weakly compact) if there exists a β-neighborhood V of 0 such that $T(V)$ is a relatively norm compact (resp. relatively weakly compact) subset of E.

We will say that an operator $T: C_{b}(X) \rightarrow E$ is compact (resp. weakly compact) if T is τ_{u}-compact (resp. τ_{u}-weakly compact).

Proposition 1.5 Let $T: C_{b}(X) \rightarrow E$ be $a\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator. Then, the following statements are equivalent:
(i) T is weakly compact (resp. compact).
(ii) T is β-weakly compact (resp. β-compact).

Proof (i) \Rightarrow (ii) Assume that (i) holds. Topologies β and τ_{u} have the same bounded sets in $C_{b}(X)$, so T maps β-bounded sets onto relatively weakly compact (resp. norm compact) sets in E. Since the space $\left(C_{b}(X), \beta\right)$ is quasinormable, by the Grothendieck classical result (see [32, p. 429]), we obtain that T is β-weakly compact (resp. β -compact).
(ii) \Rightarrow (i) This is obvious because $\beta \subset \tau_{u}$.

Following [12, § 19, Section 3], [13, § 1, Section H] one can distinguish an important class of linear operators on $C_{b}(X)$.

Definition 1.6 A linear operator $T: C_{b}(X) \rightarrow E$ is said to be dominated if there exists $\mu \in M^{+}(X)$ such that

$$
\|T(u)\|_{E} \leq \int_{X}|u| \mathrm{d} \mu \text { for } u \in C_{b}(X)
$$

Then, we say that T is dominated by μ.
According to [25, Proposition 3.1] we have.
Proposition 1.7 Every dominated operator $T: C_{b}(X) \rightarrow E$ is $\left(\beta,\|\cdot\|_{E}\right)$-continuous and weakly compact.

Following [37, Chap. 3, §7] (see also [21, §17.3, p. 376]) and using Theorem 1.2 we have the following definition.

Definition 1.8 A linear operator $T: C_{b}(X) \rightarrow E$ is said to be β-nuclear, if there exist a uniformly bounded and uniformly tight sequence $\left(\mu_{n}\right)$ in $M(X)$, a bounded sequence $\left(e_{n}\right)$ in E and a sequence $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
\begin{equation*}
T(u)=\sum_{n=1}^{\infty} \lambda_{n}\left(\int_{X} u \mathrm{~d} \mu_{n}\right) e_{n} \text { for } u \in C_{b}(X) \tag{1.2}
\end{equation*}
$$

If $T: C_{b}(X) \rightarrow E$ is β-nuclear operator, let us put

$$
\|T\|_{\beta-\mathrm{nuc}}:=\inf \left\{\sum_{n=1}^{\infty}\left|\lambda_{n}\left\|\mu_{n} \mid(X)\right\| e_{n} \|_{E}\right\}\right.
$$

where the infimum is taken over all sequences $\left(\mu_{n}\right)$ in $M(X),\left(e_{n}\right)$ in E and $\left(\lambda_{n}\right) \in \ell^{1}$ such that T admits a representation (1.2).

Every β-nuclear operator $T: C_{b}(X) \rightarrow E$ is $\left(\beta,\|\cdot\|_{E}\right)$-continuous and β-compact (see [37, Chap. 3, §7, Corollary 1]).

In [24], the theory of integral representation of continuous operators on $C_{b}(X)$, equipped with the strict topology β has been developed. Making use of the results of [24], we study β-absolutely summing operators, compact operators and β-nuclear operators $T: C_{b}(X) \rightarrow E$. We characterize compact operators and β-nuclear operators $T: C_{b}(X) \rightarrow E$ in terms of their representing measures (see Theorems 4.1 and 5.1 below). It is shown that dominated operators and β-absolutely summing operators $T: C_{b}(X) \rightarrow E$ coincide (see Corollary 3.4) and if, in particular, E has the Radon-Nikodym property, then β-absolutely summing and β-nuclear operators $T: C_{b}(X) \rightarrow E$ coincide (see Corollary 5.2). We prove that a natural kernel operator $T: C_{b}(X) \rightarrow C(K)$ is β-nuclear (see Theorem 6.3).

2 Integral representation

In this section, we collect basic concepts and facts concerning integral representation of operators on $C_{b}(X)$ that will be useful (see [24] for notation and more details).

Let $m: \mathcal{B} o \rightarrow E$ be a finitely additive measure. By $\operatorname{|m|}(A)$ (resp. $\|m\|(A)$), we denote the variation (resp. the semivariation) of m on $A \in \mathcal{B} o$ (see [9, Definition 4, p. 2]). Then, $\|m\|(A) \leq|m|(A)$ for $A \in \mathcal{B} o$.

For $e^{\prime} \in E^{\prime}$, let

$$
m_{e^{\prime}}(A):=e^{\prime}(m(A)) \text { for } A \in \mathcal{B} o .
$$

Then,

$$
\|m\|(A)=\sup _{e^{\prime} \in B_{E^{\prime}}}\left|m_{e^{\prime}}\right|(A)
$$

where $\left|m_{e^{\prime}}\right|(A)$ stands for the variation of $m_{e^{\prime}}$ on $A \in \mathcal{B} o$.
Recall that a countably additive measure $m: \mathcal{B} o \rightarrow E$ is called a Radon measure if its semivariation $\|m\|$ is regular, i.e., for each $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist $K \in \mathcal{K}$ and $O \in \mathcal{T}$ with $K \subset A \subset O$ such that $\|m\|(O \backslash K) \leq \varepsilon$ (see [24, Definition 3.3]).

We will need the following result (see [12, §15.6, Proposition 19]).

Lemma 2.1 Assume that $m: \mathcal{B} o \rightarrow E$ is a Radon measure and $|m|(X)<\infty$. Then, $|m| \in M^{+}(X)$.

Assume that $m: \mathcal{B} o \rightarrow E$ is a finitely additive measure with $\|m\|(X)<\infty$. Then, for every $v \in B(\mathcal{B o})$, one can define the so-called immediate integral $\int_{X} v \mathrm{~d} m \in E$ by

$$
\begin{equation*}
\int_{X} v d m:=\lim \int_{X} s_{n} \mathrm{~d} m, \tag{2.1}
\end{equation*}
$$

where $\left(s_{n}\right)$ is a sequence in $\mathcal{S}(\mathcal{B o})$ such that $\left\|s_{n}-v\right\|_{\infty} \rightarrow 0$ (see [9, p. 5], [13, § 1 , Section G]). Then, for $v \in B(\mathcal{B} o)$,

$$
\left\|\int_{X} v \mathrm{~d} m\right\|_{E} \leq\|v\|_{\infty}\|m\|(X)
$$

For $e^{\prime} \in E^{\prime}$, we have

$$
\begin{equation*}
e^{\prime}\left(\int_{X} v \mathrm{~d} m\right)=\int_{X} v \mathrm{~d} m_{e^{\prime}} \text { for } v \in B(\mathcal{B} o) \tag{2.2}
\end{equation*}
$$

Let $c a(\mathcal{B o})$ denote the Banach space of all countably additive scalar measures on \mathcal{B}, equipped with the total variation norm $\|\mu\|:=|\mu|(X)$. For $\mu \in c a(\mathcal{B} o)^{+}$, let $\mathcal{L}^{1}(\mu)$ denote the space of all μ-integrable scalar functions on X, equipped with the seminorm $\|v\|_{1}:=\int_{X}|v| \mathrm{d} \mu$ for $v \in \mathcal{L}^{1}(\mu)$. Then

$$
C_{b}(X) \subset B(\mathcal{B o}) \subset \mathcal{L}^{1}(\mu) .
$$

Assume that $m: \mathcal{B} o \rightarrow E$ is a countably additive measure of finite variation $|m|$, i.e., $|m|(X)<\infty$. Then $|m| \in c a(\mathcal{B} o)^{+}$(see [9, Proposition 9, p. 3]). Since $\mathcal{S}(\mathcal{B} o)$ is $\|\cdot\|_{1}$ -dense in $\mathcal{L}^{1}(|m|)$, for every

$$
\begin{equation*}
\int_{X} v \mathrm{~d} m:=\lim \int_{X} s_{n} \mathrm{~d} m, \tag{2.3}
\end{equation*}
$$

where $\left(s_{n}\right)$ is a sequence in $\mathcal{S}(\mathcal{B o})$ such that $\left\|s_{n}-v\right\|_{1} \rightarrow 0$ (see [13, § 2, Sect. D]).
Note that for $v \in B(\mathcal{B} o) \subset \mathcal{L}^{1}(|m|)$, the integral $\int_{X} v d m$ defined in (2.3) coincides with the immediate integral defined in (2.1). We have

$$
\begin{equation*}
\left\|\int_{X} v \mathrm{~d} m\right\|_{E} \leq \int_{X}|v| \mathrm{d}|m| \text { for } v \in \mathcal{L}^{1}(|m|) \tag{2.4}
\end{equation*}
$$

