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Abstract The crosstalk between signaling and metabolic pathways has been known to play key roles in human
diseases and plant biological processes. The integration of signaling and metabolic pathways can
provide an essential reference framework for crosstalk analysis. However, current databases use dis-
tinct structures to present signaling and metabolic pathways, which leads to the chaos in the integrated
networks. Moreover, for the metabolic pathways, the metabolic enzymes and the reactions are dis-
connected by the current widely accepted layout of edges and nodes, which hinders the topological
analysis of the integrated networks. Here, we propose a novel ‘‘meta-pathway’’ structure, which uses the
uniformed structure to display the signaling and metabolic pathways, and resolves the difficulty in
linking the metabolic enzymes to the reactions topologically. We compiled a comprehensive collection
of global integrative networks (GINs) by merging the meta-pathways of 7077 species. We demonstrated
the assembly of the signaling and metabolic pathways using the GINs of four species—human, mouse,
Arabidopsis, and rice. Almost all of the nodes were assembled into one major network for each of the
four species, which provided opportunities for robust crosstalk and topological analysis, and knowledge
graph construction.
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INTRODUCTION

Proteins are a special group of compounds in living
cells, featured by their distinctive functions compared to
the other compounds. The proteins involved in the
biosynthesis or degradation of other compounds form
the metabolic pathways, while a large number of protein
enzymes sense and transfer the intra-/extra-cellular

signals by signaling cascades, forming the signaling
pathways. The crosstalk of signaling pathways and
metabolic pathways attracts growing attentions for
researches in both human disease and plants. A recent
review summarized the crosstalk between signaling
pathways and metabolic reprogramming in colorectal
cancer facilitated by protein kinases such as AKT and
c-MYC (Hon et al. 2021). Another review provided
insights into the crosstalk in B cells (Jellusova 2018).
The piling evidences of the crosstalk were also reviewed
in the vascular biology (Uebelhoer and Iruela-Arispe& Correspondence: xqi@ibcas.ac.cn (X. Qi),
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2016). For plants, the responses to the environmental
stress are mostly passive, involving the production of
various secondary metabolites and the downstream
signaling induced by wound (Jacobo-Velázquez et al.
2015), salinity(Hartmann et al. 2015; Singhal et al.
2021), draught(Woldesemayat and Ntwasa 2018),
symbiosis (MacLean et al. 2017), etc. These call for a
global integrative map of prior knowledges of signaling
and metabolic pathways as a reference network to
elucidate the coordinated changes of cellular processes
and enable the topological analysis of the crosstalk
between signaling pathways and metabolic processes.

However, current pathway databases describe the
signaling pathways and metabolic processes in obviously
different styles. In the graph of signaling pathways, which
usually refer to the cascade of post-translational modifi-
cation (PTM), an edge usually connects an upstream
protein (functioning as an enzyme in the reaction) and a
downstream protein (representing the substrate and
product of the reaction). On the other hand, an edge in a
graph of metabolic pathway usually connects a substrate
and a product, with the enzyme(s) sitting on the edge of
the arrow. Although there are number of databases that
contains both of the two types of pathways [such as KEGG
(Kanehisa 2019; Kanehisa et al. 2021; Kanehisa and Goto
2000), WikiPathways (Martens et al. 2021), etc.], the
displaying style of the two types of pathways still differs
significantly in these databases.

The differences in the displaying style of the two
types of pathways cause a series of inconveniences. First
of all, they confuse the topological analysis since the
edges in the two types of pathways have different
meanings. Topological analysis can provide in-depth
biological insight, and has been widely applied in the
analysis of biological networks, i.e., the STRING database
which is a popular protein–protein interaction (PPI)
network database (Szklarczyk et al. 2021) and the gene
co-expression network based on correlation analysis
(Montenegro 2022). Second, the signaling pathways and
metabolic processes are unable to be assembled into a
connected graph even though there are crosstalk
between them, since the enzymes of metabolic pro-
cesses do not have edges which connect them to the
reactions they catalyze. Of note, this also hinders the
topological analysis of the integrated map of signaling
and metabolic pathways. For example, KEGG displays
the enzymes of metabolic reactions by putting the
enzyme nodes adjacent to the edges of the reactions,
while WikiPathways database provides an ‘‘anchor’’
attribute for each reaction in their gpml files, and the
enzymes can point to these anchors, although these
anchors do not have edges to the substrates or the
products of the reactions.

