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Abstract

Assume that a convergent series of real numbers 
∞
∑

n=1

a
n
 has the property that there 

exists a set A ⊆ ℕ such that the series 
∑

n∈A

a
n
 is conditionally convergent. We prove 

that for a given arbitrary sequence (b
n
) of real numbers there exists a permutation 

� ∶ ℕ → ℕ such that �(n) = n for every n ∉ A and (b
n
) is c

0
-equivalent to a subse-

quence of the sequence of partial sums of the series 
∞
∑

n=1

a
�(n) . Moreover, we discuss a 

connection between our main result with the classical Riemann series theorem.
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1 Introduction

By ℝ we denote the set of reals and ℕ = {1, 2,…} . By an ideal, or set-ideal to dis-
tinguish from an algebraic ideal, we mean a family I ⊂ P(ℕ) which is closed 
under finite unions and contains all subsets of each of its members. An ideal is 
proper if it does not contain ℕ and a proper ideal is admissible if it contains all 
singletons {n} . An ideal I  is called summable if there exists a sequence of posi-
tive numbers (an) such that 

∞
∑

n=1

an = +∞ and A ∈ I  if and only if 
∑

n∈A

an < +∞.

Next, for a given ideal I  we say that a sequence (xn) of real numbers is I
-bounded if there exists a constant 𝜆 > 0 such that the set {n ∶ |xn| > 𝜆} belongs 
to I  . The set of all I -bounded sequences is denoted by �∞(I) and is equipped 
with a semi-norm given by

Further, a sequence (xn) is termed I-convergent to some x0 ∈ ℝ if for every 𝜀 > 0 
the set {n ∈ ℕ ∶ |xn − x0| > 𝜀} belongs to I  . The set of all I-convergent sequences 
is denoted by c(I) and by c0(I) we mean its subspace of all sequences which are I
-convergent to 0. We say that two sequences (xn) and (yn) of elements of a metric 
space (X, d) are c0-equivalent if

This relation is most often considered in the case of �∞ or of a compact space X. 
Below we illustrate both situations by recalling some applications of this notion.

Theorem 1.1 (Semadeni [17, Theorem 4.2.2, p.77]) The space �∞∕c0 is isometri-
cally isomorphic to the space of continuous functions on the remainder �ℕ ⧵ ℕ of 
the Čech–Stone compactification of the discrete space ℕ.

In Ref. [4], the authors have generalized this by proving a set-ideal version of 
the above theorem. Given an admissible ideal I ⊂ P(ℕ) by PI  we denote the set 
of all proper ultrafilters p in P(ℕ) such that 

⋂

p = ∅ and the family p∗ of the com-
plements of all elements of p contains I  . The family PI  is a closed subset of �ℕ 
(see Balcar and Simon [1]) and, therefore, it makes sense to consider the space 
C(PI) of all continuous functions on PI .

Theorem  1.2 (Bartoszewicz et  al. [4, Theorem  1]) For every admissible ideal 
I ⊂ P(ℕ) the spaces �∞(I)∕c0(I) and C(PI) are isometrically isomorphic.

Roughly speaking, the above statement says that in Semadeni’s result one can 
use the seminorm ‖ ⋅ ‖Fin

∞
 on the space �∞ , where Fin is the ideal of finite subsets 

of ℕ , obtaining the same effect.
According to a well-known theorem of von Neumann, two sequences (xn) , (yn) 

of elements of a compact metric space have the same set of limit points if and 

‖(xn)‖
I

∞
= inf{𝜆 > 0 ∶ {n ∈ ℕ ∶ �xn� > 𝜆} ∈ I}.

lim
n→∞

d(xn, yn) = 0.
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only if (xn) is c0-equivalent to some permutation of (yn) . Recently Bielas et al. [6, 
Theorem  2.1] have generalized one implication of the von Neumann’s theorem 
using the so-called “back-and-forth” method. In a paper by Banakiewicz et al. [3], 
the reverse implication to this theorem was proved. Given a metric space (X, d) 
the center of distances of X is defined as

Theorem  1.3 ([3, Theorem  1.2]) Assume that (X,  d) is a compact metric space, 
(xn), (yn) are sequences of elements of X which have the same set of limit points A. 
Then for a given � ≥ 0 there exists a permutation � ∶ ℕ → ℕ such that

if and only if � ∈ Z(A).