Hence, the corresponding integration operator $T_{m}: \mathcal{L}^{1}(|m|) \rightarrow E$ given by

$$
T_{m}(v):=\int_{X} v \mathrm{~d} m \text { for } v \in \mathcal{L}^{1}(|m|)
$$

is $\left(\|\cdot\|_{1},\|\cdot\|_{E}\right)$-continuous.
Let $C_{b}(X)_{\beta}^{\prime}$ and $C_{b}(X)_{\beta}^{\prime \prime}$ denote the dual and the bidual of $\left(C_{b}(X), \beta\right)$. Since β -bounded subsets of $C_{b}(X)$ are τ_{u}-bounded, the strong topology $\beta\left(C_{b}(X)_{\beta}^{\prime}, C_{b}(X)\right)$ in $C_{b}(X)_{\beta}^{\prime}$ coincides with the $\|\cdot\|^{\prime}$-norm topology in $C_{b}(X)^{\prime}$ restricted to $C_{b}(X)_{\beta}^{\prime}$. Hence, we have $C_{b}(X)_{\beta}^{\prime \prime}=\left(C_{b}(X)_{\beta}^{\prime},\|\cdot\|^{\prime}\right)^{\prime} \quad$ and we get $\Psi \in C_{b}(X)_{\beta}^{\prime \prime}$ $\|\Psi\|^{\prime \prime}=\sup \left\{|\Psi(\Phi)|: \Phi \in C_{b}(X)_{\beta}^{\prime},\|\Phi\|^{\prime} \leq 1\right\}$. Then, one can embed isometrically $B(\mathcal{B} o)$ into $C_{b}(X)_{\beta}^{\prime \prime}$ by the mapping $\pi: B(\mathcal{B} o) \rightarrow C_{b}(X)_{\beta}^{\prime \prime}$, where for $v \in B(\mathcal{B} o)$,

$$
\pi(v)\left(\Phi_{\mu}\right):=\int_{X} v \mathrm{~d} \mu \text { for } \mu \in M(X) .
$$

Note that $C_{b}(X)_{\beta}^{\prime}$ is a closed subspace of $\left(C_{b}(X)^{\prime},\|\cdot\|^{\prime}\right)$ (see [24, p. 847]).
Let $i_{E}: E \rightarrow E^{\prime \prime}$ stand for the canonical injection, that is, $i_{E}(e)\left(e^{\prime}\right):=e^{\prime}(e)$ for $e \in E, e^{\prime} \in E^{\prime}$. Let $j_{E}: i_{E}(E) \rightarrow E$ denote the left inverse of i_{E}, i.e., $j_{E}\left(i_{E}(e)\right):=e$ for $e \in E$.

Assume that $T: C_{b}(X) \rightarrow E$ is a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator. Then we can define the biconjugate mapping

$$
T^{\prime \prime}: C_{b}(X)_{\beta}^{\prime \prime} \rightarrow E^{\prime \prime}
$$

by putting $T^{\prime \prime}(\Psi)\left(e^{\prime}\right):=\Psi\left(e^{\prime} \circ T\right)$ for $\Psi \in C_{b}(X)_{\beta}^{\prime \prime}$ and $e^{\prime} \in E^{\prime}$. Then $T^{\prime \prime}$ is $\left(\|\cdot\|^{\prime \prime},\|\cdot\|_{E^{\prime \prime}}\right)$-continuous. Let

$$
\hat{T}:=T^{\prime \prime} \circ \pi: B(\mathcal{B} o) \rightarrow E^{\prime \prime}
$$

Then, \hat{T} is $\left(\|\cdot\|_{\infty},\|\cdot\|_{E^{\prime \prime}}\right)$-continuous.
For $A \in \mathcal{B} o$, let

$$
\hat{m}(A):=\hat{T}\left(\mathbb{1}_{A}\right)
$$

Hence, $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ is a finitely additive bounded measure (i.e., $\left.\|\hat{m}\|(X)<\infty\right)$ and is called a representing measure of T. For every $e^{\prime} \in E^{\prime}$, let

$$
\hat{m}_{e^{\prime}}(A):=\hat{m}(A)\left(e^{\prime}\right) \text { for } A \in \mathcal{B} o
$$

Then for every $v \in B(\mathcal{B o})$, we have (see [24, Theorem 3.1])

$$
\hat{T}(v)=\int_{X} v \mathrm{~d} \hat{m} \text { and } \hat{T}(v)\left(e^{\prime}\right)=\int_{X} v \mathrm{~d} \hat{m}_{e^{\prime}} \text { for every } e^{\prime} \in E^{\prime},
$$

where $\hat{m}_{e^{\prime}} \in M(X)$ for every $e^{\prime} \in E^{\prime}$. From the general properties of the operator $T^{\prime \prime}$ it follows that $\hat{T}\left(C_{b}(X)\right) \subset i_{E}(E)$ and

$$
\begin{equation*}
T(u)=j_{E}(\hat{T}(u))=j_{E}\left(\int_{X} u \mathrm{~d} \hat{m}\right) \text { for } u \in C_{b}(X) . \tag{2.5}
\end{equation*}
$$

According to [24, Theorem 4.2], we have the following characterization of $\left(\beta,\|\cdot\|_{E}\right)$ -continuous weakly compact operators $T: C_{b}(X) \rightarrow E$.

Theorem 2.2 Let $T: C_{b}(X) \rightarrow E$ be a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ be its representing measure. Then the following statements are equivalent:
(i) T is weakly compact.
(ii) $\hat{m}(A) \in i_{E}(E)$ for every $A \in \mathcal{B}$ o.
(iii) $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ is a Radon measure.
(iv) $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ is countably additive.
(v) $T\left(u_{n}\right) \rightarrow 0$ whenever $\left(u_{n}\right)$ is a uniformly bounded sequence in $C_{b}(X)$ such that $u_{n}(t) \rightarrow 0$ for every $t \in X$.
(vi) $T\left(u_{n}\right) \rightarrow 0$ whenever $\left(u_{n}\right)$ is a uniformly bounded sequence in $C_{b}(X)$ such that $\operatorname{supp} u_{k} \cap \operatorname{supp} u_{n}=\emptyset$ for $n \neq k$.

The following result will be useful.
Theorem 2.3 Let $T: C_{b}(X) \rightarrow E$ be a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ be its representing measure. Then the following statements hold:
(i) If T is weakly compact, then $m:=j_{E} \circ \hat{m}: \mathcal{B} o \rightarrow E$ is a Radon measure and

$$
T(u)=\int_{X} u d m \text { for } u \in C_{b}(X)
$$

(ii) If $|\hat{m}|(X)<\infty$, then T is weakly compact and \hat{m} is a Radon measure with $|\hat{m}| \in M^{+}(X)$.

Proof (i) See [24, Theorem 3.5] and Theorem 2.2.
(ii) Assume that $|\hat{m}|(X)<\infty$. Then \hat{m} is strongly additive (see [9, Proposition $15, \mathrm{p} .7]$) and hence the operator $\hat{T}: B(\mathcal{B} o) \rightarrow E^{\prime \prime}$ is weakly compact (see [9, Theorem 1, p. 148]). Therefore, in view of (2.5), the operator $T: C_{b}(X) \rightarrow E$ is weakly compact and by Theorem 2.2, \hat{m} is a Radon measure. Using Lemma 2.1, we get $|\hat{m}| \in M^{+}(X)$.

3 Absolutely summing operators

In this section, we characterize β-absolutely summing operators $T: C_{b}(X) \rightarrow E$ and show that β-absolutely summing operators and dominated operators on $C_{b}(X)$ coincide.

We will need the following lemma.

Lemma 3.1 For a sequence $\left(u_{n}\right)$ in $C_{b}(X)$, the following statements are equivalent:
(i) $\sup \left\{\left\|\sum_{i \in M} \varepsilon_{i} u_{i}\right\|_{\infty}: \varepsilon_{i}= \pm 1, M \in \mathcal{F}(\mathbb{N})\right\}<\infty$.
(ii) $\sum_{n=1}^{\infty}\left|\Phi\left(u_{n}\right)\right|<\infty$ for all $\Phi \in C_{b}(X)^{\prime}$.
(iii) $\sum_{n=1}^{\infty}\left|\int_{X} u_{n} d \mu\right|<\infty$ for all $\mu \in M(X)$.