Efforts have been made to integrate the signaling
pathways and metabolic pathways. Sompairac et al.
(2019) combines human signaling pathways and meta-
bolic processes by directly merging the ACSN and
ReconMap2.0 databases (Kuperstein et al. 2015; Nor-
onha et al. 2017; Sompairac et al. 2019). However, this
integration mainly focused on resolving the difficulties
in visualization. The enzymes of metabolic reactions
were still disconnected from the reactions they catalyze.
Bag et al. (2019) integrated the signaling and metabolic
pathways for epidermal growth factor receptor (EGFR)-
driven glioblastoma multiforme (GBM) (Bag et al. 2019).
They borrowed information from PPI network and
connected the signaling proteins with the metabolic
enzymes in 14 signaling pathways and 81 metabolic
pathways. However, although the PPI relations con-
nected the proteins, the proteins of the metabolic
enzymes were still disconnected from their reactions.
Moreover, the scope of the pathways they integrated
was limited, since they only covered 27.4% of the KEGG
pathways (there are currently 347 pathways available
for the human species through KEGGREST). Taken
together, previous efforts on the integration of signaling
and metabolic pathways were limited on single species
and did not fundamentally standardize the data struc-
ture, leaving the signaling and metabolic pathways
topologically disconnected.

Here, we propose a novel concept, the ‘‘meta-path-
way’’, which standardized the basic structure of the
signaling and metabolic reactions, enabling the inte-
gration of the signaling and metabolic pathway collec-
tions based on uniformed graph structure. Our newly
constructed global integrative map (GIN) will open the
opportunities for topological analysis of the crosstalk
between signaling and metabolic networks, enabling the
interpretation of multi-omics data and mining of the
systemic changes at a global scope.

RESULTS

Meta-pathway’s basic structure

To integrate the signaling and metabolic pathways
conceptually, we decomposed the common data struc-
ture of the two types of pathways into the structure of
chemical reactions (Fig. 1A, B), which is universal
among different biological processes. For a single
metabolic reaction, we split the reaction into two steps:
the formation of the intermediate and the production of
the products from the intermediate (Fig. 1A, right).
There are multiple advantages brought by the intro-
duction of the intermediate. First, the intermediate is a
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unique identifier composed of substrate(s) with/with-
out the enzyme(s). This resolve the chaos when there
are multiple isoenzymes catalyzing the same reactions.
Second, the intermediate provides a landing point of the
edges starting from the enzyme(s), which is also similar
to the structure of the signaling pathways (Fig. 1B, left).
This helps to unify the relations of the enzymes to either
metabolic substrates or signaling proteins. For a reac-
tion in the signaling pathways, we split the reaction in a
similar way (Fig. 1B, right). Of note, different from a
metabolic reaction, the substrate and the product of a
reaction in signaling pathway usually appear to be the
same, since the major change of the substrate after the

reaction is the addition/reduction of a small chemical
group. Since the enzyme by definition, does not change
after the reaction finishes, we did not keep the edges
from intermediate to enzyme (the dashed arrows and
boxes). The final form of the data structure of the meta-
pathway consists of three columns, the starting node
and ending node of an edge, plus a column of the type of
the edges.

There are four major types of the edges, including
type1, connecting the protein subunits to the protein
complex, type2, connecting the enzyme to the interme-
diate, type3, connecting the substrate to the interme-
diate, and type4, connecting the intermediate to the

(A)

(B)

(C)