From the above statement, one can easily derive the less trivial implication of 
the von Neumann’s theorem, which corresponds to the case � = 0 . Moreover, we 
can formulate an immediate corollary.

Corollary 1.1 Assume that (X, d) is a compact metric space and (xn) is a sequence 
of elements of X with the set of limit points A. Then there exists a permutation 
� ∶ ℕ → ℕ such that

if and only if � ∈ Z(A).

The aim of this note is to show an application of the c0-equivalence in the case 
of unbounded sequences. Our main theorem can be treated as an extension of the 
Riemann rearrangement theorem.

2  Main result

For an arbitrary number a ∈ ℝ , we denote a+ = max{a, 0} and a− = a+ − a . A 
series 

∞
∑

n=1

an is called potentially conditionally convergent if the following three 

conditions hold: 

(a) 
∞
∑

n=1

a+
n
= +∞,

(b) 
∞
∑

n=1

a−
n
= +∞,

(c) lim
n→∞

an = 0.

Z(X) = {� ≥ 0 ∶ ∀x ∈ X,∃y ∈ X such that d(x, y) = �}.

lim
n→∞

d(xn, y�(n)) = �

lim
n→∞

d(xn, x�(n)) = �
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It is clear that every conditionally convergent series is potentially conditionally 
convergent.

Our main theorem reads.

Theorem 2.1 Let (an) be a sequence of real numbers such that the series 
∞
∑

n=1

an is 

convergent and assume that there exists a set A ⊆ ℕ such that the series 
∑

n∈A

an is 

conditionally convergent. Next, let (bn) be an arbitrary sequence of real numbers. 
Then there exist a permutation � ∶ ℕ → ℕ satisfying �(n) = n for every n ∉ A and a 
subsequence of the sequence of partial sums of the series 

∞
∑

n=1

a
�(n) which is c0-equiv-

alent to the sequence (bn).

Proof Note that the series 
∞
∑

n=1

an is conditionally convergent. In particular, we have 
∞
∑

n=1

a+
n
= +∞ and 

∞
∑

n=1

a−
n
= +∞.

We will inductively construct a bijection � ∶ ℕ → ℕ and a strictly increasing 
sequence of positive integers (kn) such that Skn − bn tends to 0 as n → ∞ , where 

Skn =
kn
∑

j=1

a
�(j).

First, we put �(j) = j for all j ∉ A . Let us put k0 = 0 and observe that for n = 0 the 
inductive assumptions are trivially satisfied, so we have the base for our induction.

If n > 0 let us assume that we have found positive integers k1, k2,… , kn which 
form a strictly increasing sequence, the values �(j) are defined for every integer 
j ∈ {1,… , kn} , one has �(j) ∈ A whenever j ∈ A and

If n = 0 , then we do not assume that (2.1) holds and, moreover, any value of � is not 
defined at the moment. All subsequent arguments remain the same.

In case n > 0 for m < n , let k∗
m
 be the smallest integer which is greater than km and 

belongs to A. Let us assume, moreover, that �(k∗
m
) ∈ A is the smallest positive inte-

ger which does not belong to the set {�(j) ∶ j ≤ km} . This assumption will be used to 
obtain the surjectivity of �.

Since the series 
∑

j∉A

aj is convergent, then it satisfies the Cauchy condition. There-

fore, there exists a positive integer k�
n+1

> kn such that for q > k�
n+1

 one has

Now, we are able to define a positive integer kn+1 > k�
n+1

 and values �(j) for 
kn + 1 ≤ j ≤ kn+1 in such a way that the following two conditions hold: 

(2.1)|

|

|

Skm − bm
|

|

|

≤
1

m
, for m ≤ n.

(2.2)
|

|

|

|

|

|

q
∑

j=1, j∉A

aj −

k�
n+1
∑

j=1, j∉A

aj

|

|

|

|

|

|

=

|

|

|

|

|

|

q
∑

j=k�
n+1

+1, j∉A

aj

|

|

|

|

|

|

≤
1

2(n + 1)
.
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(A) �(k∗
n
) is the smallest positive integer in A which does not appear in the set 

{�(j) ∶ j ≤ kn, j ∈ A},
(B) the following estimate holds true:

Indeed, the series 
∑

j∈A

aj is conditionally convergent. Hence, any real number r can be 

estimated by the partial sums of a series 
∑

j∈A

a
�1(j)

 for some permutation �1 ∶ ℕ → ℕ . 