Proof (i) \Leftrightarrow (ii) It is well known (see [10, Chap. 5, Theorem 6, p. 44]).
(ii) \Rightarrow (iii) This follows from Theorem 1.1 because $\beta \subset \tau_{u}$.
(iii) \Rightarrow (i) Assume that (iii) holds. Then, for $\varepsilon_{i}= \pm 1, M \in \mathcal{F}(\mathbb{N})$ and $\mu \in M(X)$, we have

$$
\begin{aligned}
\left|\int_{X}\left(\sum_{i \in M} \varepsilon_{i} u_{i}\right) \mathrm{d} \mu\right| & =\left|\sum_{i \in M} \int_{X} \varepsilon_{i} u_{i} \mathrm{~d} \mu\right| \leq \sum_{i \in M}\left|\int_{X} u_{i} \mathrm{~d} \mu\right| \\
& \leq \sum_{n=1}^{\infty}\left|\int_{X} u_{n} \mathrm{~d} \mu\right|<\infty .
\end{aligned}
$$

This means that $\left\{\sum_{i \in M} \varepsilon_{i} u_{i}: \varepsilon_{i}= \pm 1, M \in \mathcal{F}(\mathbb{N})\right\}$ is $\sigma\left(C_{b}(X), M(X)\right)$-bounded, and hence it is β-bounded. It follows that $\sup \left\{\left\|\sum_{i \in M} \varepsilon_{i} u_{i}\right\|_{\infty}: \varepsilon_{i}= \pm 1\right.$, $M \in \mathcal{F}(\mathbb{N})\}<\infty$ because τ_{u} and β have the same bounded sets.

The following theorem characterizes β-absolutely summing operators $T: C_{b}(X) \rightarrow E$ (see [9, Proposition 2, p. 162], [22, Proposition 3.1] if X is compact).

Theorem 3.2 Let $T: C_{b}(X) \rightarrow E$ be a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator. Then the following statements are equivalent:
(i) There exists $c>0$ such that for any finite set $\left\{u_{1}, \ldots, u_{n}\right\}$ in $C_{b}(X)$,

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} d \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}
$$

(ii) $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$ if $\sum_{n=1}^{\infty}\left|\int_{X} u_{n} d \mu\right|<\infty$ for every $\mu \in M(X)$.
(iii) $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$ if $\sum_{n=1}^{\infty} u_{n}$ is unconditionally β-convergent.
(iv) T is β-absolutely summing.

Proof (i) \Rightarrow (ii) Assume that (i) holds. Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $\sum_{n=1}^{\infty}\left|\int_{X} u_{n} \mathrm{~d} \mu\right|<\infty$ for every $\mu \in M(X)$. Then, by Lemma 3.1, we have $\sum_{n=1}^{\infty}\left|\Phi\left(u_{n}\right)\right|<\infty$ for all $\Phi \in C_{b}(X)^{\prime}$. Hence, by [27, 1.2.3, pp. 23-24], we get

$$
\left\|\left(u_{n}\right)\right\|_{1}^{w}:=\sup \left\{\sum_{n=1}^{\infty}\left|\Phi\left(u_{n}\right)\right|: \Phi \in C_{b}(X)^{\prime},\|\Phi\|^{\prime} \leq 1\right\}<\infty .
$$

Hence, for every $n \in \mathbb{N}$, we have

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\Phi\left(u_{i}\right)\right|: \Phi \in C_{b}(X)^{\prime},\|\Phi\|^{\prime} \leq 1\right\} \leq c\left\|\left(u_{n}\right)\right\|_{1}^{w}
$$

and it follows that $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$, as desired.
(ii) \Rightarrow (iii) Assume that (ii) holds and the series $\sum_{n=1}^{\infty} u_{n}$ is unconditionally β-convergent in $C_{b}(X)$. Then $\sum_{n=1}^{\infty}\left|\int_{X} u_{n} \mathrm{~d} \mu\right|<\infty$ for every $\mu \in M(X)$ and it follows that $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$.
(iii) \Rightarrow (iv) Assume that (iii) holds and $\left(u_{n}\right) \in \ell_{s}^{1}\left(C_{b}(X), \beta\right)$. Then a net $\left(s_{M}\right)_{M \in \mathcal{F}(\mathbb{N})}$ is a β-Cauchy sequence, where $s_{M}:=\sum_{i \in M} u_{i}$ for $M \in \mathcal{F}(\mathbb{N})$. Let σ be a permutation of \mathbb{N}. Let $w \in \mathcal{W}_{1}$ and $\varepsilon>0$ be given. Then, there exists $M \in \mathcal{F}(\mathbb{N})$ such
that $p_{w}\left(\sum_{j \in L} u_{j}\right) \leq \varepsilon$ for every $L \in \mathcal{F}(\mathbb{N})$ with $L \cap M=\emptyset$. Choose $k \in \mathbb{N}$ such that $M \subset\{\sigma(i): 1 \leq i \leq k\}$. Then for $n, m \in \mathbb{N}$ with $m>n>k$, we have $p_{w}\left(\sum_{i=n}^{m} u_{\sigma(i)}\right) \leq \varepsilon$. This means that the partial sums $\sum_{i=1}^{n} u_{\sigma(i)}$ form a β-Cauchy sequence in $C_{b}(X)$. Since the space $\left(C_{b}(X), \beta\right)$ is complete, we obtain that the series $\sum_{n=1}^{\infty} u_{n}$ is unconditionally β-convergent in $C_{b}(X)$. Hence, we get $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E}<\infty$
(iv) \Rightarrow (i) Assume that (iv) holds. Let $w \in \mathcal{W}_{1}$. Then in view of [27, Theorem 2.1.2] there exists $c_{w}>0$ such that $\pi_{E}\left(\left(T\left(v_{n}\right)\right)\right)=\sum_{n=1}^{\infty}\left\|T\left(v_{n}\right)\right\|_{E} \leq c_{w}$ whenever $\left(v_{n}\right) \in \ell_{w}^{1}\left(C_{b}(X), \beta\right)$ with $\mathcal{E}_{w, 1}\left(\left(v_{n}\right)\right) \leq 1$. Hence for $\left(v_{n}\right) \in \ell_{w}^{1}\left(C_{b}(X), \beta\right)$, we have

$$
\pi_{E}\left(\left(T\left(v_{n}\right)\right)\right)=\sum_{n=1}^{\infty}\left\|T\left(v_{n}\right)\right\|_{E} \leq c_{w} \mathcal{E}_{w, 1}\left(\left(v_{n}\right)\right)
$$

Let $u_{i} \in C_{b}(X)$ for $i=1, \ldots, n$. Define $v_{i}=u_{i}$ for $i=1, \ldots, n$ and $v_{i}=0$ for $i>n$. Then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c_{w} \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} d \mu\right|: \mu \in U_{w}(1)^{0}\right\} . \tag{3.1}
\end{equation*}
$$

Note that $B_{\infty}(1):=\left\{u \in C_{b}(X):\|u\|_{\infty} \leq 1\right\} \subset U_{w}(1)$. Hence, $U_{w}(1)^{0} \subset B_{\infty}(1)^{0}$, where the polars are taken with respect to the pairing $\left\langle C_{b}(X), M(X)\right\rangle$. In view of Theorem 1.1 for $\mu \in M(X)$, we have

$$
|\mu|(X)=\sup \left\{\left|\int_{X} u \mathrm{~d} \mu\right|: u \in C_{b}(X),\|u\|_{\infty} \leq 1\right\} .
$$

It follows that $B_{\infty}(1)^{0}=\{\mu \in M(X):|\mu|(X) \leq 1\}$. By (3.1) we get

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c_{w} \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}
$$

Thus (i) holds.

We show that dominated operators and β-absolutely summing operators on $C_{b}(X)$ coincide (see [27, 2.3.4, Proposition, p. 41]).

We will need the following lemma.
Lemma 3.3 Assume that $\mu \in M(X)$. Then for $O \in \mathcal{T}$, we have

$$
\begin{equation*}
|\mu|(O)=\sup \left\{\left|\int_{X} u d \mu\right|: u \in C_{b}(X),\|u\|_{\infty}=1 \text { and } \operatorname{supp} u \subset O\right\} . \tag{3.2}
\end{equation*}
$$

Proof For $u \in C_{b}(X)$ with $\|u\|_{\infty}=1$ and $\operatorname{supp} u \subset O$, we have

$$
\left|\int_{O} u \mathrm{~d} \mu\right| \leq\|u\|_{\infty}|\mu|(O) \leq|\mu|(O) .
$$

Now let $\varepsilon>0$ be given. Then there exists a $\mathcal{B o}$-partition $\left(A_{i}\right)_{i=1}^{n}$ of O such that

$$
|\mu|(O)-\frac{\varepsilon}{3} \leq\left|\sum_{i=1}^{n} \mu\left(A_{i}\right)\right|
$$

For $i=1, \ldots, n$ choose $K_{i} \in \mathcal{K}$ with $K_{i} \subset A_{i}$ such that $|\mu|\left(A_{i} \backslash K_{i}\right) \leq \frac{\varepsilon}{3 n}$ for $i=1, \ldots, n$. Choose pairwise disjoint $O_{i} \in \mathcal{T}$ with $K_{i} \subset O_{i}$ for $i=1, \ldots, n$ such that $|\mu|\left(O_{i} \backslash K_{i}\right) \leq \frac{\varepsilon}{3 n}$. For $i=1, \ldots, n$ choose $u_{i} \in C_{b}(X)$ with $0 \leq u_{i} \leq \mathbb{1}_{X},\left.u_{i}\right|_{K_{i}} \equiv 1$ and $\left.u_{i}\right|_{X \backslash\left(O_{i} \cap O\right)} \equiv 0$. Let $u:=\sum_{i=1}^{n} u_{i}$. Then $\|u\|_{\infty}=1$ with supp $u \subset O$ and

$$
\int_{O} u \mathrm{~d} \mu=\sum_{i=1}^{n} \int_{O} u_{i} \mathrm{~d} \mu=\sum_{i=1}^{n} \int_{O_{i} \cap O} u_{i} \mathrm{~d} \mu
$$