Fig. 1 The design of meta-pathway. A The structure of the metabolic reactions before (left) and after (right) the conversion. If the enzyme
is composed of several subunits, the relations of the subunits constituting the enzyme complex were explicitly recorded as type 1
relations. For each reaction, we introduced extra nodes representing the intermediates, which are composed of the substrate and the
enzyme or enzyme complex. The type 2 relations are therefore defined as the relations of the enzyme or enzyme complex constituting the
intermediate, and the similar definition goes for the type 3 relations of substrate and intermediate. The type 4 relations are defined as the
conversion of the intermediate to product. The dashed arrow and box indicate the enzyme leaving the intermediate and become available
for the next reaction, which we ignored to simplify the data structure. B The structure of the signaling pathways before (left) and after
(right) the conversion. The data structure is similar to A after the conversion. C The structure of a meta-pathway with crosstalk between a
signaling cascade and metabolic reactions. Before conversion (left), the interaction between the protein B and enzyme C is displayed by
an edge linking the two nodes, which, however, does not link B to the metabolites, and the metabolic reactions and the signaling cascade
is topologically disconnected. In the meta-pathway’s structure, the orange edge which links enzyme C to intermediate FC connects the
signaling cascade and the metabolic reactions. All of the circles and boxes that appear on the actual displaying layout were annotated with
plain texts
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product. Although we retained these information in the
data, the final graphs constructed from the data do not
discriminate the four types of the edges, since all of
them represent the process of transformation of the
starting nodes to the ending nodes.

Based on the design of the structure of individual
signaling/metabolic reaction, we were able to build the
meta-pathways integrating the heterozygous relations
between molecules from signaling and metabolic path-
ways (Fig. 1C). For a pathway involving both signaling
cascades and metabolic reactions (Fig. 1C, left), the
common displaying style does not connect the reaction
of B on C to the reaction of F to G topologically. Intro-
ducing the intermediate node in the graph clearly solves
this problem (Fig. 1C, right), with the orange arrow
(edge) connecting C to the intermediate FC.

Construction of the global integrative networks

The structure of meta-pathway makes it highly flexible,
since the relations of the molecules in the pathway can
be translated into the relations between nodes. Merging
of the meta-pathways can be easily done by merging the
nodes’ relations. We hereby built a pipeline to extract
the pathways of 7077 species from KEGG and trans-
formed them into meta-pathways, then merged the
meta-pathways into a global integrative map for each
species (Fig. 2A). In general, the 7077 GINs contain
45,979,621 nodes (of which are the 32,836,377 inter-
mediates we introduced), and 110,160,537 edges (with
the annotations of activation/inhibition). For illustration
purpose, we selected four species: human (Homo sapi-
ens), mouse (Mus musculus), rice (Oryza sativa), and
Arabidopsis (Arabidopsis thaliana) for further analysis.
Most of the pathways of each species can be assembled
into a major network, respectively (Fig. 2B–E). To depict
the distribution of the metabolites, we painted the
nodes that are or include compounds in red. It is obvi-
ous that the current knowledge of the metabolic path-
ways in plants such as rice and Arabidopsis collected by
KEGG is relatively more abundant than in human and
mouse. However, the assembly of human and mouse are
more complete than rice and Arabidopsis, since several
signaling and metabolic pathways with large number of
nodes are not connected to the major network in the
GIN of rice and Arabidopsis. This is partially due to the
fact that there are only two signaling pathways for
Arabidopsis and rice, but more than 50 for human and
mouse. Nevertheless, our work of the GIN of the four
species clearly show the integration of the signaling and
metabolic pathways, which provide ample resources for
topological network analysis, crosstalk analysis and
knowledge graph construction.

Assessment of the network assembly

For the GINs of the two species of mammals, the pro-
portion of the compounds and compounds related
intermediates is only approximately 20%, suggesting a
large proportion of the major networks are composed of
the complex signaling networks in mammals. However,
in rice and Arabidopsis, the proportion of the com-
pounds and compounds related intermediates is
[ 70%, indicating that most of the known pathways in
these two species are related to metabolic processes.

