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Abstract
Tolerance graphs were introduced in 1982 by Golumbic and Monma as a generalization of interval graphs. In this paper, 
we propose several applications of tolerance graphs in fighting COVID-19. These applications include finding cliques of a 
certain size, and calculating the chromatic number of a graph, the problems that are in general NP-complete but for tolerance 
graphs can be solved in polynomial time.
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Introduction

Nowadays, COVID-19 is causing terrible loss of lives all 
around the world, and also has a devastating impact on eco-
nomics. Computer aid in this battle can be crucial. Math-
ematics and computer science can work out many models to 
help to fight the pandemic. Graph theory is a part of math-
ematics that studies graphs, which are mathematical struc-
tures that can be used to model certain relations between 
object. Graphs arise as a natural tool in modeling various 
problems related to the COVID-19 pandemic. They are also 
one of the basic parts of making artificial intelligence use; 
for example tracing the contacts of infected people, doing 
some medical analysis for understanding the virus and dis-
ease dynamics, and, in general, predicting the dynamics of 
COVID-19 pandemic. Recently, many papers dealt with this 
topic. For example, Zhu et al. [1] propose an novel epidemic 
model which can be used to calculate the spread process 
of COVID-19 epidemic in Wuhan city and to estimate an 

unknown data. In [2], Postavaru et al. calculate the number 
of infections considering the chaotic contributions, etc.

In this paper, we will show how graph theory, in particu-
lar tolerance graphs, can be used to model various situation 
that occur during an pandemic and help fighting COVID-19 
by slowing down the process of spreading the virus. This 
approach can be used in fighting other pandemics too.

Preliminaries

A graph G = (V ,E) consists of a finite set V of vertices 
together with a set E of edges, where an edge is a subset 
of the vertex set of cardinality 2. Some literature calls this 
a simple graph (a graph without loops or multiple edges). 
For basic definitions and further reading in graph theory, we 
refer the reader to [3].

An induced subgraph of a graph is a subgraph formed 
from a subset of the vertices of the graph and all of the edges 
connecting pairs of vertices in that subset.

A clique, C, in a graph G = (V ,E) is a subset of the verti-
ces, C ∈ V , such that every two distinct vertices are adjacent. 
A maximal clique is a clique that cannot be extended by 
including one more adjacent vertex, i.e., a maximal clique 
is a clique not contained in any larger clique. A maximum 
clique of a graph G is a clique, such that there is no clique 
with more vertices. Moreover, the clique number �(G) of a 
graph G is the number of vertices in a maximum clique in G.

A vertex coloring of a graph G = (V ,E) is a map 
c ∶ V → S , such that c(v) ≠ c(w) whenever v and w are adja-
cent. Some literature calls this a proper coloring. Given an 
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integer k, a k-coloring c is a map that assigns to each vertex 
v of the graph G an integer c(v) chosen in the set {1, 2,… , k} 
(the set of colors). The smallest integer k, such that G has 
k-coloring, is the chromatic number that is usually denoted 
by �(G) . A graph G having that �(G) = k is called k-chro-
matic, and if �(G) ≤ k , we call G k-colorable.

Tolerance graphs were introduced in 1982 by Golumbic 
and Monma [4], at the 13th Southeastern Conference on 
Combinatorics, Graph Theory and Computing held at Boca 
Raton, as a mathematical model of tolerance to generalize 
some of the well-known applications associated with inter-
val graphs. The motivation was the need to solve several 
scheduling problems in various situations. After the intro-
duction of tolerance graphs, properties and several variations 
of the graphs were studied in the literature, for example in 
[5, 6].