Then

$$
\begin{aligned}
|\mu|(O)-\frac{\varepsilon}{3} & \leq\left|\sum_{i=1}^{n} \mu\left(A_{i}\right)-\sum_{i=1}^{n} \mu\left(K_{i}\right)\right| \\
& +\left|\sum_{i=1}^{n} \int_{K_{i}} u_{i} \mathrm{~d} \mu-\sum_{i=1}^{n} \int_{O_{i} \cap O} u_{i} \mathrm{~d} \mu\right|+\left|\int_{O} u \mathrm{~d} \mu\right| \\
& \leq \sum_{i=1}^{n}|\mu|\left(A_{i} \backslash K_{i}\right)+\sum_{i=1}^{n}|\mu|\left(\left(O_{i} \cap O\right) \backslash K_{i}\right)+\left|\int_{O} u \mathrm{~d} \mu\right| \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\left|\int_{O} u \mathrm{~d} \mu\right|,
\end{aligned}
$$

that is, $|\mu|(O) \leq\left|\int_{O} u \mathrm{~d} \mu\right|+\varepsilon$. Thus (3.2) holds.
Now we can state our main result (see [27, 2.3.4, Proposition, p. 41]).
Corollary 3.4 Assume that $T: C_{b}(X) \rightarrow E$ is a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ is its representing measure. Then the following statements are equivalent:
(i) $|\hat{m}|(X)<\infty$.
(ii) T is dominated.
(iii) T is β-absolutely summing.
(iv) T is absolutely summing.

In this case, $\|T\|_{a s}=|\hat{m}|(X)$.
Proof (i) \Leftrightarrow (ii) This follows from [25, Theorem 3.1].
(ii) \Rightarrow (iii) Assume that (ii) holds. Then T is dominated by $|\hat{m}|$, so

$$
\|T(u)\|_{E} \leq \int_{X}|u| \mathrm{d}|\hat{m}| \text { for } u \in C_{b}(X) .
$$

Let $u_{1}, \ldots, u_{n} \in C_{b}(X)$. Then we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} & \leq \sum_{i=1}^{n} \int_{X}\left|u_{i}\right| \mathrm{d}|\hat{m}| \leq \int_{X}\left(\sum_{i=1}^{n}\left|u_{i}\right|\right) \mathrm{d}|\hat{m}| \\
& \leq \sup _{t \in X}\left(\sum_{i=1}^{n}\left|u_{i}(t)\right|\right)|\hat{m}|(X)=\sup _{t \in X}\left(\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \delta_{t}\right|\right)|\hat{m}|(X) \\
& \leq \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}|\hat{m}|(X) .
\end{aligned}
$$

In view of Theorem 3.2 T is β-absolutely summing and $\|T\|_{\text {as }} \leq|\hat{m}|(X)$.
(iii) \Rightarrow (i) Assume that (iii) holds. Then in view of Theorem 3.2, there exists $c>0$ such that for every $u_{1}, \ldots, u_{n} \in C_{b}(X)$, we have

$$
\sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \leq c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\}
$$

Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $\sup _{n}\left\|u_{n}\right\|_{\infty}=a<\infty$ and $\operatorname{supp} u_{n} \cap \operatorname{supp} u_{k}=\emptyset$ if $n \neq k$. Then, for $\mu \in M(X)$ with $|\mu|(X) \leq 1$, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right| & \leq \sum_{i=1}^{n}\left\|u_{i}\right\|_{\infty}|\mu|\left(\operatorname{supp} u_{i}\right) \leq a \sum_{i=1}^{n}|\mu|\left(\operatorname{supp} u_{i}\right) \\
& =a|\mu|\left(\bigcup_{i=1}^{n} \operatorname{supp} u_{i}\right) \leq a|\mu|(X) \leq a
\end{aligned}
$$

Then $\sum_{n=1}^{\infty}\left\|T\left(u_{n}\right)\right\|_{E} \leq c a<\infty$, so $\left\|T\left(u_{n}\right)\right\|_{E} \rightarrow 0$ and according to Theorem 2.2 T is weakly compact. Hence by Theorem $2.3 m:=j_{E} \circ \hat{m}: \mathcal{B} o \rightarrow E$ is a Radon measure and

$$
T(u)=\int_{X} u \mathrm{~d} m \text { for } u \in C_{b}(X) .
$$

Now, we shall show that $|m|(X)=|\hat{m}|(X)<\infty$. In fact, let $\left(A_{i}\right)_{i=1}^{n}$ be a $\mathcal{B} o$-partition of X and $\varepsilon>0$ be given. Choose $e_{1}^{\prime}, \ldots, e_{n}^{\prime} \in B_{E^{\prime}}$ such that $\|m\|\left(A_{i}\right) \leq\left|m_{e_{i}^{\prime}}\right|\left(A_{i}\right)+\frac{\varepsilon}{4 n}$ for $i=1, \ldots, n$. Hence

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|m\left(A_{i}\right)\right\|_{E} \leq \sum_{i=1}^{n}\|m\|\left(A_{i}\right) \leq \sum_{i=1}^{n}\left|m_{e_{i}^{\prime}}\right|\left(A_{i}\right)+\frac{\varepsilon}{4} \tag{3.3}
\end{equation*}
$$

For each $i=1, \ldots, n$ one can choose $K_{i} \in \mathcal{K}$ with $K_{i} \subset A_{i}$ such that $\left|m_{e^{\prime}}\right|\left(A_{i} \backslash K_{i}\right) \leq \frac{\varepsilon}{4 n}$. Hence $\left|m_{e^{\prime}}\right|\left(A_{i}\right) \leq\left|m_{e_{i}^{\prime}}\right|\left(K_{i}\right)+\frac{\varepsilon}{4 n}$ for $i=1, \ldots, n$. Then we can choose pairwise disjoint open sets O_{i} with $K_{i} \subset O_{i}$ for $i=1, \ldots, n$. According to Lemma 3.3 for each $i=1, \ldots, n$ there exists $u_{i} \in C_{b}(X)$ with $\left\|u_{i}\right\|_{\infty}=1$ and $\operatorname{supp} u_{i} \subset O_{i}$ such that

$$
\begin{equation*}
\left|m_{e_{i}^{\prime}}\right|\left(O_{i}\right) \leq\left|\int_{X} u_{i} \mathrm{~d} m_{e_{i}^{\prime}}\right|+\frac{\varepsilon}{2 n} \tag{3.4}
\end{equation*}
$$

Hence, by (2.2) and Lemma 3.3, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} m_{e_{i}^{\prime}}\right| & =\sum_{i=1}^{n}\left|e_{i}^{\prime}\left(T\left(u_{i}\right)\right)\right| \leq \sum_{i=1}^{n}\left\|T\left(u_{i}\right)\right\|_{E} \\
& \leq c \sup \left\{\sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} \mu\right|: \mu \in M(X),|\mu|(X) \leq 1\right\} \\
& \leq c \sup \left\{\sum_{i=1}^{n}|\mu|\left(O_{i}\right): \mu \in M(X),|\mu|(X) \leq 1\right\} \leq c .
\end{aligned}
$$

Hence using (3.3) and (3.4), we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|m\left(A_{i}\right)\right\|_{E} & \leq \sum_{i=1}^{n}\left|m_{e_{i}^{\prime}}\right|\left(A_{i}\right)+\frac{\varepsilon}{4} \leq \sum_{i=1}^{n}\left(\left|m_{e_{i}^{\prime}}\right|\left(K_{i}\right)+\frac{\varepsilon}{4 n}\right)+\frac{\varepsilon}{4} \\
& \leq \sum_{i=1}^{n}\left|m_{e_{i}^{\prime}}\right|\left(O_{i}\right)+\frac{\varepsilon}{2} \leq \sum_{i=1}^{n}\left|\int_{X} u_{i} \mathrm{~d} m_{e_{i}^{\prime}}\right|+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq c+\varepsilon .
\end{aligned}
$$

It follows that $\sum_{i=1}^{n}\left\|m\left(A_{i}\right)\right\|_{E} \leq c$, so $|m|(X) \leq c$. Thus, $|\hat{m}|(X) \leq c$ and hence $|\hat{m}|(X) \leq\|T\|_{\text {as }}$.
(iii) \Leftrightarrow (iv) This follows from Lemma 1.3 and Theorem 3.2.

Let $\varphi \in L^{1}(\mu)$, where $\mu \in M^{+}(X)$. We define the multiplication operator $M_{\varphi}: C_{b}(X) \rightarrow L^{1}(\mu)$ by $M_{\varphi}(u):=\varphi u$ for $u \in C_{b}(X)$. For $A \in \mathcal{B} o$, let $m_{\varphi}(A):=\varphi \mathbb{1} \mathbb{A}_{A}$.