One of our major purposes to construct global inte-
grative networks is to build a topological graph to
connect as many biological processes as possible.
However, the assemblies of rice’s and Arabidopsis’ GINs
left out several large pieces of sub-networks. To assess
the completeness of the GINs, we labeled the sub-net-
works (n[ 10) numerically, with the largest sub-net-
work designated to be subnet 1 (Fig. 2B–E). The subnet
1 of human and mouse included more than 99% of the
total number of nodes, while this number dropped to
89% in Arabidopsis and 91% in rice (Fig. 3A and Online
Resource 1, Fig. S1 a, b). To assess the homology of these
subnet pieces, we converted the genes within these
subnets into the KEGG Orthology (KO) ids, and calcu-
lated the Jaccard Index between the subnet considering
the KO ids (for genes) and the compounds (for
metabolites). The results showed that the subnet pieces
of human and mouse are almost the same, with only
three subnets (human subnet 17, mouse subnet 6 and
19) did not have matched subnets (Fig. 3B). Similar
results were obtained for rice and Arabidopsis (Online
Resource 1, Fig. S2). However, the homology between
the mammals and plants was very low, with only four
subnets matched between human and Arabidopsis
(Fig. 3C). Further manual annotations revealed that
these four subnets were interaction of endoplasmic
reticulum oxidoreductin 1 (Ero1) and protein disulfide
isomerases (PDIs), cytoplasmic deadenylation, soluble
N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) interactions in vesicular transport,
and carboxymethylenebutenolidase (CMBL) related
reactions.

Crosstalk analysis of TCA cycling pathway
and MAPK signaling pathway

To demonstrate the use of GINs in crosstalk analysis
between signaling and metabolic pathways, we inter-
rogated the connections between TCA cycling pathway
and MAPK signaling pathway. The members of the two
pathways were extracted from the kgml files, respec-
tively. Treating GINs as directed graphs, we calculated
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(A)

(B) (C)

(D) (E)

Fig. 2 Construction of the global integrative networks. A The workflow of constructing GINs. The kgml files of 7077 species containing
the relations of pathways were downloaded from KEGG. For each pathway of each species, we extracted the information of metabolic
reactions and signaling cascades and converted them into meta-pathways. Each meta-pathway has the uniformed data structure for both
of metabolic reactions and signaling cascades, then we merged the meta-pathways into the global integrative networks (GINs). ITM,
intermediate. B–D The GINs of four species, human, mouse, rice and Arabidopsis. The nodes of compounds or intermediates containing
compounds are in red. The nodes of proteins or intermediates containing no compounds are in light blue
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the shortest paths between each pair of nodes from the
two different pathways, and manually curated the
ambiguous connections between extra-cellular

molecules and cell-surface receptors extracted from the
KEGG database. For the results of human, we built a
sub-graph from GIN to illustrate the crosstalk between

(A) (B)

(C)

Fig. 3 Assessment of the assembly of GINs. A The proportion of the subnets in human (upper) and Arabidopsis (lower). For the pie-
chart of human’s GIN, the subnets were too small as they did not show on the chart other than subnet 1, therefore we only displayed the
legend for subnet 1. B The Jaccard score matrix calculated using human’s and mouse’s subnets, excluding subnet 1. C The Jaccard score
matrix calculated using human’s and Arabidopsis’s subnets, excluding subnet 1. The annotations of each subnet were manually curated
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TCA cycling pathway and MAPK signaling pathway by
retaining the shortest path in and out of TCA cycling
pathway (Fig. 4A). The paths from TCA cycling to MAPK
signaling were through the compound C00026 (2-ox-
oglutarate), which were converted by gene 2746
(GLUD1) into C00025 (glutamate). Glutamate then
bound its receptors (2911, GRM1; 2912, GRM2; and
2914, GRM4) and activate downstream proteins in
MAPK signaling pathway. Notably, the binding of gluta-
mate to GRM1/GRM2/GRM4 is usually considered to be
extra-cellular. On the other hand, the paths from MAPK
signaling to TCA cycling were through three cAMP
receptors: 5566 (PRKACA), 5567 (PRKACB), and 5568
(PRKACG), which inhibited 5315(PKM). PKM then cat-
alyzed the generation of C00022 (pyruvate) from
C00074 (phosphoenolpyruvate, PEP), which enters TCA
cycling.