Obviously, we can take �1(j) = �(j) for j ≤ kn . So for some kn+1 , we can have

which, defining �(j) ∶= �1(j) for kn + 1 ≤ j ≤ kn+1 , gives us (2.3). Of course we can 
assume that kn+1 is greater than k�

n+1
 . Making use of (2.2) and (2.3), we obtain

Finally, let us observe that our definition of the value �(k∗
n
) guarantees the surjectiv-

ity of � .   ◻

Let us formulate some corollaries.

(2.3)

�

�

�

�

�

�

�

kn+1
�

j=kn+1, j∈A

a
�(j) −

⎛

⎜

⎜

⎝

bn+1 −

kn
�

j=1

a
�(j) −

k�
n+1
�

j=kn+1, j∉A

aj

⎞

⎟

⎟

⎠

�

�

�

�

�

�

�

≤
1

2(n + 1)
.

�

�

�

�

�

�

�

kn+1
�

j=1, j∈A

a
�1(j)

−

⎛

⎜

⎜

⎝

bn+1 −

k�
n+1
�

j=1, j∉A

aj

⎞

⎟

⎟

⎠

�

�

�

�

�

�

�

≤
1

2(n + 1)
,

�

�

�

Skn+1 − bn+1
�

�

�

=

�

�

�

�

�

�

kn+1
�

j=1

a
�(j) − bn+1

�

�

�

�

�

�

=

�

�

�

�

�

�

kn
�

j=1

a
�(j) +

kn+1
�

j=kn+1, j∈A

a
�(j) +

kn+1
�

j=kn+1, j∉A

aj − bn+1

�

�

�

�

�

�

=

�

�

�

�

�

�

kn
�

j=1

a
�(j) +

kn+1
�

j=kn+1, j∈A

a
�(j) +

kn+1
�

j=kn+1, j∉A

aj

−

k�
n+1
�

j=kn+1, j∉A

aj +

k�
n+1
�

j=kn+1, j∉A

aj − bn+1

�

�

�

�

�

�

≤

�

�

�

�

�

�

�

kn+1
�

j=kn+1, j∈A

a
�(j) −

⎛

⎜

⎜

⎝

bn+1 −

kn
�

j=1

a
�(j) −

k�
n+1
�

j=kn+1, j∉A

aj

⎞

⎟

⎟

⎠

�

�

�

�

�

�

�

+

�

�

�

�

�

�

kn+1
�

j=k�
n+1

+1, j∉A

aj

�

�

�

�

�

�

≤
1

2(n + 1)
+

1

2(n + 1)
=

1

(n + 1)
.
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Corollary 2.1 Let (an) be a sequence of real numbers such that the series 
∞
∑

n=1

an is 

potentially conditionally convergent. Next, let (bn) be an arbitrary sequence of real 
numbers. Then there exists a permutation � ∶ ℕ → ℕ such that the sequence (bn) is 
c0-equivalent to some subsequence of the sequence of partial sums of the series 
∞
∑

n=1

a
�(n).

Proof There exists a permutation � ∶ ℕ → ℕ such that the series 
∞
∑

n=1

a
�
(n) is conver-

gent. Apply our theorem for this series and the set A = ℕ to get a permutation 
�� ∶ ℕ → ℕ such that the sequence (bn) is c0-equivalent to some subsequence of the 
sequence of partial sums of the series 

∞
∑

n=1

a(��◦�)(n) . To finish the proof take 

� = ��◦� .   ◻

Wilczyński [18] has proved that for every conditionally convergent series 
∞
∑

n=1

an , there exists a set A of density zero such that the series 
∞
∑

n=1,n∈A

an is condi-

tionally convergent. He posed an open problem in Ref. [18] to characterize all set 
ideals I  with the property that for every conditionally convergent series 

∞
∑

n=1

an , 

there exists a set A ∈ I  such that the series 
∞
∑

n=1,n∈A

an is conditionally convergent. 

Filipów and Szuca [11] answered this problem and they proved that a set ideal I  
has the above-mentioned property if and only if it cannot be extended to a sum-
mable ideal.

On joining [18, Lemma] with our main result, we can take the set A to be of 
density zero.