The notation and most important definitions used in this 
work follow the book [5]. First, we have to remark that we 
are interested in a collection of intervals on the real line. 
In this paper, the intervals will come from various prob-
lems connected with COVID-19, but in general, they might 
arise from other applications. We are interested in a class 
of graphs called intersection graphs. Let F  be a collection 
of set. The intersection graph of F  is defined as the graph 
obtained by assigning a distinct vertex to each set in F  and 
joining two vertices by an edge when their corresponding 
sets have nonempty intersection. Before defining tolerance 
graphs, we will introduce another family of intersection 
graphs, i.e., interval graphs which are actually the special 
case of tolerance graphs. An interval graph G = (V ,E) is a 
graph for which each vertex v ∈ V  is associated with an real 
interval Iv , and two vertices are connected by an edge in G if 
the associated intervals have nonempty intersection. The set 
of intervals {Iv ∣ u ∈ V} is an interval graph representation 
of G. In other words:

Tolerance graphs are defined in a similar manner as inter-
val graphs, but here, the sizes of intersecting intervals will 
have the crucial role. Exact definition of tolerance graphs is 
given as follows. A graph G = (V ,E) is a tolerance graph 
if each vertex v ∈ V  can be assigned a closed interval Iv 
and a tolerance tv ∈ ℝ

+ , such that xy ∈ E if and only if 
|Ix ∩ Iy| ≥ min {tx, ty} . A collection ⟨I, t⟩ of intervals and tol-
erances is called a tolerance representation, I = {Ix ∣ x ∈ V} , 
t = {tx ∣ x ∈ V} . If, for all v ∈ V , tv ≤ |Iv| , the graph is called 
a bounded tolerance graph and the representation is called a 
bounded tolerance representation.

An important property of tolerance graphs is that toler-
ance graphs are perfect graphs. A graph G is perfect if, for 
all induced subgraphs H of G, the chromatic number of H 
equals the number of vertices in a largest clique in H. The 

uv ∈ E(G) ⟺ Iu ∩ Iv ≠ �, for all u, v ∈ V(G).

perfect graph theorem, proved by Lovász in [7], states that a 
graph is perfect if and only if its complement graph is also 
perfect. Furthermore, the strong perfect graph theorem of 
Chudnovsky, Robertson, Seymour, and Thomas [8] states 
that a graph is perfect if and only if it has neither odd cycles 
of length at least 5 nor their complements as induced sub-
graphs. Both of these theorems were conjectured by Berge.

One of the highest importance why one should use perfect 
graphs is the following. Perfect graphs have the property that 
for some problems that are in general NP-complete, they 
allow polynomial-time algorithms for obtaining the solution. 
In [9], Karp proved that computing the chromatic number of 
any graph is NP-complete, while in [10], it was shown that 
for perfect graphs, the chromatic number can be computed 
in polynomial time. Furthermore, finding cliques of a certain 
size is an NP-complete problem and determining the clique 
number of the graph is an NP-hard problem. However, for 
perfect graphs, these problems can be solved in polynomial 
time (see [10]). For more information, see [11].

For the computations dealing with the problems given 
in this paper, one can use Python [12] and SageMath [13]. 
Furthermore, Cliquer [14] is a computer program that is effi-
cient in finding cliques of a certain size and determining the 
clique number of a graph.

Tolerance Graphs in Fighting COVID‑19 
Pandemic

In this section, we propose four applications of tolerance 
graphs which could be used in combating COVID-19 pan-
demic by limiting the spread of the disease. Each applica-
tion is followed by a computer program written in SageMath 
[13]. The only demanding parts of the presented algorithms 
(and programs) are the parts where the clique number (and 
a maximal clique) or the chromatic number (and a �(G)-col-
oring) of a graph G has to be determined. Hence, the com-
plexities of the given algorithms depend only on the com-
plexities of the algorithms for finding the clique number and 
the chromatic number implemented in a particular software.

As an illustration of the proposed applications of toler-
ance graphs, in “Appendix”, we give an example related to 
Sect. 3.2 based on real data, namely the flight schedule of 
the Venice Airport Marco Polo found at their web page https​
://www.venez​iaair​port.it/en/.

Search for Critical Events

One of the main things that epidemiologist in this crisis 
must do to diminish a spread of the virus is to determine 
the events that can be labeled as critical, meaning that many 
people could be infected on these events. Epidemiologists 
could give an advice that these events should be forbidden, 

https://www.veneziaairport.it/en/
https://www.veneziaairport.it/en/
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or the number of people that participate in such events 
should be restricted. This problem can be modeled in the 
following way. Let G be a graph whose set of vertices cor-
respond to the set of intervals I = {I1,… , Iv} . Each vertex 
is represented by Ij = [sj, ej] , where sj and ej are the initial 
time when person j is infected and the ending time of the 
infection, respectively. To each vertex, we add the tolerance, 
ti , i = 1,… , v which is determined by the epidemiologists. 
If |Ia ∩ Ib| ≤ min {ta, tb} , for persons a and b, then the ver-
tices corresponding to persons a and b are connected. In 
the defined tolerance graph, we search for large cliques of 
particular sizes (or maximal cliques). Looking at a particu-
lar clique, epidemiologists could investigate if there was an 
event that these people were present. If such an event is 
found, one can conclude that events of this type are critical, 
and then, precaution measures could be taken to decrease 
the spread of the disease on similar events.