Proposition 3.5 Assume that $\varphi \in L^{1}(\mu)$, where $\mu \in M^{+}(X)$. Then the following statements hold:
(i) $\left|m_{\varphi}\right|(A)=\int_{A}|\varphi| d \mu$ for $A \in \mathcal{B}$ o and $\left|m_{\varphi}\right| \in M^{+}(X)$.
(ii) $\left\|M_{\varphi}(u)\right\|_{1}=\int_{X}|u| d\left|m_{\varphi}\right|$ for $u \in C_{b}(X)$, that is, M_{φ} is dominated by $\left|m_{\varphi}\right|$.
(iii) $m_{\varphi}: \mathcal{B} o \rightarrow L^{1}(\mu)$ is a Radon measure and

$$
M_{\varphi}(u)=\int_{X} u d m_{\varphi} \text { for } u \in C_{b}(X) .
$$

(iv) $\quad M_{\varphi}$ is β-absolutely summing.

Proof (i) Let $A \in \mathcal{B} o$ and $\left(A_{i}\right)_{i=1}^{n}$ be a finite $\mathcal{B} o$-partition of A. Then

$$
\sum_{i=1}^{n}\left\|m_{\varphi}\left(A_{i}\right)\right\|_{1}=\sum_{i=1}^{n} \int_{X}|\varphi| \mathbb{1}_{A_{i}} \mathrm{~d} \mu=\int_{A}|\varphi| \mathrm{d} \mu .
$$

Hence, $\left|m_{\varphi}\right|(A)=\int_{A}|\varphi| \mathrm{d} \mu$ and it follows that $\left|m_{\varphi}\right|$ is countably additive. Since $\left|m_{\varphi}\right| \ll \mu$ and $\mu \in M^{+}(X)$, we obtain that $\left|m_{\varphi}\right| \in M^{+}(X)$.
(ii) From (i) it follows that $|\varphi|=\frac{\mathrm{d}\left|m_{\varphi}\right|}{\mathrm{d} \mu}$ (= the Radon-Nikodym derivative of $\left|m_{\varphi}\right|$ with respect to μ). Since $C_{b}(X) \subset L^{1}(\mu)$, in view of [7, Theorem C.8, p. 380] for $u \in C_{b}(X)$, we get

$$
\left\|M_{\varphi}(u)\right\|_{1}=\int_{X}|\varphi u| \mathrm{d} \mu=\int_{X}|u| \mathrm{d}\left|m_{\varphi}\right| .
$$

(iii) Since $\left\|m_{\varphi}\right\|(A) \leq\left|m_{\varphi}\right|(A)$ for $A \in \mathcal{B} o$ and $\left|m_{\varphi}\right| \in M^{+}(X)$, we obtain that m_{φ} is a Radon measure. Note that for $s \in \mathcal{S}(\mathcal{B o}), \int_{X} s \mathrm{~d} m_{\varphi}=\varphi s$.

Let $u \in C_{b}(X)$ and choose a sequence $\left(s_{n}\right)$ in $\mathcal{S}(\mathcal{B} o)$ such that $\left\|u-s_{n}\right\|_{\infty} \rightarrow 0$. Hence

$$
\left\|M_{\varphi}(u)-\varphi s_{n}\right\|_{1}=\int_{X}\left|\varphi u-\varphi s_{n}\right| \mathrm{d} \mu \leq \int_{X}|\varphi| \mathrm{d} \mu\left\|u-s_{n}\right\|_{\infty}
$$

This means that $M_{\varphi}(u)=\int_{X} u \mathrm{~d} m_{\varphi}$.
(iv) In view of (ii) and Proposition $1.7 M_{\varphi}$ is $\left(\beta,\|\cdot\|_{1}\right)$-continuous. Hence, by Corollary 3.4 M_{φ} is β-absolutely summing.

The next result shows that every β-absolutely summing operator $T: C_{b}(X) \rightarrow E$ admits a factorization through L^{1}-space (see [9, Corollary 7, pp. 164-165], [11, Corollary 2.5], [43, Theorem 1.8] if X is compact).

Corollary 3.6 Let $T: C_{b}(X) \rightarrow E$ be a β-absolutely summing operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ be its representing measure. Then, $m:=j_{E} \circ \hat{m}: \mathcal{B} o \rightarrow E$ is a Radon measure with $|m| \in M^{+}(X)$ and the following statements hold:
(i) The inclusion map $I: C_{b}(X) \rightarrow L^{1}(|m|)$ is a β-absolutely summing operator with $\|I\|_{a s}=|m|(X)$.
(ii) The integration operator $S: L^{1}(|m|) \rightarrow E$ defined by

$$
S(v):=\int_{X} v d m \text { for all } v \in L^{1}(|m|)
$$

is bounded with $\|S\| \leq 1$ and $T=S \circ I$.
Proof In view of Theorem $2.3 m:=j_{E} \circ \hat{m}: \mathcal{B} o \rightarrow E$ is a Radon measure with $|m| \in M^{+}(X)$.
(i) Since $|m| \in M^{+}(X)$ in view of Proposition 3.5, I is β-absolutely summing and $\|I\|_{\text {as }}=\int_{X} \mathbb{1}_{X} \mathrm{~d}|\hat{m}|=|\hat{m}|(X)=|m|(X)$.
(ii) In view of Theorem 2.3 we have that $T(u)=\int_{X} u \mathrm{~d} m$ for $u \in C_{b}(X)$.

Thus, we get $T=S \circ I$, where by (2.4) $\|S\| \leq 1$.

4 Compact operators

The tensor product $c a(\mathcal{B} o) \otimes E$ consists of all measures $m: \mathcal{B} o \rightarrow E$ of the form $m=\sum_{i=1}^{n}\left(\mu_{i} \otimes e_{i}\right)$, where $\mu_{i} \in c a(\mathcal{B} o)$ and $e_{i} \in E$ for $i=1, \ldots, n$. Then $m(A)=\sum_{i=1}^{n} \mu_{i}(A) e_{i}$ for $A \in \mathcal{B} o$.

Now, we can state a characterization of β-compact operators $T: C_{b}(X) \rightarrow E$ in terms of their representing measures $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ (see [9, Theorem 18, p. 161], [34, Theorem 5.27] if X is compact).

Theorem 4.1 Let $T: C_{b}(X) \rightarrow E$ be a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ be its representing measure. Then the following statements are equivalent:
(i) T is β-compact.
(ii) \hat{m} has a relatively norm compact range in $E^{\prime \prime}$.

Proof (i) \Rightarrow (ii) Assume that (i) holds. Then $T^{\prime \prime}: C_{b}(X)^{\prime \prime} \rightarrow E^{\prime \prime}$ is compact and hence $\hat{T}:=T^{\prime \prime} \circ \pi: B(\mathcal{B} o) \rightarrow E^{\prime \prime}$ is compact. Since

$$
\{\hat{m}(A): A \in \mathcal{B} o\}=\left\{\hat{T}\left(\mathbb{1}_{A}\right): A \in \mathcal{B} o\right\} \subset\left\{\hat{T}(v): v \in B(\mathcal{B} o),\|v\|_{\infty} \leq 1\right\},
$$

we obtain that $\hat{m}(\mathcal{B} o)$ is relatively norm compact in $E^{\prime \prime}$.
(ii) \Rightarrow (i) Assume that (ii) holds. Since $\hat{m}(\mathcal{B} o)$ is weakly compact, the corresponding integration operator $\hat{T}: B(\mathcal{B} o) \rightarrow E^{\prime \prime}$ is weakly compact (see [19, Theorem 7]). Then, in view of (2.5), T is weakly compact, and by Theorem 2.3 $m:=j_{E} \circ \hat{m}: \mathcal{B} o \rightarrow E$ is countably additive and $m(\mathcal{B o})$ is relatively norm compact in E. According to the proof of [34, Theorem 5.18], there exists a sequence $\left(m_{k}\right)$ in $c a(\mathcal{B o}) \otimes E$ such that $\left\|m-m_{k}\right\| \rightarrow 0$.

For each $k \in \mathbb{N}$, let $T_{k}: C_{b}(X) \rightarrow E$ be the finite rank operator defined by $T_{k}(u):=\int_{X} u \mathrm{~d} m_{k}$. For $u \in C_{b}(X)$, we have

$$
\left\|T_{k}(u)-T(u)\right\|_{E}=\left\|\int_{X} u \mathrm{~d}\left(m_{k}-m\right)\right\|_{E} \leq\|u\|_{\infty}\left\|m_{k}-m\right\|(X),
$$

and it follows that $\left\|T_{k}-T\right\| \rightarrow 0$. Hence, T is a compact operator and using Proposition 1.5 we have that T is β-compact.

5 Nuclear operators

We state our main result that characterizes β-nuclear operators $T: C_{b}(X) \rightarrow E$ in terms of their representing measures (see [9, Theorem 4, p. 179], [34, Proposition 5.30], [43, Proposition 1.2] if X is a compact Hausdorff space).