Corollary 2.2 Let (an) be a sequence of real numbers such that the series 
∞
∑

n=1

an is 

conditionally convergent. Next, let (bn) be an arbitrary sequence of real numbers. 
Then there exists a permutation � ∶ ℕ → ℕ such that

and the sequence (bn) is c0-equivalent to some subsequence of the sequence of par-
tial sums of the series 

∞
∑

n=1

a
�(n).

It is worth to note a connection of our results with the Riemann rearrangement 
theorem. One can reformulate this classical result as follows:

Theorem 2.2 (Riemann rearrangement theorem) Let (an) be a sequence of real num-
bers such that the series 

∞
∑

n=1

an is conditionally convergent, let b ∈ ℝ ∪ {±∞} be 

arbitrary and let (bn) be a sequence of real numbers tending to b. Then there exists a 

lim
n→∞

1

n
|{n ∈ ℕ ∶ �(n) ≠ n}| = 0
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permutation � ∶ ℕ → ℕ such that the sequence (bn) is c0-equivalent to the sequence 
of partial sums of the series 

∞
∑

n=1

a
�(n).

It is easy to note two differences between our Corollary 2.1 and the Riemann 
rearrangement theorem. First, we do not assume that the sequence (bn) is conver-
gent (in fact, it can be even unbounded in our settings). But in return for it, in 
general only a subsequence of the sequence of partial sums of the series 

∞
∑

n=1

a
�(n) 

is c0-equivalent to (bn).
Recently, several results related to the Riemann rearrangement theorem and 

conditional convergence of series were published by several authors, see [2, 5, 9, 
10, 12–16, 19–21].

We will terminate the paper with a generalization of an interesting result of 
Burgin [7, Corollary 4.6] which extends the classical Riemann rearrangement 
theorem to the case of the so-called hypernumbers. However, the original proof 
of Bounded Riemann Series Theorem (BRST, [7, Theorem 4.5]) contains a gap 
which cannot be removed directly. We give some counterexamples to this state-
ment. We provide an alternative argument and at the same time we obtain a 
slightly more general statement than the Burgin’s Generalized Riemann Series 
Theorem (GRST, [7, Corollary 4.6]).

Hypernumbers have been founded by Burgin and they provide an extension of 
the real line. This extension is of importance in many areas of mathematics and 
in physics. The elegant and deep theory of hypernumbers allows one in particu-
lar to differentiate in an extended sense every real function. We recall here only 
basic notions we need in what follows. For a comprehensive study of the topic, 
the reader is referred to the excellent monograph by Burgin [8]. Let ℝℕ stand for 
the set of all sequences of real numbers. Following Burgin’s notation, the set of c0
-equivalence classes of ℝℕ is denoted by ℝ

�
 and its elements are called hypernum-

bers. Given a sequence (an) ∈ ℝ
ℕ , by Hn((an)) , we denote its equivalence class, 

i.e. the hypernumber which is represented by this sequence. In particular, every 
real number can be identified with a constant sequence equal to it and, therefore, 
the real line ℝ is a proper subset of the set of all hypernumbers ℝ

�
 . A hyper-

number is called bounded if it is generated by a bounded sequence. If �, � ∈ ℝ
�
 , 

then we say that � is a subnumber of � , which is denoted by � ⋐ � , if there exist 
two sequences (an), (bn) such that (bn) is a subsequence of (an) , � = Hn((an)) and 
� = Hn((bn)).

Following Burgin [7], given a series of real numbers 
∞
∑

n=1

an , convergent or not, 

we say that a series 
∞
∑

n=1

bn is a quotient series of 
∞
∑

n=1

an if there is a surjective map 

p ∶ ℕ → ℕ such that for every i ∈ ℕ the set p−1(i) consists of a finite number of 
consecutive elements of ℕ and bi =

∑

j∈p−1(i)

aj . If additionally the map p is mono-

tone, then we speak about a monotone quotient series.
 Burgin [7] introduced the concept of analytical sums of a series as a hypernum-

ber generated by its partial sums. For an arbitrary series of real numbers 
∞
∑

n=1

an , we 
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write an(
∞
∑

n=1

an) = Hn((An)) , where An =
n
∑

i=1

ai for n ∈ ℕ . If the series 
∞
∑

n=1

an is con-

vergent, then its analytical sum coincides with its topological sum, i.e. the real num-
ber equal to its sum, which is denoted by top(