Below, we give a computer program written in SageMath 
[13] as an implementation of the algorithm described:

noise of edges connecting people that have already been 
infected.

Scheduling Flights

One of the real-life problems that can be modeled with toler-
ance graphs is connected with scheduling flights during the 
pandemic crisis. We are analyzing the following problem. 
The airport X has a rule that the passengers that are using 
domestic flights must be at the gates 2 h before the flight, 
and those getting international flights 3 h before. To decrease 
the possibility of spreading the disease COVID-19 among 
passengers, the airport wants to schedule flights a and b for 
different gates if the period of time when the passengers for 
these two flights should be at the gates overlap for more than 
30 min. Under this condition, we are searching for minimal 
number of different gates that can be used each day at the 
airport X. Let Ij = [sj − 2, sj] , where sj is the time of the 
flight j scheduled for the day if the flight is domestic and let 

We remark here that as output we get all maximum 
cliques. We might be interested in finding smaller cliques, so 
we can find all cliques of particular size using the function: 

In the above definition of the interval graph, we might 
consider alternative approach. Namely, to detect critical 
events, it may be important to find a situation where there 
are a large number of people that got infected at the same 
time, and hence, interval might be the epidemiologist’s 
(interval) estimate of the time that the infection started. 
In this way, one gets much sparser graph reducing the 

Ij = [sj − 3, sj] , where sj is the time of the flight j scheduled 
for the day if the flight is international. Furthermore, let 
I = {I1,… , Ix, Ix+1,… , Ix+y} be the set of intervals for each 
flight scheduled for the exact day with x domestic and y 
international flights. Each interval represents a vertex of the 
graph G. To each vertex, we add the tolerance, ti , i = 1,… , v 
which depend on the number of passengers that are expected 
at the ith flight. If |Ia ∩ Ib| ≤ min {ta, tb} , for flights a and b, 
the same gates can be used. The minimum number of gates 
that must be used is equal to the chromatic number of the 
corresponding tolerance graph (each color corresponds to 
a gate).

A corresponding computer program written in SageMath 
[13] is given below:
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Let Ij = [sj, ej + 1] , where sj and ej are the starting and 
ending time, respectively, of the class j scheduled for the 
day. We suppose here that the 60 min (1 h) are added for 
the cleaning. Furthermore, let I = {I1,… , Iv} be the set 
of intervals for each course scheduled for the exact day 
with v courses per day. Each interval represents a vertex 
of the graph G. To each vertex, we add the tolerance tj , 
j = 1,… , v , where tolerance tjrepresents the number of 
students enrolled a course. If |Ix ∩ Iy| ≤ min {tx, ty} , for 
classes x and y, the same classroom can be used. The mini-
mum number of rooms that must be used is equal to the 
chromatic number of the corresponding tolerance graph 
(each color corresponds to a classroom). We remark here 
that the same approach can be used for organizing meeting 
and many other events.

Below, we give a corresponding computer program writ-
ten in SageMath [13]:

Use of Common Classrooms in Live Teaching During 
the Pandemic

During the pandemic crisis, there are some meetings and lec-
tures that could be organized as live teaching, i.e., teaching at 
universities. One of the main problems that appears with this 
item is the use of common classrooms within different courses. 
There arise the problem of making optimal schedule of the use 
of particular classroom. Optimal here means use of minimal 
possible classrooms for various courses. Let v be the number 
of courses in one day at some study program that should be 
organized in the campus building with exactly x rooms. For 
each course, there exists exact schedule, i.e., an interval or a 
period of time of the day in each the course must be organized. 
The time includes the 1 h extra which is supposed to be used 
for cleaning between two uses. Under this condition, we are 
searching for the minimal number of different classrooms that 
can be used each day at the campus building.
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Museum Visits

One of the main issues for epidemiologists is to detect the 
contacts of a person infected with the virus. Here, we propose 
a model that can be helpful in handling this issue. While the 
pandemic is present in our lives, museum visits, exhibitions, 
and many other similar events are usually organized within 
precise rules and schedules. Tolerance graphs can help us to 
give a list of possible contacts to epidemiologists.