Let (Ω, Σ, μ) be a finite measure space. Recall that a bounded linear operator $S: L^{1}(\mu) \rightarrow E$ is said to be representable if there exists an essentially bounded μ -Bochner integrable function $f: \Omega \rightarrow E$ such that $S(v)=\int_{\Omega} v(\omega) f(\omega) \mathrm{d} \mu$ for all $v \in L^{1}(\mu)$.

Theorem 5.1 Let $T: C_{b}(X) \rightarrow E$ be a $\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator and $\hat{m}: \mathcal{B} o \rightarrow E^{\prime \prime}$ be its representing measure. Then the following statements are equivalent:
(i) T is β-nuclear.
(ii) $|\hat{m}|(X)<\infty$ and m has a $|m|$-Bochner integrable derivative.
(iii) $|\hat{m}|(X)<\infty$ and there exists a representable operator $S: L^{1}(|m|) \rightarrow E$ such that $T=S \circ I$, where $I: C_{b}(X) \rightarrow L^{1}(|m|)$ denotes the inclusion map.

In this case, $\|T\|_{\beta \text { - nuc }}=|\hat{m}|(X)=|m|(X)$.
Proof (i) \Rightarrow (ii) This follows from [26, Theorem 3.1].
(ii) \Rightarrow (i) Assume that (ii) holds, that is, $|\hat{m}|(X)<\infty$ and there exists a function $f \in L^{1}(|m|, E)$ such that $m(A)=\int_{A} f(t) \mathrm{d}|m|$ for $A \in \mathcal{B} o$. Then, $|m|(X)=\|f\|_{1}$. Hence, we easily obtain that

$$
T(u)=\int_{X} u(t) f(t) \mathrm{d}|m| \text { for } u \in C_{b}(X) .
$$

Let $L^{1}(|m|) \hat{\otimes} E$ denote the projective tensor product of $L^{1}(|m|)$ and E, equipped with the norm γ defined for $w \in L^{1}(|m|) \hat{\otimes} E$ by

$$
\gamma(w):=\inf \left\{\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|v_{n}\right\|_{1}\left\|e_{n}\right\|_{E}\right\},
$$

where the infimum is taken over all sequences $\left(v_{n}\right)$ in $L^{1}(|m|)$ and $\left(e_{n}\right)$ in E with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|e_{n}\right\|_{E}$ and $\left(\lambda_{n}\right) \in \ell^{1}$ such that $w=\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes e_{n}\right)$ (see [34, Proposition 2.8, pp. 21-22]). It is known that $L^{1}(|m|) \hat{\otimes} E$ is isometrically isomorphic to the Banach space $\left(L^{1}(|m|, E),\|\cdot\|_{1}\right)$ throughout the isometry J, where

$$
J(v \otimes e):=v(\cdot) \otimes e \text { for } v \in L^{1}(|m|), e \in E,
$$

(see [9, Example 10, p. 228], [34, Example 2.19, p. 29]).
Let $\varepsilon>0$ be given. Then, there exist sequences $\left(v_{n}\right)$ in $L^{1}(|m|)$ and $\left(e_{n}\right)$ in E with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|e_{n}\right\|_{E}$ and $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
J^{-1}(f)=\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes e_{n}\right) \quad \text { in } \quad\left(L^{1}(|m|) \hat{\otimes} E, \gamma\right)
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|v_{n}\right\|_{1}\left\|e_{n}\right\|_{E} \leq \gamma\left(J^{-1}(f)\right)+\varepsilon=\|f\|_{1}+\varepsilon . \tag{5.1}
\end{equation*}
$$

Hence

$$
f=J\left(\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes e_{n}\right)\right)=\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes e_{n}\right) \quad \text { in } \quad\left(L^{1}(|m|, E),\|\cdot\|_{1}\right)
$$

and we obtain that

$$
T(u)=\sum_{n=1}^{\infty} \lambda_{n}\left(\int_{X} u v_{n} \mathrm{~d}|m|\right) e_{n} \text { for } u \in C_{b}(X)
$$

For $n \in \mathbb{N}$, let

$$
\mu_{n}(A):=\int_{A} v_{n} \mathrm{~d}|m| \text { for } A \in \mathcal{B} o
$$

Note that $\mu_{n} \in M(X)$ and $\left|\mu_{n}\right|(X)=\left\|v_{n}\right\|_{1}$. Then we have $\sup _{n}\left|\mu_{n}\right|(X)=\sup _{n}\left\|v_{n}\right\|_{1}<\infty$. To show that the family $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is uniformly tight, let $\varepsilon>0$ be given. Since $\left\|v_{n}\right\|_{1} \rightarrow 0$, we can choose $n_{\varepsilon} \in \mathbb{N}$ such that $\left|\mu_{n}\right|(X) \leq \varepsilon$ for $n>n_{\varepsilon}$. For $n=1, \ldots, n_{\varepsilon}$ choose $K_{n} \in \mathcal{K}$ such that $\left|\mu_{n}\right|\left(X \backslash K_{n}\right) \leq \varepsilon$. Denote $K:=\bigcup_{n=1}^{n_{\varepsilon}} K_{n}$. Then, $\left|\mu_{n}\right|(X \backslash K) \leq \varepsilon$ for every $n \in \mathbb{N}$, as desired.

Clearly for $n \in \mathbb{N}$, we have (see [7, Theorem C.8]),

$$
\int_{X} u v_{n} \mathrm{~d}|m|=\int_{X} u \mathrm{~d} \mu_{n} \text { for } u \in C_{b}(X) .
$$

Hence, we have

$$
T(u)=\sum_{n=1}^{\infty} \lambda_{n}\left(\int_{X} u \mathrm{~d} \mu_{n}\right) e_{n} \text { for } u \in C_{b}(X),
$$

and this means that T is β-nuclear. By (5.1) we get

$$
\begin{equation*}
\|T\|_{\beta-\mathrm{nuc}} \leq\|f\|_{1}=|m|(X) . \tag{5.2}
\end{equation*}
$$

(ii) \Rightarrow (iii) Assume that (ii) holds, that is, $|\hat{m}|(X)<\infty$ and there exists a $|m|$-Bochner integrable function $f: X \rightarrow E$ such that $m(A)=\int_{A} f(t) \mathrm{d}|m|$ for $A \in \mathcal{B} o$. Let

$$
S(v):=\int_{X} v \mathrm{~d} m \text { for all } v \in L^{1}(|m|)
$$

Then, $S(u)=T(u)$ for $u \in C_{b}(X)$ and $m(A)=S\left(\mathbb{1}_{A}\right)$ for $A \in \mathcal{B} o$. Hence, by [9, Lemma 4, p. 62] f is essentially bounded and

$$
S(v)=\int_{X} v(t) f(t) \mathrm{d}|m| \text { for all } v \in L^{1}(|m|)
$$

(iii) \Rightarrow (ii) This is obvious.

Thus, (i) \Leftrightarrow (ii) \Leftrightarrow (iii) hold. Moreover, if T is β-nuclear and $\varepsilon>0$ is given, then there exist a uniformly bounded and uniformly tight sequence $\left(\mu_{n}\right)$ in $M(X)$, a bounded sequence $\left(e_{n}\right)$ in E and a sequence $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
T(u)=\sum_{n=1}^{\infty} \lambda_{n}\left(\int_{X} u \mathrm{~d} \mu_{n}\right) e_{n} \text { for } u \in C_{b}(X)
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\lambda_{n}\left\|\mu_{n} \mid(X)\right\| e_{n}\left\|_{E} \leq\right\| T \|_{\beta-\mathrm{nuc}}+\varepsilon\right. \tag{5.3}
\end{equation*}
$$

Following the proof of [26, Theorem 3.1], we have

$$
m(A)=\sum_{i=1}^{\infty} \lambda_{n} \mu_{n}(A) e_{n} \text { for } A \in \mathcal{B} o
$$

Now, if Π is a finite $\mathcal{B o}$-partition of X, then

$$
\begin{aligned}
\sum_{A \in \Pi}\|m(A)\|_{E} & =\sum_{A \in \Pi}\left\|\sum_{n=1}^{\infty} \lambda_{n} \mu_{n}(A) e_{n}\right\|_{E} \leq \sum_{A \in \Pi} \sum_{n=1}^{\infty}\left|\lambda_{n}\left\|\mu_{n}(A) \mid\right\| e_{n} \|_{E}\right. \\
& =\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left(\sum_{A \in \Pi}\left|\mu_{n}(A)\right|\right)\left\|e_{n}\right\|_{E} \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\left\|\mu_{n} \mid(X)\right\| e_{n} \|_{E} .\right.
\end{aligned}
$$

Thus, in view of (5.3), we get

$$
|m|(X) \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\left\|\mu_{n} \mid(X)\right\| e_{n}\left\|_{E} \leq\right\| T \|_{\beta-\mathrm{nuc}}+\varepsilon\right.
$$

Hence using (5.2) we have $\|T\|_{\beta-\text { nuc }}=|m|(X)=|\hat{m}|(X)$. Thus the proof is complete.