To have an overview of all the connecting paths
between the two pathways, we arranged the nodes
(except intermediate nodes) in bipartite layout for the
four species of human, mouse, Arabidopsis, and rice, and

plotted the weighted connections between these nodes
(Fig. 4B, Methods). Obviously in human and mouse,
there were ample possible paths connecting the nodes
of the two pathways, but in Arabidopsis and rice, the
connections were scarce. This is possibly due to the lack
of knowledge on signaling pathways in KEGG’s plant
model. For human and mouse, there were a group of
nodes of TCA cycling pathways which showed only
paths out of TCA cycling (the blue lines) but no
incoming connections. We found that these group of
nodes were mostly the protein enzymes catalyzing the
metabolic reactions, indicating that these protein
enzymes might not receive regulation signals from
MAPK signaling at the PTM level. However, the possi-
bility that the expressions of these genes were regulated
by the transcription factors involved in MAPK signaling
could not be excluded, but was out of the scope of this
study.

To conclude, we designed a universal data structure
for both signaling and metabolic pathways, and con-
verted the KEGG pathway collections of 7077 species

(A)

(B)

Fig. 4 Crosstalk analysis of TCA cycling and MAPK signaling pathways. A The two shortest paths in/out of TCA cycling. Blue edges, the
paths flowing from TCA cycling pathway to MAPK signaling pathway. Red edges, the paths flowing from MAPK signaling pathway to TCA
cycling pathway. Gray edges, the relations between the presented nodes but not in the two paths. B The bipartite display of the
connections between the nodes of TCA cycling and MAPK signaling pathways. The width of each line was weighted according to the
distance between the two nodes (shorter distance was given larger width). The blue and red color of the lines represent the direction of
the connections: blue, from TCA cycling pathway to MAPK signaling pathway; red, vice versa
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into meta-pathways, then constructed a global integra-
tive network merging the signaling and metabolic
pathways for each of them. The GINs of the four-rep-
resentative species showed that the proteins and com-
pound interactions were highly integrated, with less
than 11% of the nodes left in pieces of sub-network.
Detailed analysis of the subnet pieces revealed distinct
features of the GINs between mammals and plants.
Crosstalk analysis of TCA cycling and MAPK signaling
pathways showed two closest paths connecting the two
pathways in human. Our work integrates the signaling
and metabolic pathways at data structure level, enables
the topological analysis of the integrated pathway net-
works, and provides references for crosstalk analysis
between signaling and metabolic pathways.

DISCUSSION

The definitions of nodes and edges in signaling path-
ways and metabolic processes are completely different
in current databases, which leads to the chaos when
integrating the signaling and metabolic pathways. As a
result, the signaling and metabolic pathways were
graphically integrated retaining the original definitions
of nodes and edges, which was comprehensible for
human but hindered topological analysis on the inte-
grated networks. Here, we present a novel structure of
‘‘meta-pathway’’ which is universally suitable for storing
the complex relations of signaling pathways, metabolic
processes, subunits of protein complexes, and the acti-
vation/inhibition of compounds/proteins. These types
of biological processes can be easily integrated after
converting the pathway collections to meta-pathways.
We processed 7077 species pathway collections from
KEGG, which provided a ground resource of global
integrative networks for further analysis.

One of the most distinct differences observed from
the four species’ GINs is the proportion of the com-
pounds and compounds related intermediates. The high
ratio of the compounds and compounds related inter-
mediates in plants suggests that plants may rely on
complex metabolite processes compared to signaling
pathways to survive in the normal and stressed envi-
ronments, while mammal cells have more complicated
signaling system. However, other explanations also exist,
one of which is the different resources, efforts and focus
put into the researches of mammals and plants.

The GINs of plants are more fragmented than mam-
mals. This might due to the lack of the knowledge in
plant pathways compared to mammals. The respective
similarities of the fragments in mammals and plants
may be due to the fact that mammals and plants have

different pathway models in KEGG, and these fragments
reflect the scattered knowledge of these models. We
believe that with the combination of other pathway
databases and the increase of the pathway knowledges,
the gaps between the current subnet will be eventually
filled and pathways will be assembled into a complete
global network.