∞
∑

n=1

an) . For series divergent to ±∞ one 

can also speak about its topological sums.
One can observe that if �, � ∈ ℝ

�
 satisfy

for some (an), (bn) ∈ ℝ
ℕ , then the series 

∞
∑

n=1

bn is a monotone quotient series of 
∞
∑

n=1

an 

if and only if � ⋐ � (see [7, Lemma 4.4]).
The Bounded Riemann Series Theorem (BRST) [7, Theorem 4.5] deals with a 

series 
∞
∑

n=1

an which is bounded and not absolutely convergent. Thus, an(
∞
∑

n=1

an) is a 

bounded hypernumber. BRST says that for every hypernumber � ∈ ℝ
�
 there exists a 

monotone quotient series 
∞
∑

n=1

dn of 
∞
∑

n=1

an , a permutation 
∞
∑

n=1

bn of 
∞
∑

n=1

dn and a mono-

tone quotient series 
∞
∑

n=1

cn of 
∞
∑

n=1

bn such that � = an(
∞
∑

n=1

cn) . This statement is in gen-

eral not true, which is exhibited by examples below. Moreover, an inspection of the 
proof of [7, Theorem  4.5] allows us to detect an invalid argument that was used. 
Namely, it is not true that a monotone quotient series of a series which is not abso-
lutely convergent is necessarily not absolutely convergent. Consequently, Riemann 
rearrangement theorem cannot be applied. Our examples shed some more light on 
the situation.

Example 2.1 Let an = (−1)n+1 for n ∈ ℕ . Then the series 
∞
∑

n=1

an is not absolutely con-

vergent (in fact it is divergent) and its analytical sum is a bounded hypernumber. 
Thus, the assumptions of BRST are satisfied. Note that every converging subse-
quence of its partial sums An must be from some point equal either to 0 or 1. There-
fore, every monotone quotient series 

∞
∑

n=1

dn of 
∞
∑

n=1

an which is convergent converges 

to 0 or 1. Thus, every permutation 
∞
∑

n=1

bn of 
∞
∑

n=1

dn is either equal to the zero series, or 

to a series which contains 1 at one place. Consequently, every monotone quotient 
series 

∞
∑

n=1

cn of 
∞
∑

n=1

bn is also either equal to the zero series, or it contains 1 at one 

place. Two in a sense typical examples of monotone quotient series of 
∞
∑

n=1

an are 

0 + 0 +… and 1 + 0 + 0 +… . The first case can be obtained by the projection 
j0 ∶ ℕ → ℕ given by j0(2k − 1) = j0(2k) = k for k ∈ ℕ , whereas the second one by 
the projection j1 ∶ ℕ → ℕ given by j1(1) = 1 and j1(2k) = j1(2k + 1) = k for k ∈ ℕ . 
Thus, only two hypernumbers � , namely 0 and 1 can be achieved from the series 
∞
∑

n=1

an by means of the proof of Burgin’s BRST. Note, however, that every hyper-

� = an

(

∞
∑

n=1

an

)

, � = an

(

∞
∑

n=1

bn

)
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number which is of the form Hn(qn) with all qn being integers can be obtained as a 
monotone quotient series of a permutation of 

∞
∑

n=1

an . Moreover, any hypernumber 

which is not of this form cannot be obtained as a monotone quotient series of 
∞
∑

n=1

an.

Example 2.2 Let an = (−1)n+1∕n for n ∈ ℕ . Then the series 
∞
∑

n=1

an is conditionally 

convergent (to ln 2 ). Again, the assumptions of BRST are satisfied. This time there 
exists a monotone quotient series 

∞
∑

n=1

dn of 
∞
∑

n=1

an which is absolutely convergent. 

Indeed, one can take any projection from the previous example, if we take 
j0 ∶ ℕ → ℕ given by j0(2k − 1) = j0(2k) = k for k ∈ ℕ , then we obtain a convergent 
series of positive numbers. But in contrast to the previous example, this time it is 
possible to achieve every hypernumber as a monotone quotient series of a permuta-
tion of the original one. This is a straightforward consequence of Corollary 2.3.

Corollary 2.3 Assume that � ∈ ℝ
�
 is an arbitrary hypernumber and (an) is a 

sequence of real numbers such that the series 
∞
∑

n=1

an is potentially conditionally con-

vergent. Then there exists a permutation � ∶ ℕ → ℕ such that � is equal to a mono-
tone quotient series of the series 

∞
∑

n=1

a
�(n).

Proof Follows immediately from our Theorem 2.1.   ◻
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