In view of Theorem 5.1 and Corollary 3.4, we get (see [9, Corollary 5, p. 174]).
Corollary 5.2 Assume that $T: C_{b}(X) \rightarrow E$ is $a\left(\beta,\|\cdot\|_{E}\right)$-continuous linear operator.
(i) If the operator T is β-nuclear, then T is β-absolutely summing and $\|T\|_{a s}=\|T\|_{\beta-n u c}$.
(ii) If E has the Radon-Nikodym property, then T is β-absolutely summing if and only if T is β-nuclear.

As a consequence of Corollarys 3.4 and 5.2, we have

Corollary 5.3 Let $T: C_{b}(X) \rightarrow E$ be a dominated operator. If E has the RadonNikodym property, then T is β-compact.

Remark 5.4 If X is a compact Hausdorff space, the related result to Corollary 5.3 was obtained in the different way by Uhl [44, Theorem 1].

Remark 5.5 A relationship between vector measures $m: \Sigma \rightarrow E$ with a μ-Bochner integrable derivatives (with respect to a finite measure μ) and the nuclearity of the corresponding integration operators $T_{m}: L^{\infty}(\mu) \rightarrow E$ has been studied by Swartz [42] and Popa [30].

6 Nuclearity of kernel operators

It is well known that if K is a compact Hausdorff space, $\mu \in M^{+}(K)$ and $k(\cdot, \cdot) \in C(K \times K)$, then the corresponding kernel operator $T: C(K) \rightarrow C(K)$ between Banach spaces, defined by

$$
T(u)(t)=\int_{X} u(s) k(t, s) \mathrm{d} \mu(s) \text { for } u \in C(K), t \in K,
$$

is nuclear (see [16, Theorem V.22, p. 99] if $X=[a, b]$).
Now as an application of Theorem 5.1, we extend this result to the setting, where X is a k-space and the kernel operator $T: C_{b}(X) \rightarrow C(K)$ is acting from the space $\left(C_{b}(X), \beta\right)$ to a Banach space $\left(C(K),\|\cdot\|_{\infty}\right)$, where K is a compact Hausdorff space.

From now on we assume that $\mu \in M^{+}(X)$ and $k(\cdot, \cdot) \in C_{b}(K \times X)$ with $\sup _{t \in K}|k(t, s)| \geq c$ for every $s \in X$ and some $c>0$.

We start with the following lemma.
Lemma 6.1 For every $v \in B(\mathcal{B} o)$, the mapping $\Psi_{v}: X \ni s \mapsto v(s) k(\cdot, s) \in C(K)$ is ($\mathcal{T},\|\cdot\|_{\infty}$)-continuous.

Proof Let $s_{0} \in X$ and $\varepsilon>0$ be given. Then for every $t \in K$ there exist a neighborhood V_{t} of t and a neighborhood W_{t} of s_{0} such that

$$
\left|k(z, s)-k\left(t, s_{0}\right)\right| \leq \frac{\varepsilon}{\|v\|_{\infty}} \text { for all } z \in V_{t}, s \in W_{t} .
$$

Hence there exist $t_{1}, \ldots, t_{n} \in K$ such that $K=\bigcup_{i=1}^{n} V_{t_{i}}$. Let us put $W:=\bigcap_{i=1}^{n} W_{t_{i}}$. Let $t \in K$ and choose i_{0} with $1 \leq i_{0} \leq n$ such that $t \in V_{t_{i_{0}}}$. Then for $s \in W$, we have $\left|k(t, s)-k\left(t, s_{0}\right)\right| \leq \frac{\varepsilon}{\|\nu\|_{\infty}}$. Hence

$$
\left\|\Psi_{v}(s)-\Psi_{v}\left(s_{0}\right)\right\|_{\infty} \leq\|v\|_{\infty} \sup _{t \in K}\left|k(t, s)-k\left(t, s_{0}\right)\right| \leq \varepsilon .
$$

This means that Ψ_{v} is $\left(\mathcal{T},\|\cdot\|_{\infty}\right)$-continuous.
Let $L^{1}(\mu, C(K))$ stand for the Banach space of μ-Bochner integrable functions on X with values in $C(K)$. In view of [23, Theorem 5.1] we have

$$
C_{b}(X, C(K)) \subset L^{1}(\mu, C(K)) .
$$

Hence, in view of Lemma 6.1, we can define the kernel operator $S: B(\mathcal{B} o) \rightarrow C(K)$ by

$$
S(v):=\int_{X} \Psi_{v}(s) \mathrm{d} \mu(s)=\int_{X} v(s) k(\cdot, s) \mathrm{d} \mu(s) \text { for all } v \in B(\mathcal{B} o) .
$$

For $t \in K$, let $\phi_{t}(w):=w(t)$ for $w \in C(K)$. Then $\phi_{t} \in C(K)^{\prime}$ and using Hille's theorem (see [13, §1, Section J, Theorem 36]), we get

$$
S(v)(t)=\int_{X} v(s) k(t, s) \mathrm{d} \mu(s) \text { for all } v \in B(\mathcal{B} o), t \in K
$$

Then for $v \in B(\mathcal{B o})$,

$$
\begin{aligned}
\|S(v)\|_{\infty} & =\sup _{t \in K}|S(v)(t)| \leq \sup _{t \in K} \int_{X}|v(s)||k(t, s)| \mathrm{d} \mu(s) \\
& \leq \int_{X}|v(s)| \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s) \leq\|v\|_{\infty} \sup _{t \in K, s \in X}|k(t, s)| \mu(X),
\end{aligned}
$$

that is, S is a $\left(\|\cdot\|_{\infty},\|\cdot\|_{\infty}\right)$-bounded operator.
Define a measure $m_{k}: \mathcal{B} o \rightarrow C(K)$ by

$$
m_{k}(A):=S\left(\mathbb{1}_{A}\right)=\int_{A} k(\cdot, s) \mathrm{d} \mu(s) \text { for } A \in \mathcal{B} o .
$$

Then,

$$
S(v)=\int v \mathrm{~d} m_{k} \text { for all } v \in B(\mathcal{B} o)
$$

and for $A \in \mathcal{B} o, t \in K$, we have

$$
m_{k}(A)(t)=\int_{A} k(t, s) \mathrm{d} \mu(s)
$$

Proposition 6.2 The measure m_{k} has the following properties:
(i) m_{k} is of bounded variation and for every $A \in \mathcal{B} o$,

$$
\left|m_{k}\right|(A)=\int_{A} \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s) .
$$

(ii) $\left|m_{k}\right| \in M^{+}(X)$ and m_{k} is a Radon measure and

$$
m_{k}(A)=\int_{A} \frac{k(\cdot, s)}{\sup _{t \in K}|k(t, s)|} \mathrm{d}\left|m_{k}\right|(s) \text { for all } A \in \mathcal{B} o,
$$

$$
\text { where the function } X \ni s \mapsto \frac{k(\cdot s)}{\sup _{t \in K}|k(t, s)|} \in C(K) \text { belongs to } L^{1}\left(\left|m_{k}\right|, C(K)\right) \text {. }
$$

Proof (i) See [9, Theorem 4, p. 46].
(ii) Note that $\left|m_{k}\right|(A) \leq \mu(A) \sup \{|k(t, s)|: t \in K, s \in X\}$ for $A \in \mathcal{B} o$. Then $\left|m_{k}\right| \in M^{+}(X)$ and hence m_{k} is a Radon measure. From (i) it follows that $\sup _{t \in K}|k(t, \cdot)|=\frac{\mathrm{d}\left|m_{k}\right|}{\mathrm{d} \mu}$ (= the Radon-Nikodym derivative of $\left|m_{k}\right|$ with respect to μ). Since $\left|m_{k}\right| \in M^{+}(X)$, using [23, Theorem 5.1] we get $C_{b}(X, C(K)) \subset L^{1}\left(\left|m_{k}\right|, C(K)\right)$.