The GINs integrate signaling and metabolic pathways,
however, there are many other types of biological pro-
cesses in cells to facilitate the coordinated change of
cellular state. One important and well-established reg-
ulation network is the TF meditated gene regulatory
network (GRN), which is associated with all coding
gene’s expression. Moreover, TFs are also the ‘‘destina-
tions’’ of the signaling pathways, since the signaling
cascades converge on TFs to modulate the gene
expression pattern in response to the extra-/intra- cel-
lular signals. Integration of the GRN into the GIN will
greatly extend the scope of the network, however, sev-
eral difficulties must be addressed: the TFs’ effect on
gene expressions is variable depending on the tissue,
cell type and developmental stages, exemplified by the
use of SCENIC to quantify the activity of each regulon in
each cell using single-cell RNA-seq data (Aibar et al.
2017). Therefore, for each species, a large number of
GRNs are needed to accurately depict the regulatory
effect of TFs on the target genes in each cell type. With
the development of single-cell omics, this becomes
possible for the human model, since single-cell RNA-seq
databases of comprehensive cell types in human are
now available. However, for other species with less
resources and research focus, construction of the GRNs
for each cell types are still far from realistic. Another
difficulty lies after the integration of GRN in GIN. Since
GRN links TFs to all coding genes, there will be a large
expansion of the nodes representing new genes in the
network after integration. These new genes will be
related to various biological processes, which may not
be well defined at present. Without sufficient knowl-
edge support, the extended nodes by integrating GRN
will still be scattered and unorganized. Nevertheless,
integration of GRN in GIN will be of great help to
complete the global network of biological processes in
cells, and may finally become the framework of a digital
model to compute and predict the gene expressions and
the changes of cellular states.

Extra-cellular signaling is also an important aspect of
cell signaling. Recent tools available for cell–cell inter-
actions, i.e., CellChat (Jin et al. 2021), CellPhoneDB
(Efremova et al. 2020), etc., have unveiled the extra-
cellular signaling between different cell groups based
upon single-cell RNA-seq data. Integration of such net-
work in GIN will extend the network from intra-cellular
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signaling to extra-cellular signaling, and generate a
more comprehensive map of cell signaling.

With further efforts continuously put into the
extension of the GIN, it will become more comprehen-
sive and capable of interpreting the multi-omics data.
Notably, the introduction of intermediate nodes for
multi-omics data will significantly complicated the net-
work, and this expansion will increase the difficulty of
interpreting the multi-omics results. However, these
difficulties can be partly overcome by avoiding the
intermediate nodes of basic machineries such as tran-
scription and translation. For example, Pol II’s role in
the transcription of most of the coding genes is uni-
versal; therefore, it is not necessary to include Pol II in
the intermediate nodes for every gene’s transcription.
On the other hand, the introduction of intermediate
node has the capacity of displaying complicated rela-
tions between TFs, DNA methylations, and histone
modifications etc. For example, the binding of a TF with
its target gene can be displayed by the forming of an
intermediate node of the target’s genomic region with
the TF, then this intermediate node can point to the RNA
of the gene. Additionally, the DNA methylation of the
gene’s promoter can form a node which inhibits the
former intermediate node of TF binding. This type of
expansion will help the interpretation of multi-omics
results at the expense of increased complexity. With the
development and maturation of the single-cell multi-
omics detection methods, the expanded global integra-
tive network will provide a basic framework for the
analysis of the interactions between different data
dimensions, i.e., RNA expression, protein expression,
metabolites, TF binding, etc., and the interpretation of
complicated relations between these dimensions.

MATERIALS AND METHODS

Processing of the reactions in KEGG pathways

The kgml files containing KEGG pathway information
were downloaded by the function of keggGet from R
package ‘‘KEGGREST’’ version 1.30.1. The metabolic
reactions were extracted by matching for the entries of
‘‘reaction’’, and the reaction ID were used to link the
corresponding enzymes of the specific species to the
substrates and products. The reversible reactions were
split into two reactions with inverted directions. Since
there are cases in which the recorded enzymes of
reactions are actually the subunits of protein complexes,
we compiled the protein complex references of each
species and assembled the subunits into protein com-
plexes for the reactions. If there are multiple enzymes

catalyzing the same reactions, they will be linked to
their specific intermediates created using the enzyme
and the substrates, respectively, resulting in multiple
intermediates with same substrates but different
enzymes. Additionally, we observed that in kgml files,
usually only the most relevant molecules are recorded.
Molecules, especially the commonly used/produced
cofactors/products such as ATP/ADP, are not presented
in the kgml files except for their biosynthesis pathway.
Since inclusion of these molecules may introduce con-
nections between pathways that are not functionally
related and disrupt the crosstalk analysis between
pathways, we only kept the reactants and products
presented in the kgml files instead of searching for all of
them by the reaction ID. Finally, all of the four types of
relations in Fig. 1A were stored in simple interaction file
(SIF or.sif) format, with two columns of the start and the
end of the edges, and one column specifying the type of
relations.

Construction of the protein complex references

The information of protein complexes was extracted
from the kgml files by matching the for the entries of
‘‘group’’. The entries of groups specify several entries of
the group members, which may include several candi-
date subunits. For example, protein complex A ? (B/
C) ? D is stored as a group of three members, the
protein A, protein B or protein C, and protein D. To avoid
chaos, we split this type of protein complex information
into complex ABD and ACD. The application of this
strategy was carried out using customized tree struc-
ture written in perl. Of note, homodimers were ignored
in our strategy and stored as one single enzyme unit.

Processing of the signaling cascades in KEGG
pathways

For the signaling cascades, we extracted the relations of
protein–protein relations ‘‘PPrel’’ and protein–com-
pound relations ‘‘PCrel’’ from the kgml pathway files.
Similar to the processing of reactions, we scanned and
assembled the subunits into protein complexes, then
stored the four types of relations in SIF format.

Construction and presentation of the GINs

We merged the meta-pathways of each of the 7077
species and removed the redundant relations which
were resulted from the overlapping relations in differ-
ent pathways. The resulting 7077 GIN files were in SIF
format, which is compatible for many network display-
ing and analysis tools, i.e., cytoscape (Shannon et al.
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2003) and visant (Hu et al. 2004), and can be easily
manipulated for loading into other tools such as igraph.
Of note, we used cytoscape for the presentation of the
GINs of the four species in ‘‘prefuse forced directed’’
layout. The processing pipeline was written in Perl and
R.

Analysis of the sub-networks of the four species

Sub-networks with more than 10 nodes were labeled
numerically. To analyze the similarities between the
sub-networks of different species, we first converted the
genes of each sub-network into the corresponding KEGG
orthology IDs (the ko number), using the keggGet
function from the KEGGREST package and customized R
script. The similarities were leveraged by the Jaccard
score, defined by the ratio of the number of shared
elements divided by the number of elements in the
union of two sets:

Jaccard score ¼ A \ B
A [ B

;

where A and B are two sub-networks composed of ko
numbers and compound ids. The annotation of the sub-
networks was done by using the search function of
KEGG mapper tools, since common pathway enrichment
tools do not consider the compounds. The naming of the
specific sub-networks was done manually, since all of
the sub-networks were only small pieces of the
pathways.

Crosstalk analysis of TCA cycling and MAPK
signaling pathways

The SIF files of the GINs of the four species were loaded
into R, and were treated as edge lists to create igraph
objects using ‘‘graph_from_edgelist’’ function from R
package ‘‘igraph’’. Since we observed several ambiguous
and misleading information, such as the activation of
oxytocin receptor (OXTR) by succinate (generally
speaking it should be oxytocin (OXT)) extracted from
the kgml file of cAMP signaling pathways, we manually
curated the GINs to remove these relations. Further-
more, we also observed that in the graph of gluta-
matergic synapse (https://www.kegg.jp/pathway/
map04724?C00064), the compound labeled ‘‘cAMP’’
activate PKA but actually links to C00064 (L-glutamine),
which will result in an additional path linking TCA
cycling and MAPK pathways. Since we didn’t find any
direct evidence supporting the activation of PKA by
L-glutamine, we removed this protein-compound rela-
tion in our GINs.

Then we calculated the shortest paths of each pair of
nodes between the two pathways. We retained the
shortest paths in each of the two directions, and the
related nodes for Fig. 4A. For Fig. 4B, the weight of each
line was calculated by:

W ¼ ð 2
nshortest

Þ2;

where W was the weight, nshortest was the number of
nodes of the shortest path. The square of the value
could suppress the display of the longer paths.
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