Let Ij = [sj, ej] , where sj and ej are the starting and ending 
time, respectively, of a person (or a group of people) j visit 
to a particular museum. Let v be the number of people (or 
different groups of people) scheduled for visiting museum 

for each day and let I = {I1,… , Iv} be the set of these inter-
vals. Each interval represents a vertex of the graph G. To 
each vertex, we add a tolerance tj , j = 1,… , v , where the 
tolerance tj represents the period of time that epidemiolo-
gist defined for them as a duration of contact that could lead 
to infection. If |Ix ∩ Iy| ≥ min {tx, ty} , for persons (groups) 
x and y, and a person x is infected by the virus, then epi-
demiologists may prescribe appropriate measures for the 
person y. The same approach can be used for other similar 
events that include different groups of people visiting the 
same place.

A corresponding computer program written in SageMath 
[13] is given below:
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Conclusion

In this paper, we propose four applications of tolerance 
graphs in fighting COVID-19. One application is determin-
ing events that bring high risk of spreading the disease. 
The second application is scheduling flights during a pan-
demic, and the third application is making optimal schedule 
for sharing common classrooms in live teaching during a 
pandemic. The fourth application is detecting contacts of 
a person infected with the virus in a case of museum visits 
or similar events. These applications are based on finding 
(large) cliques of a certain size and calculating the chro-
matic number of a graph, the problems that are in general 
NP-complete but for tolerance graphs can be solved in poly-
nomial time.

Appendix

Here, we give the application of the algorithm presented in 
Sect. 3.2 to the departure flights scheduled at the Venice Air-
port Marco Polo, Italy, for December 28, 2020. The schedule 
was found at their web page https​://www.venez​iaair​port.it/
en/. The labels I and D mark whether the flight is domestic 
or international (Table 1).

For the domestic flights, we set the tolerance of the cor-
responding vertex to 0.3 h, and for international flights, the 
tolerance of the corresponding vertex is set to 0.2 h. Below, 
we give a computer program written in SageMath that gives 
us the minimum number of gates needed with respect to our 
settings:

Table 1   Departure—Venice Airport, December 28, 2020

Flight City Time I or D

0 Amsterdam 06:30 I
1 Rome Fiumicino 06:50 D
2 Barcelona 09:35 I
3 London Stansted 09:45 I
4 Istanbul Airport 10:15 I
5 Vienna 10:50 I
6 Bari 11:10 D
7 Zurich 11:30 I
8 Bruxelles 11:50 I
9 Bari 12:15 D
10 Amsterdam 12:20 I
11 Paris Charles de Gaulle 12:40 I
12 Palermo 12:50 D
13 Brindisi 13:20 D
14 Catania 13:35 D
15 Rome Fiumicino 15:25 D
16 Lisbona 16:10 I
17 Frankfurt 17:00 I
18 Lamezia Terme 17:30 D
19 Cagliari 17:40 D
20 Paris Charles de Gaulle 18:05 I
21 Naples 18:50 D
22 Madrid 19:25 I
23 London Gatwick 20:30 I
24 Catania 22:00 D

https://www.veneziaairport.it/en/
https://www.veneziaairport.it/en/
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The program output gives us the information that the 
minimum number of gates that we need is 7. Furthermore, 
we got the following solution: the gate 0 is used for flights 
0, 2, 10, 16, 21, and 24; the gate 1 is used for flights 1, 3, 11, 
15, 18, and 23; the gate 2 is used for flights 4, 9, and 17; the 
gate 3 is used for flights 5, 12, and 19; the gate 4 is used for 
flights 6, 13, and 20; the gate 4 is used for flights 7, 14, and 
22; and the gate 6 is used for the flight 8.
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