Let $v(s):=\frac{1}{\sup _{t \in K}|k(t, s)|}$ for $s \in X$. Then $v \in B(\mathcal{B} o)$ and by Lemma 6.1 the function

$$
X \ni s \mapsto \frac{k(\cdot, s)}{\sup _{t \in K}|k(t, s)|} \in C(K)
$$

belongs to $L^{1}\left(\left|m_{k}\right|, C(K)\right)$. Hence we can define the measure $m_{0}: \mathcal{B} o \rightarrow C(K)$ by

$$
m_{0}(A):=\int_{A} \frac{k(\cdot, s)}{\sup _{t \in K}|k(t, s)|} \mathrm{d}\left|m_{k}\right|(s) \text { for } A \in \mathcal{B} o
$$

Using Hille's theorem and [7, Theorem C.8] for $A \in \mathcal{B} o$ and each $\tau \in K$, we get

$$
\begin{aligned}
m_{0}(A)(\tau) & =\phi_{\tau}\left(m_{0}(A)\right)=\phi_{\tau}\left(\int_{X} \frac{\mathbb{1}_{A}(s) k(\cdot, s)}{\sup _{t \in K}|k(t, s)|} \mathrm{d}\left|m_{k}\right|(s)\right) \\
& =\int_{X} \frac{\mathbb{1}_{A}(s) k(\tau, s)}{\sup _{t \in K}|k(t, s)|} \mathrm{d}\left|m_{k}\right|(s) \\
& =\int_{X} \frac{\mathbb{1}_{A}(s) k(\tau, s)}{\sup _{t \in K}|k(t, s)|} \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s) \\
& =\int_{A} k(\tau, s) \mathrm{d} \mu(s)=m_{k}(A)(\tau) .
\end{aligned}
$$

Thus $m_{k}(A)=m_{0}(A):=\int_{A} \frac{k(\cdot, s)}{\sup _{t \in K}|k(t, s)|} \mathrm{d}\left|m_{k}\right|(s)$ for every $A \in \mathcal{B} o$.
Define the kernel operator $T: C_{b}(X) \rightarrow C(K)$ by

$$
T(u):=\int_{X} u(s) k(\cdot, s) \mathrm{d} \mu(s) \text { for all } u \in C_{b}(X)
$$

Let us consider the mapping $\lambda: K \ni t \mapsto \mu_{t} \in M(X)$, where for $t \in K$,

$$
\mu_{t}(A):=\int_{A} k(t, s) \mathrm{d} \mu(s) \text { for all } A \in \mathcal{B} o
$$

Then

$$
T(u)(t)=\int_{X} u(s) \mathrm{d} \mu_{t}(s) \text { for all } u \in C_{b}(X), t \in K
$$

that is, T is a kernel operator in the sense of Sentilles (see $[39,40]$) with the kernel λ and $T(u)(t)=\lambda(u)(t)$ for $u \in C_{b}(X), t \in K$.

Now, we are ready to state our desire result.
Theorem 6.3 The kernel operator $T: C_{b}(X) \rightarrow C(K)$ is β-nuclear and

$$
\|T\|_{\beta-n u c}=\int_{X} \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s) .
$$

Proof For every $u \in C_{b}(X)$, using Proposition 6.2, we get

$$
\begin{aligned}
\|T(u)\|_{\infty} & =\sup _{t \in K}|T(u)(t)|=\sup _{t \in K}\left|\int_{X} u(s) k(t, s) \mathrm{d} \mu(s)\right| \\
& \leq \int_{X}|u(s)| \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s)=\int_{X}|u(s)| \mathrm{d}\left|m_{k}\right|(s) .
\end{aligned}
$$

Hence, T is dominated, and by Proposition $1.7 T$ is $\left(\beta,\|\cdot\|_{\infty}\right)$-continuous and weakly compact. In view of Theorem 2.3,

$$
T(u)=\int_{X} u \mathrm{~d} m \text { for all } u \in C_{b}(X)
$$

where $m:=j_{C(K)} \mathrm{o} \hat{m}$ and \hat{m} is the representing measure of T.
On the other hand,

$$
T(u)=S(u)=\int_{X} u \mathrm{~d} m_{k} \text { for all } u \in C_{b}(X)
$$

and since m_{k} and m are Radon measures, we derive that $m_{k}=m$. In view of Proposition 6.2 and Theorem 5.1, we obtain that T is a β-nuclear operator and

$$
\|T\|_{\beta-\mathrm{nuc}}=|m|(X)=\left|m_{k}\right|(X)=\int_{X} \sup _{t \in K}|k(t, s)| \mathrm{d} \mu(s)
$$

Acknowledgment The authors wish to thank the referees for remarks and suggestions that have improved the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/.

References

1. Albiac, F., Kalton, N.: Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233, 2nd edn. Springer, New York (2016)
2. Albuquerque, N., Araujo, G., Cavalcante, W.V., Nogueira, T., Nunez-Alarcon, D., Pellegrino, D., Rueda, P.: On summability of multilinear operators and applications. Ann. Funct. Anal. 9(4), 574-590 (2018)
3. Bhaskara Rao, K.P.S., Bhaskara Rao, M.: Theory of Charges. A Study of Finitely Additive Measures, Pure and Applied Mathematics, vol. 109. Academic Press, New York (1983)
4. Bombal, F., Pérez-García, D., Villanueva, I.: Multilinear extensions of Grothendieck's theorem. Q. J. Math. 55(4), 441-450 (2004)
5. Botelho, G., Campos, J., Santos, J.: Operator ideals related to absolutely summing and Cohen strongly summing operators. Pac. J. Math. 287(1), 1-17 (2017)
6. Buck, R.C.: Bounded continuous functions on a locally compact space. Mich. Math. J. 5, 95-104 (1958)
7. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)
8. Diestel, J.: An elementary characterization of absolutely summing operators. Math. Ann. 196, 101-105 (1972)
9. Diestel, J., Uhl, J.J.: Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, (1977)
10. Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92. Springer, New York (1984)
11. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)
12. Dinculeanu, N.: Vector Measures. Pergamon Press, Oxford (1967)
13. Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces. Wiley-Interscience, New York (2000)
14. Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)
15. Giles, R.: A generalization of the strict topology. Trans. Am. Math. Soc. 161, 467-474 (1971)
16. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators. Springer, Basel (2000)
17. Grothendieck, A.: Résumé de la métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8, 1-63 (1953)
18. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Sémi Naire N. Bourbaki 69, 193-200 (1954)
19. Hoffmann-Jörgënsen, J.: Vector measures. Math. Scand. 28, 5-32 (1971)
20. Hoffmann-Jörgënsen, J.: A generalization of the strict topology. Math. Scand. 30, 313-323 (1972)
21. Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
22. Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in L_{p}-spaces and their applications. Stud. Math. 29, 275-326 (1968)
23. Nowak, M.: A Riesz representation theory for completely regular Hausdorff spaces and its applications. Open Math. 14, 474-496 (2016)
24. Nowak, M.: Integral representation of continuous operators with respect to strict topologies. Results Math. 72, 843-863 (2017)
25. Nowak, M., Stochmal, J.: Dominated operators, absolutely summing operators and the strict topology. Quaest. Math. 40, 119-137 (2017)
26. Nowak, M., Stochmal, J.: Nuclear operators on $C_{b}(X, E)$ and the strict topology. Math. Slovaca 68(1), 135-146 (2018)
27. Pietsch, A.: Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und ihrer Grenzebiete, vol. 66. Springer, Berlin (1972)
28. Pietsch, A.: Operator Ideals. North-Holland Publishing Company, Amsterdam (1980)
29. Popa, D.: Nuclear operators on $C(T, X)$. Stud. Cerc. Mat. 42(1), 47-50 (1990)
30. Popa, D.: Measures with relatively norm compact range and ∞-nuclear operators. Le Mat. 50(2), 307-310 (1995)
31. Rodríguez, J.: Absolutely summing operators and integration of vector-valued functions. J. Math. Anal. Appl. 316, 579-600 (2006)
32. Ruess, W.: [Weakly] compact operators and DF-spaces. Pac. J. Math. 98(2), 419-441 (1982)
33. Ruston, A.F.: On the Fredholm theory of integral equations for operators belonging to the trace class for a general Banach space. Proc. Lond. Math. Soc. 55(2), 109-124 (1951)
34. Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2002)
35. Saab, P.: Integral operators on spaces of continuous vector-valued functions. Proc. Am. Math. Soc. 111(3), 1003-1013 (1991)
36. Saab, P., Smith, B.: Nuclear operators on spaces of continuous vector-valued functions. Glasg. Math. J. 33(2), 223-230 (1994)
37. Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1971)
38. Schmets, J., Zafarani, J.: Strict topologies and (gDF)-spaces. Arch. Math. 49, 227-231 (1987)
39. Sentilles, F.D.: Compactness and convergence in the space of measures. Ill. J. Math. 13, 761-768 (1969)
40. Sentilles, F.D.: Compact and weakly compact operators on $C(S)_{\beta}$. Ill. J. Math. 13, 769-776 (1969)
41. Sentilles, F.D.: Bounded continuous functions on a completely regular space. Trans. Am. Math. Soc. 168, 311-336 (1972)
42. Swartz, C.: An operator characterization of vector measures which have Radon-Nikodym derivative. Math. Ann. 202, 77-84 (1973)
43. Tong, A.E.: Nuclear mappings on $C(X)$. Math. Ann. 194, 213-224 (1971)
44. Uhl, J.J.: The compactness of certain dominated operators. Rev. Roum. Math. Pures Appl. 14, 1635-1637 (1969)
45. Wheeler, R.: A survey of Baire measures and strict topologies. Expos. Math. 2, 97-190 (1983)
46. Yosida, K.: Functional Analysis. Springer, Berlin (1995)

[^0]: Communicated by Raymond Mortini.
 Juliusz Stochmal
 juliusz.stochmal@gmail.com
 Marian Nowak
 M.Nowak@wmie.uz.zgora.pl

 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland

 2 Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland

