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Abstract
Synthetic data, when properly used, can enhance patterns in real data and thus pro-
vide insights into different problems. Here, the estimation of tail probabilities of rare 
events from a moderately large number of observations is considered. The problem 
is approached by a large number of augmentations or fusions of the real data with 
computer-generated synthetic samples. The tail probability of interest is approxi-
mated by subsequences created by a novel iterative process. The estimates are found 
to be quite precise.

Keywords  Repeated out of sample fusion · Density ratio model · Residential radon · 
Upper bounds · Iterative process · B-curve
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1  Introduction

The citation accompanying his U.S. National Medal of Science in 2002 honored 
Calyampudi Radhakrishna Rao “as a prophet of new age for his pioneering contribu-
tions to the foundations of statistical theory and multivariate statistical methodol-
ogy and their applications.” When Professor Rao organized the ‘International Con-
ference on the Future of Statistics, Practice and Education’ in Hyderabad (Indian 
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School of Business, 12.29.04–01.01.05), one of us participated in it. Befitting this 
connection, we decided to contribute what we believe is a “futuristic” application of 
augmented reality in his honor.

In its February 4th 2017 edition, The Economist noted the promise of augmented 
reality, claiming that “Replacing the real world with a virtual one is a neat trick. 
Combining the two could be more useful.” We concur. Combining real data with 
synthetic data, i.e., augmented reality (AR), opens up new perspectives regarding 
statistical inference. Indeed, augmentation of real data with virtual information is 
an idea that has already found applications in fields such as robotics, medicine, and 
education.

In this article, we advance the notion of repeated augmented reality in the esti-
mation of very small tail probabilities even from moderately sized samples. Our 
approach, much like the bootstrap, is computationally intensive and could not have 
been viable without the computing power of modern systems. However, rather than 
looking repeatedly inside the sample, we look repeatedly outside the sample. Fusing 
a given sample repeatedly with computer-generated data is referred to as repeated 
out of sample fusion (ROSF) in Pan et al. [1, 2]. Related ideas concerning a single 
fusion are studied in Fithian and Wager [3], Fokianos and Qin [4], Katzoff et al. [5], 
and Zhou [6].

In 1984, the so-called Watras incident led to intense media and congressional 
attention in the USA to the problem of residential exposure to radon, a known carci-
nogenic gas. Radon in the home of Stanley Watras, a construction engineer, located 
in Boyertown, Berks county, on the Reading Prong geological formation in Pennsyl-
vania, was recorded as almost 700 times the safe level, which is a lung cancer risk 
equivalent of smoking 250 packs of cigarettes per day! As noted by George [7], this 
news caused a major alarm and led the US EPA to establish a radon measurement 
program. In this regard, the present article will review the underpinnings of ROSF 
in estimation of small tail exceedance probabilities. We will illustrate its application 
using residential radon level data from Beaver County, Pennsylvania.

1.1 � The Problem

Consider a random variable X ∼ g and the corresponding moderately large random 
sample X0 = (X1,… ,Xn0

) where all the observations are smaller than a high thresh-
old T, that is max(X0) < T  . We wish to estimate p = P(X > T) without knowing 
g. However, as is, the sample may not contain sufficient amount of information to 
tackle the problem. To gain more information, the problem is approached by com-
bining or fusing the sample repeatedly with externally generated computer data. 
That is, ROSF.

1.2 � The Approach

Let Xi denote the ith computer-generated sample of size n1 = n0 . Then, the fused 
samples are the augmentations
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where X0 is a real reference sample and the Xi are different independent computer-
generated samples supported on (0, U), where U > T  . The number of fusions can 
be as large as we wish. From each pair (X0,Xj) , under a mild condition, we get in 
a certain way an upper bound Bj for p. Let {B(j)} be the sequence of order statistics. 
Then, the sorted pairs

produce a monotone curve, referred to as the B-curve, which for large N, contains a 
point “ ∙ ” as in Fig. 1. As N increases, the ordinate of the point essentially coincides 
with p with probability approaching one. It follows that the sequence

contains subsequences which approach p. The subsequences can be obtained by an 
iterative process to be described in Sect. 3.

1.3 � Illustrations of an Iterative Process

Deferring details to later sections, it is helpful to shed light early on and introduce 
our iterative method which produces estimates of tail probabilities, using reference 
samples X0 from F(2,7) and LN(1, 1) distributions.

In the first illustration, X0 is a random sample from F(2,7) , T = 21.689 , giving 
p = 0.001 . Here, n0 = n1 = 100 , max(X0) = 12.25072 , and the computer-generated 
samples consist of independent Unif(0, 50) . With N = 10, 000 fusions, and starting 
from j = 450 , our iterative process (9) bellow produces a converging subsequence 
which approaches p from above, a “Down” subsequence:

Starting from j = 210 , our iterative process (9) produces an “Up” subsequence 
which converges by a single iteration giving:

In the second illustration, X0 is a random sample from LN(1,  1), T = 59.75377 , 
giving p = 0.001 . Here, n0 = n1 = 200 , max(X0) = 33.63386 , and the computer-
generated samples consist of independent Unif(0, 80) . With N = 10, 000 fusions, 
and starting from j = 800 , our iterative process (9) bellow produces a converging 
“Down” subsequence which approaches p from above by a single iteration:

And staring from j = 790 , our iterative process (9) produces an “Up” subsequence 
which converges by a single iteration giving:

(1)(X0,X1), (X0,X2), (X0,X3)…

(1,B(1)), (2,B(2)), (3,B(3)),…(n,B(N))

B(1),B(2),B(3),…B(N)

450 → 0.001703351 → 438 → 0.001603351 → 407 → 0.001503351 →

369 → 0.001403351 → 341 → 0.001303351 → 312 → 0.001203351 →

278 → 0.001103351 → 246 → 0.001003351 → 221 → 0.001003351⋯

210 → 0.001003351 → 219 → 0.001003351 → 219 → 0.001003351⋯

800 → 0.001000281 → 788 → 0.001000281 → 788 → 0.001000281⋯



	 Journal of Statistical Theory and Practice (2021) 15:25

1 3

25  Page 4 of 16

sort(B)

0
20

00
40

00
60

00
80

00
10

00
0

0e+001e−042e−043e−044e−04

sort(B)

0
20

00
40

00
60

00
80

00
10

00
0

0e+002e−044e−046e−048e−041e−03

sort(B)

0
20

00
40

00
60

00
80

00
10

00
0

0e+002e−044e−046e−048e−041e−03

sort(B)
0

20
00

40
00

60
00

80
00

10
00

0

0.00000.00050.00100.00150.0020
Fi

g.
 1

  
B

-C
ur

ve
s, 

10
,0

00
 B

’s
, f

ro
m

 r
es

id
en

tia
l r

ad
on

 s
am

pl
e 
X
0
 . 
p
=
0
.0
0
0
2
6
9
3
6
0
3 ,

 X
1
∼
U
n
if
(0
,3
0
0
) , 
T
=
2
0
0
 , n

0
=
n
1
=
5
0
0
 , h

=
(x
,l
o
g
x
)  . 
m
ax
(X

0
) v

al
ue

s:
 to

p 
le

ft 
77

.9
, t

op
 ri

gh
t 1

07
. B

ot
to

m
 le

ft 
14

3,
 b

ot
to

m
 ri

gh
t 1

93
.7

. T
he

 p
oi

nt
 “

 ∙  ”
 m

ov
es

 to
 th

e 
le

ft 
as

 m
ax
(X

0
) i

nc
re

as
es

 re
la

tiv
e 

to
 T

=
2
0
0
 . T

he
 fu

si
on

 s
am

pl
es

 a
re

 u
ni

fo
rm

 w
ith

 
su

pp
or

t c
ov

er
in

g 
T 



1 3

Journal of Statistical Theory and Practice (2021) 15:25	 Page 5 of 16  25

Notice that the “Down-Up” convergence in both illustrations is remarkably close to 
the true p = 0.001 . We have had quite a few similar results where the tail behav-
ior differed markedly. The computation here required an important parameter called 
“p-increment” which in the present examples was 0.0001. We shall deal with this 
numerical issue soon.

1.4 � A Useful Feature

A useful feature of the present article is the realization that we can come up with 
educated guesses as to the magnitude of p from the value of max(X0) relative to T. 
And this in turn suggests a set of discrete points in the interval (min(Bj), max(Bj)) at 
which p-estimates are evaluated, along the “p-increments” mentioned above. The 
p-increment is a single number used to create the grid for searching for p-estimates.

2 � Getting Upper Bounds for p by Data Fusion

Recall that X0 = (X1,… ,Xn0
) is a reference sample from some reference probability 

density (pdf) g(x) and let G(x) denote the corresponding distribution function (CDF) 
. Since we shall deal with radon data, we assume that x ∈ (0,∞) . The goal is to esti-
mate a small tail probability

Let X1 be a computer-generated random sample of size n1 and assume 
X1 ∼ g1,G1 . The augmentation

of size n0 + n1 gives the fused data from X0 and X1 . We shall assume the density 
ratio model [8, 9]

where �1 is a scalar parameter, � j is an r × 1 vector parameter, and h(x) is an r × 1 
vector valued function. Clearly, to generate X1 , we must know the corresponding 
g1 . However, beyond the generating process, we do not make use of this knowledge. 
Thus, by our estimation procedure, none of the probability densities g, g1 and the 
corresponding G,G1 , and none of the parameters �1 and �1 are assumed known, but, 
strictly speaking, the so called tilt function h must be a known function. However, in 
the present application, the requirement of a known h is weakened considerably by 
the mild assumption (4) below, which may hold even for misspecified h , as numer-
ous examples with many different tail types show. Accordingly, based on numerous 

790 → 0.001000281 → 815 → 0.001000281 → 815 → 0.001000281⋯

p = P(X > T) = 1 − G(T) = ∫
∞

T

g(x)dx.

(2)t = (t1,… , tn0+n1) = (X0,X1),

(3)
g1(x)

g(x)
= exp(�1 + ��

1
h(x))
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experiments, some of which discussed in Pan et al. [1], we assume the “gamma tilt” 
h(x) = (x, log x) . Further justification for the gamma tilt is provided by our data anal-
ysis below.

Under the density ratio model (11), the maximum likelihood estimate of G(x) 
based on the fused data t = (X0,X1) is given in (14) in the “Appendix A.1”, along 
with its asymptotic distribution described in Theorem  A.1. From the theorem, 
we obtain confidence intervals for p = 1 − G(T) for any threshold T using (17). 
In particular, we get an upper bound B1 for p. In the same way, from additional 
independent computer-generated samples X2,X3,… ,XN we get upper bounds 
for p from the pairs (X0,X2), (X0,X3),…(X0,XN) . Thus, conditional on X0 , 
the sequence of upper bounds B1,B2,… ,BN is then an independent and identi-
cally distributed sequence of random variables from some distribution FB . It is 
assumed that

so that

Let B(1),B(2),… ,B(N) be a sequence of order statistics from smallest to largest. Then, 
as N → ∞ , B(1) decreases and B(N) increases. Hence, as mentioned before, as the 
number of fusions N increases the plot consisting of the pairs

contains a point “ ∙ ” whose ordinate is p with probability approaching 1. It follows 
that as N → ∞ , there is a B(j) which essentially coincides with p. The plot of points 
consisting of the pairs (j,B(j)) in (5) is referred to as the B-curve.

We now make the following important observations. 

a.	� Assumption (4) implies that as N increases, 

 with probability approaching one.
b.	� The point “ ∙ ” moves down the B-curve when max(X0) approaches T. The point 

“ ∙ ” moves up the B-curve when max(X0) decreases away from T.

	� Hence, as N increases, the size of max(X0) relative to T provides useful 
information as to the approximate magnitude of p. Specifically, the first 
quartile of B1,B2,… ,BN is a sensible guess of p as max(X0) approaches 
T, and the third quartile, or even max(B) , is a sensible approximation of p 
when max(X0) is small. Otherwise the mean or median of B1,B2,… ,BN 
provides practical guesses of the approximate magnitude of p.

c.	� Let F̂B be the empirical distribution obtained from the sequence of upper bounds 
B1,B2,… ,BN . Then, from the Glivenko–Cantelli Theorem, F̂B converges to FB 
almost surely uniformly as N increases. Since the number of fusions can be as 

(4)0 < FB(p) < 1

P(B1 > p) = 1 − FB(p) > 0.

(5)(1,B(1)), (2,B(2)),… , (N,B(N))

(6)B(1) < p < B(N)
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large as we wish, our key idea, FB is known for all practical purposes. Hence, as 
seen from b, FB provides information about p.

	� Knowing FB is a significant consequence of repeated out of sample fusion. 
Its implication is that the exact distribution of any B(j) is practically 
known.

3 � Capturing p

For a sufficiently large number of fusions N, the monotonicity of the B-curve and 
(6) imply there are B(j) which approach p from above so that there is a B(j) very close 
to p. Likewise, the B(j) can approach p from below. Thus, the B-curve establishes a 
relationship between j and p.

Another relationship between j and p is obtained from the well-known distribu-
tion of order statistics,

which can be computed since FB is practically known for sufficiently large N. Iterat-
ing between these two relationships provides a way to approximate p as is described 
next.

From (7), we can get the smallest pj such that

The 0.95 probability bound was chosen arbitrarily and can be replaced by other high 
probabilities.

It is important to note that in practice, and in what follows, the pj in (8) are evalu-
ated on a grid incrementally along specified small increments.

Thus, with B(jk)
 ’s from the B-curve, and p(jk) ’s the smallest p’s satisfying (8) with 

j = jk , and B(jk+1)
 closest to p(jk) , k = 1, 2,… , we have the iterative process [1, 10],

so that pjk keeps giving the same B(jk+1)
 (and hence the same jk+1 ) and vice versa. 

This can be expressed more succinctly as,

In general, starting with any j, convergence occurs when for the first time 
B(jk)

= B(jk+1)
 for some k and we keep getting the same probability pjk.

Clearly, the pjk sequence could decrease or increase producing “down” and 
“up” subsequences. For example, suppose that the probabilities

(7)P(B(j) > p) =

j−1
∑

k=0

(

N

k

)

[FB(p)]
k[1 − FB(p)]

N−k

(8)P(B(j) > pj) =

j−1
∑

k=0

(

N

k

)

[FB(pj)]
k[1 − FB(pj)]

N−k ≤ 0.95,

B(j1)
→ p(j1) → B(j2)

→ ⋯B(jk)
→ pjk → B(jk+1)

→ pjk → B(jk+1)
→ pjk ⋯

(9)j1 → p(j1) → j2 → p(j2) → ⋯ jk → pjk → jk+1 → pjk → jk+1 → pjk ⋯
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are sufficiently high probabilities, and that from the B-curve we get the closest 
approximations

Then, with a high probability we get a decreasing “down” sequence

However, when the probabilities are sufficiently low it is possible for the closest B(j) 
approximations of the pj to reverse course leading to an increasing “up” sequence

This “down-up” tendency has been observed numerous times with real and artificial 
data. It manifests itself clearly in the radon examples below.

In particular, as was illustrated earlier in Sect.  1.3, this “down-up” phenom-
enon tends to occur in a neighborhood of the true p, where a transition or shift 
occurs from “down” to “up” or vice versa, resulting in a “capture” of p. This is 
summarized in the following proposition.

Proposition  Assume that the samples size n0 of X0 is large enough, and that the 
number of fusions N is sufficiently large so that B(1) < p < B(N) . Consider the small-
est pj ∈ (0, 1) which satisfy the inequality (8) where the pj are evaluated along 
appropriate numerical increments. Then, (8) produces “down” and “up” sequences 
depending on the B(j) relative to pj . In particular, in a neighborhood of the true tail 
probability p, with a high probability, there are “down” sequences which converge 
from above and “up” sequences which converge from below to points close to p.

4 � Illustrations Using Radon Data

We shall now demonstrate the proposition using radon data examples. Many addi-
tional examples were given in Pan et al. [1]. All the examples point to a remark-
able “down-up” patterns in a neighborhood of the true p, providing surprisingly 
precise estimates of p. It should be noted that the number of iterations decreases 
as the B(j) approach p, a telltale sign that convergence is about to occur.

The iterative process (9) is repeated with different starting j’s until a clear pat-
tern emerges where different adjacent j’s give rise to Down-Up subsequences 
which converge to the same value, it being our estimate p̂ . The process may be 
repeated with different p-increments.

P(B(j1)
> pj1 ), P(B(j2)

> pj2 ),… .

pj1

.
=B(j2)

, pj2
.
=B(j3)

… .

B(j1)
≥ B(j2)

≥ B(j3)
⋯ .

B(j�
1
) ≤ B(j�

2
) ≤ B(j�

3
) ⋯ .
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4.1 � Computational Considerations

To enable computation with R, in (8) the binomial coefficients were evaluated with 
N = 1000 , as if there were 1000 fusions only. However, there are no restrictions on 
the number of fusions and FB was obtained throughout from 10, 000 fusions, and 
hence 10, 000 B’s.

Each entry in the following tables was obtained from a different sample of 1000 
B’s sampled at random from 10,000 B’s. More precisely, each entry was obtained 
from an approximate B-curve obtained from the sampled 1000 B’s and an approxi-
mate (8) with N = 1000 . Thus, for each entry, we iterated between an approximate 
B-curve and approximate (8) with N = 1000.

4.1.1 � Choice of p‑Increment

An important consideration is the choice of the increments of p along which the 
probability (8) is evaluated. Certainly, any approximation of p must reside between 
consecutive B’s. Hence, sensible p-increments are fractions of either the mean, 
median, first or third quartiles, or even fractions of max(B) = B(10,000) . In the follow-
ing example, the p-increments are of the order of magnitude approximately equal to 
one tenth of one of these quantities.

4.1.2 � Beaver County Radon Tail Probabilities

Radon-222, or just radon, is a tasteless, colorless and odorless radioactive gas, which 
is a product of Uranium-238 and Radium-226, both of which are naturally abundant 
in the soil. Radon is known around the world as a carcinogen, and its exposure is 
the leading risk factor of lung cancer among non-smokers. Geological radon expo-
sure takes place mostly through cracks and openings in the ground due to underly-
ing geological formations. Approximately 40 percent of Pennsylvania (PA) homes 
have radon levels above the US EPA action guideline of 4 pCi/L. Residential radon 
test levels were collected by PA Department of Environmental Protection (PADEP) 
statewide in the period from 1990 to 2007. See Zhang et al. [11] for a study of indoor 
radon concentrations from Beaver County and its neighboring counties in PA.

In the following examples, ROSF is applied to Beaver County radon data from 
1989 to 2017, for various p-increments. There were 7425 radon observations, taken 
as a population, of which only 2 exceed 200. Hence, with T = 200 we wish to esti-
mate the small probability p = 2∕7425 = 0.0002693603 . Throughout the examples, 
X0 is a reference random sample chosen without replacement from the 7425 radon 
observations. The generated X1 samples are from Unif(0, 300) and n0 = n1 = 500.

In the tables below, “Down”, “Up”, “No j change”, means that in the iterative 
process (9) there was a downward, or upward, or no change in j, respectively.

Figure 1 shows how the “ ∙ ” moves along the B-curve as a function of the size of 
max(X0) relative to T. The figure should be referred to when reading the following 
examples.
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Example 1  max(X0) = 107

Since 107 is close to T/2, the “ ∙ ” point is in the “middle” of the B-curve, far 
removed from both ends. Hence, we use as p-increment Median∕10 ≈ 0.000018 . 
We observed that the third quartile was 0.0002686, very close to the true p.

From Table 1, the shift from down to up occurs at p̂ = 0.0002689389 very close 
the true p = 0.0002693603 , giving an error of an order of 10−7.

Example 2  max(X0) = 123.1

A different reference sample X0 was fused again 10,000 times with different 
X1 ∼ Unif(0, 300) independent samples. Since max(X0) = 123.1 , again we have, rel-
ative to T = 200 , a “middle” “ ∙ ” point suggesting a p-increment of one tenth of the 
mean of the B’s. As the order of the mean was 10−4 we chose p-increment 0.00002, 
which is of the same order as that of Mean(B)/10.

From Table 2, the shift from Down to Up occurs at p̂ = 0.0002601254 not far 
from p = 0.0002693603 , giving an error on the order of 10−5.

Table 1   � = �.���������� , 
X1 ∼ Unif(0, 300) , 
max(X0) = 107 , T = 200 , 
n0 = n1 = 500 , h = (x, log x) , 
p-increment 0.000018

Starting j Convergence to Iterations

1000 0.0007009389 3 Down
802 0.0002869389 1 Down
761 0.0002689389 1 Down
757 0.0002689389 1 Down
755 0.0002689389 1 Down
754 0.0002689389 1 Up
751 0.0002689389 1 Up
750 0.0002689389 1 Up
740 0.0002689389 1 Up
738 0.0002689389 1 Up

Table 2   � = �.���������� , 
X1 ∼ Unif(0, 300) , 
max(X0) = 123.1 , T = 200 , 
n0 = n1 = 500 , h = (x, log x) , 
p-increment 0.00002

Starting j Convergence to Iterations

800 0.0003401254 18 Down
750 0.0003001254 18 Down
140 0.0002801254 2 Down
135 0.0002601254 1 Down
133 0.0002601254 1 Down
130 0.0002601254 1 Up
122 0.0002601254 1 Up
121 0.0002601254 1 Up
120 0.0002601254 1 Up
112 0.0002601254 1 Up
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Example 3  max(X0) = 193.7

A different reference sample X0 was fused again 10,000 times with different 
X1 ∼ Unif(0, 300) independent samples. Since max(X0) = 193.7 , we have, rela-
tive to T = 200 , a “ ∙ ” point close to the lower end of the B-curve, suggesting a 
p-increment on the order of one tenth of the first quartile of the 10,000 B’s. As the 
first quartile was 0.0002697, we chose a p-increment of 0.00001. A p-increment of 
0.00002 gave identical results. We observe that the first quartile is very close to p.

From Table  3, the shift from Down to Up occurs at p̂ = 0.0002600818 not far 
from p = 0.0002693603 , giving an error on the order of 10−5.

Example 4  max(X0) = 77.9

A different reference sample X0 was fused again 10,000 times with different 
X1 ∼ Unif(0, 300) independent samples. Since max(X0) = 77.9 , we have, rela-
tive to T = 200 , a “ ∙ ” point close to the upper end of the B-curve, a difficult case, 
suggesting a p-increment on the order of one tenth of max(B) from 10,000 B’s. As 
max(B) = 0.0004583 , we chose a p-increment of 0.00004583.

From Table 4, the shift from Down to Up occurs at p̂ = 0.0002286204 not far 
from p = 0.0002693603 , giving an error on the order of 10−5.

4.1.3 � Summary of ROSF Applied to Beaver Radon Data

Table 5 provides our estimates of p = 0.0002693603 from various random radon 
samples X0 of size n0 = 500 fused repeatedly with independent X1 ∼ Unif(0, 300) 

Table 3   � = �.���������� , 
X1 ∼ Unif(0, 300) , 
max(X0) = 193.7 , T = 200 , 
n0 = n1 = 500 , h = (x, log x) , 
p-increment 0.00001

Starting j Convergence to Iterations

800 0.0003600818 21 Down
600 0.0002600818 19 Down
440 0.0002700818 9 Down
300 0.0002600818 4 Down
246 0.0002600818 1 Down
245 0.0002600818 1 Down
244 0.0002600818 1 Up
243 0.0002600818 1 Up
240 0.0002600818 1 Up
237 0.0002600818 1 Up
222 0.0002500818 1 Up
200 0.0002400818 1 Up
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of size n1 = 500 . In all cases, h(x) = (x, log x) . Some of the X0 samples are the 
same, but the p-increments are different still leading to similar results. The mean 
and standard deviation of the p̂ in the table are equal to ̄̂p = 0.0002606333 and 
1.052197e–05, respectively. In general, variance estimates can be obtained by 
repeating ROSF again and again using different B-curves and different p-incre-
ments. Evidently the choice of h(x) = (x, log x) is a reasonable choice as the 
present radon analysis and many other examples with very diverse tail types 
indicate.

Table 4   � = �.���������� , 
X1 ∼ Unif(0, 300) , 
max(X0) = 77.9 , T = 200 , 
n0 = n1 = 500 , h = (x, log x) , 
p-increment 0.00004583

Starting j Convergence to Iterations

1000 0.0002744504 2 Down
999 0.0002744504 1 Down
998 0.0002744504 1 Down
997 0.0002286204 2 Down
996 0.0002286204 1 Down
994 0.0002286204 No j change
993 0.0002286204 1 Up
992 0.0002286204 1 Up
991 0.0002286204 1 Up
990 0.0002286204 1 Up
989 0.0002286204 1 Up
988 0.0002286204 1 Up

Table 5   � = �.���������� , 
X1 ∼ Unif(0, 300) , T = 200 , 
n0 = n1 = 500 , h = (x, log x)

max(X
0
) p-increment p̂ Error

77.9 0.00004583 0.0002286204 4.073987e–05
107.0 0.00002000 0.0002589389 1.042137e–05
107.0 0.00002500 0.0002739389 4.578631e–06
107.0 0.00003000 0.0002689389 4.213694e–07
107.0 0.00001800 0.0002689389 4.213694e–07
107.0 0.00002686 0.0002675389 1.821369e–06
107.0 0.00001175 0.0002574389 1.192137e–05
113.7 0.00002200 0.0002637656 5.594700e–06
123.1 0.00002000 0.0002601254 9.234869e–06
125.2 0.00002000 0.0002600310 9.329269e–06
130.7 0.00003000 0.0002639057 5.454600e–06
143.0 0.00002140 0.0002565210 1.283927e–05
193.7 0.00001000 0.0002600818 9.278469e–06
193.7 0.00002000 0.0002600818 9.278469e–06



1 3

Journal of Statistical Theory and Practice (2021) 15:25	 Page 13 of 16  25

5 � Discussion

There are numerous situations where the interest is in the prediction of an observ-
able exceeding a large or even a catastrophically large threshold level where the 
data at hand fall short of the threshold. For example, consider the daily rainfall 
amount in a region where all the diurnal amounts fall short of a high threshold 
level, say, 10 inches in 24 hours, and yet for risk management it is important to 
obtain the chance that a future amount exceeds 10 inches in 24 hours, an extreme 
situation by all accounts. Similar problems regard annual flood levels, daily cor-
onavirus counts, monthly insurance claims, earthquake magnitudes, and so on, 
where the sample values are below certain high thresholds, and the interest is in 
very small tail probabilities. Furthermore, in many cases, the given data could be 
only moderately large.

In this paper, it has been shown how to approach such problems by a large num-
ber of augmentations or fusions of the given data with computer-generated external 
samples. From this we obtained a curve, called B-curve, containing a point whose 
ordinate was close to the tail probability of interest. Moreover, the magnitude of the 
largest sample value relative to a given high threshold provided rough guesses as to 
the true value of the tail probability. The rough guesses were needed for success-
ful applications of our iterative method which produced accurate estimates of tail 
probabilities.

Indeed, as illustrated in the paper, max(X0) relative to T provides useful informa-
tion about the true tail probability p represented as “the point,” and this fact can be 
interpreted in terms of under-specification and over-specification of the tail prob-
ability under the density ratio model. This clearly is a consequence of the fact that 
FB provides information about p.

The large number of fusions resulted in a large number of upper bounds 
B1,… ,BN , for a tail probability p, from some unknown CDF FB(x) where it was 
assumed that 0 < FB(p) < 1 . The examples in this paper and many more in Pan et al. 
[1] indicate that the choice of the (mostly misspecified) tilt function h(x) = (x, log x) 
in the density ratio model did not go against that assumption. Clearly, other tilts are 
possible as long as FB(p) is bounded away from 0 and 1.

The estimation of very small tail probabilities can be approached by extreme 
value methods. A well-known method is referred to as peaks-over-threshold [12, 
13], whereas the name suggests, only values above a sufficiently high threshold are 
used. However, if the sample is not large to begin with, any reduction in the sam-
ple size, by discarding those values deemed not sufficiently large, reduces the sam-
ple size and calls into question the applicability of the method. A comparison with 
ROSF is given in Wang [10] and in Pan et al. [1].

The estimation of tail probabilities from fused residential radon data has been 
studied recently in Zhang et al. [11, 14] by using the density ratio model with vari-
able tilts. There a given radon sample from a county of interest was fused with radon 
samples from neighboring counties.
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A Appendix

The appendix addresses the density ratio model (11) for m + 1 data sources. Thus, 
we deal with the density ratio model more generally where X0 is fused with m com-
puter-generated samples. Above we dealt with the special case of m = 1.

Assume that the reference random sample X0 of size n0 follows an unknown ref-
erence distribution with probability density g, and let G be the corresponding cumu-
lative distribution function (cdf).

Let

be additional computer-generated random samples where Xj ∼ gj,Gj , with size nj , 
j = 1,… ,m . The augmentation of m + 1 samples

of size n0 + n1 +⋯ + nm gives the fused data. The density ratio model stipulates 
that

where � j is an r × 1 parameter vector, �j is a scalar parameter, and h(x) is an r × 1 vec-
tor valued distortion or tilt function. None of the probability densities g, g1,… , gm 
and the corresponding Gj’s, and none of the parameters � ’s and � ’s are assumed 
known, but, strictly speaking, the so called tilt function h must be a known function.

A.1 Asymptotic Distribution of Ĝ(x)

Define �0 ≡ 0, �0 ≡ 0 , wj(x) = exp(�j + ��
j
h(x)) , �i = ni∕n0 , j = 1,… ,m.

Maximum likelihood estimates for all the parameters and G(x) can be obtained by 
maximizing the empirical likelihood over the class of step cumulative distribution 
functions with jumps at the observed values t1,… , tn [15].

Let pi = dG(ti) be the mass at ti , for i = 1,… , n . Then, the empirical likelihood 
becomes

Maximizing L(�,G) subject to the constraints

X1,… ,Xm,

(10)t = (t1,… , tn) = (X0,X1,… ,Xm),

(11)
gj(x)

g(x)
= exp(�j + ��

j
h(x)), j = 1,… ,m,

(12)L(�,G) =

n
∏

i=1

pi

n1
∏

j=1

exp(�1 + ��
1
h(x1j))⋯

nm
∏

j=1

exp(�m + ��
m
h(xmj)).
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we obtain the desired estimates. In particular,

where I(ti ≤ t) equals one for ti ≤ t and is zero, otherwise. Similarly, Ĝj is estimated 
by summing exp(𝛼̂j + 𝛽�

j
h(ti))dG(ti).

The asymptotic properties of the estimators have been studied by a number of 
authors including Qin and Zhang [9], Lu [8], and Zhang [16].

Define the following quantities: � = diag {�1,… , �m},

Then, the asymptotic distribution of Ĝ(t) for m ≥ 1 is given by the following result 
due to Lu [8].

Theorem A.1  [8] Assume that the sample size ratios �j = nj∕n0 are positive and 
finite and remain fixed as the total sample size n =

∑m

j=0
nj → ∞ . The process 

√

n(Ĝ(t) − G(t)) converges to a zero-mean Gaussian process in the space of real 
right continuous functions that have left limits with covariance matrix given by

where Ip is the p × p identity matrix, and ⊗ denotes Kronecker product.

For a complete proof, see Lu [8]. The proof for m = 1 is given in Zhang [16].
Denote by V̂(t) the estimated variance of Ĝ(t) as given in (15). Replacing parame-

ters by their estimates, a 1 − � level pointwise confidence interval for G(t) is approx-
imated by

where z�∕2 is the upper �∕2 point of the standard normal distribution. Hence, a 1 − � 
level pointwise confidence interval for 1 − G(T) for any T, and in particular for rela-
tively large thresholds T is approximated by

(13)
n
∑

i=1

pi = 1,

n
∑

i=1

pi[w1(ti) − 1] = 0,… ,

n
∑

i=1

pi[wm(ti) − 1] = 0

(14)Ĝ(t) =
1

n0
⋅

n
∑

i=1

I(ti ≤ t)

1 + 𝜌1 exp(𝛼̂1 + 𝛽�
1
h(ti)) +⋯ + 𝜌m exp(𝛼̂m + 𝛽�

m
h(ti))

,

Aj(t) =�
wj(y)I(y ≤ t)
∑m

k=0
𝜌kwk(y)

dG(y), Bj(t) = �
wj(y)h(y)I(y ≤ t)
∑m

k=0
𝜌kwk(y)

dG(y),

Ā(t) =(A1(t),… ,Am(t))
�, B̄(t) = (B�

1
(t),… ,B�

m
(t))�.

(15)

Cov {
√

n(Ĝ(t) − G(t)),
√

n(Ĝ(s) − G(s))}

=

�

m
�

k=0

𝜌k

�

�

G(t ∧ s) − G(t)G(s) −

m
�

j=1

𝜌jAj(t ∧ s)

�

+

�

Ā�(s)�, B̄�(s)(�⊗ Ip)

�

S−1
�

�Ā(t)

(�⊗ Ip)B̄(t)

�

.

(16)
(

Ĝ(t) − z𝛼∕2

√

V̂(t), Ĝ(t) + z𝛼∕2

√

V̂(t)

)

,
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