
Vol.:(0123456789)

SN Applied Sciences (2021) 3:333 | https://doi.org/10.1007/s42452-021-04333-w

Research Article

Parallel machines scheduling with time‑dependent deterioration, 
using meta‑heuristic algorithms

Jaber Kalaki Juybari1 · Somayyeh Kalaki Juybari2 · Reza Hasanzadeh1

Received: 28 June 2020 / Accepted: 3 February 2021 / Published online: 15 February 2021 
© The Author(s) 2021    OPEN

Abstract
In this paper, we consider the identical parallel machines scheduling problem with exponential time-dependent deterio-
ration. The meaning of time-dependent deterioration is that the processing time of a job is not a constant and depends 
on the scheduled activities. In other words, when a job is processed later, it needs more processing time compared to 
the jobs processed earlier. The main purpose is to minimize the makespan. To reach this aim, we developed a mixed 
integer programming formulation for the problem. We solved problem in small scale using GAMS software, while due 
to the fact that in larger scales the aforesaid case is a complex and intricate optimized problem which is NP-hard, it is 
not possible to solve it by standard calculating techniques (in logical calculating times); we applied the meta-heuristic 
genetic algorithm, simulating annealing and artificial immune system, and their performance has been evaluated. In 
the end, we showed that solving the problem in small scale, with the meta-heuristic algorithms (GA, SA, and AIS) equals 
the optimal solution (GAMS), And on a large scale, at a time of approximately equal solution, meta-heuristic algorithm 
simulating annealing, provides a more optimal solution.

Keywords  Scheduling · Parallel machines · Deterioration · Genetic algorithm · Simulating annealing · Artificial immune 
system

1  Introduction

The basic model of scheduling theory assumes that the 
processing time of a job is predetermined and constant. 
However, this assumption may not always be true because 
of the tools and machinery face deterioration which 
decreases the machining quality over the time [6]. Parts 
with turning process or cutting process are another practi-
cal example in this field. For example, there are some prod-
ucts that need to be processed by a cutting tool. Because 
of wear of the cutting tool, the time required for process-
ing a single product increases with respect to the process-
ing time of products already executed [32, 36].

In recent years, the phenomenon known as deteriora-
tion has been considered by many researchers, after the 
pioneering works of Gupta et al. [12] on scheduling models 
in which they focused on single-machine scheduling with 
deteriorating jobs and introduced the processing time of 
a job as the polynomial function of its setup time. Alidaee 
and Womer [1] have classified scheduling models with 
deteriorating jobs into three types of linear deterioration, 
piecewise linear deterioration and nonlinear deterioration. 
In these types, the actual job processing time directly or 
indirectly depends on the setup time. In the following, we 
will review the literature on the related studies.

Chen [5] and Woeginger [37] studied the scheduling 
problem of deteriorating jobs with the objective function 
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of the jobs with preemption assuming that the due dates 
are the same. To solve the problem, they proposed the 
dynamic programming algorithm with the complexity 
O
(
n2
)
 and O

(
n3
)
, respectively. In their research, Ji et al. 

[15] focused on the makespan and the total completion 
time of deteriorating jobs on machine with the availability 
constraint while they consider non-resumable case. They 
showed that both problems are non-deterministic poly-
nomial hard (NP-hard) and present pseudo polynomial 
time optimal algorithms to solve them. Furthermore, for 
the makespan problem, present an optimal approxima-
tion algorithm and for the total completion time problem, 
provide a heuristic and evaluate its efficiency by computa-
tional experiments. Wang et al. [33] stated that flow shop 
scheduling with the objective of minimizing makespan in 
the basic form is NP-hard. They focused on the aforesaid 
problem in two sections of their study. They first examined 
it in four different forms and put them in an optimal order. 
In the second part, a Branch and Bound (B&B) approach 
was employed to solve the cases with 14 jobs. Moreover, 
they proposed a heuristic two-stage algorithm which 
was proved to be effective. Lee and Wu [19] considered 
the scheduling problem of deteriorating jobs on parallel 
machines with machines availability constraint. They pro-
posed a new algorithm using the LDR (largest deteriora-
tion rate first) rule and the idea of the MULTIFIT heuristic 
proposed by Coffman et al. [8], for the makespan problem. 
Mosheiov [23] investigated the makespan in the single-
machine cases in which the actual processing time of each 
job is defined by an exponential function of its position. 
He also showed that an optimal schedule is a V-shaped 
schedule in terms of the basic or normal processing times 
of jobs. In their survey, Lee et al. [20] assumed that the 
actual processing time of a job in position r is dependent 
on the processing time of the prior job r − 1 . They dem-
onstrated that longest processing time first rule (LPT) 
would optimize total completion time problem in a single 
machine assuming that the deterioration coefficient was 
between 0 and 1. Ng et al. [24] considered a two-machine 
flow shop scheduling problem to minimize the total com-
pletion time with proportional linear deterioration. They 
derived it from several dominance properties, some lower 
bounds, and an initial upper bound, then applied them 
in an assumed branch-and-bound algorithm to search 
for the optimal solution. Wang et al. [35] considered the 
single-machine scheduling problem with learning effect 
of a time-dependent deterioration. They formulated the 
model and proposed a mixed integer programming for-
mulation (MIP) for the aforesaid problem and applied the 
shortest processing time (SPT) rule as a heuristic algorithm 
for general cases and analyzed its worst-case error bound. 
Two heuristic algorithms HA1 (is adopted from Kanet [17] 
idea) and HA2 (Proposed algorithm according to the HA1) 

which utilize the V-shaped property for the problem of the 
smallest total completion time were also proposed. Joo 
and Kim [16] considered the time-dependent deteriora-
tion problem and some scheduling problems with rate-
modifying activities (i.e. getting recovered to a normal 
processing time known as RMA). They used a mathemati-
cal model to find an optimal solution for minimizing the 
makespan. Also they considered genetic algorithm with 
the special character (GA-SC), a genetic algorithm using 
chromosomes with double string (GA-DS) and a genetic 
algorithm compounded with dispatching rule (GA-DR). 
They finally showed that GA-DR provides the highest qual-
ity performance, in both effectiveness and efficiency. Tor-
res [31] considered an unrelated parallel machine sched-
uling problem with time-dependent deterioration given 
that single-machine problem could be solved in polyno-
mial time. The problem is NP-hard when the scale of the 
problem grows. They employed a simulated annealing (SA) 
meta-heuristic algorithm to minimize the total completion 
time and showed the effectiveness of this algorithm by 
solving a large number of benchmark instances. Chung 
and Kim [7] considered a hybrid genetic algorithm (GA) 
together with a heuristic algorithm for single-machine 
scheduling problem with time-dependent deterioration 
and rate-modifying activities. First, they wrote a mixed 
integer program for optimizing the total completion and 
applied the problem in scales greater than the hybrid 
genetic scale with chromosome (GA-SC, GA-DS) and a 
heuristic solution. They showed that the obtained results 
are precisely similar.

Shin et al. [28] presented a heuristic and tabu search 
(TS) algorithm for the problem of single-machine schedul-
ing with sequence-dependent setup time and the release 
time and the objective function with the aim of minimiz-
ing the maximum lateness. Stecco et al. [29] developed 
a tabu search algorithm for the time-dependent and 
sequence-dependent single-machine scheduling prob-
lem. Bahalke et al. [2] proposed some hybrid meta-heuris-
tic algorithm for single-machine scheduling with sequence 
dependent on setup time and job deterioration to mini-
mize the makespan. Rabani et al. [26] considered a new 
hybrid meta-heuristic approach to optimization of paral-
lel machine scheduling problem with human resiliency 
engineering. They proposed a hybrid meta-heuristic algo-
rithm GA and SA for the problem of non-identical parallel 
machines and stated that hybrid approach is better than 
other approaches. Salehi Mir et al. [27] considered sched-
uling parallel machine problem under general effects of 
deterioration and learning with past-sequence-dependent 
setup time with heuristic and meta-heuristic approaches. 
For solving this problem, they proposed a mixed integer 
programming model, then used three methodologies 
including a heuristic algorithm (HA), a genetic algorithm 
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(GA) and an ant colony optimization (ACO), with a new 
stochastic result-oriented strategy. They finally showed 
that the proposed algorithm provides the optimal solu-
tion to the small-size problems and the ACO meta-heuris-
tic algorithm statistically better than HA and GA. Cheng 
et al. [6] studied a class of machines scheduling problems 
in which the processing time of a job dependent on the 
setup time. They classified the scheduling problem with 
different types of time-dependent deterioration and pro-
vided a framework for the models of classic problems that 
had been generalized from the theory of classic sched-
uling. Wang et al. [32, 36] considered the single-machine 
scheduling problems with deterioration jobs and group 
technology assumption. They showed that minimizing the 
makespan in polynomial time can be solved if the total 
linear deterioration and group technology are regarded 
to be simultaneous actions. Wang et al. [34] considered 
the sing-machine problems of scheduling jobs with start 
time increasing processing times. The two objectives of 
the scheduling problems are to minimize the makespan 
and the total weighted completion time, respectively. 
Under the assumption of series–parallel graph precedence 
constraints, they proved that the problems were polyno-
mially solvable.

In the present paper, we have considered the sched-
uling problem of minimizing the maximum completion 
time ( Cmax ) in parallel and identical machines with a time-
dependent deterioration proposed in the studies of Wang 
et al. [35]. They calculated the actual processing time of the 
job using the previous scheduled jobs. One of the aims of 
this study that not observed in previous studies is that of 
applying scheduling with a time-dependent deterioration 
Model (in the study of Wang et al. [35]) in the identical 
parallel machines environment. We developed a mixed 
integer programming formulation for the problem, then 
solved it with three meta-heuristic algorithms (GA), (SA) 
and artificial immune systems (AIS) for the first time and 
compared the results obtained.

This paper has been organized as follows: in Sect. 2, we 
wrote a mixed integer programming model. In Sect. 3, as 
the problem Pm||Cmax is strongly NP-hard for higher num-
bers of m [11], we solved the problem in a larger scale 
using the meta-heuristic algorithms (genetic, simulating 
annealing, artificial immune system) and evaluated their 
performance. The final section dealt with concluding 
remarks.

2 � Model formulation

Consider the identical parallel machines problem. There is 
a set of n jobs i =

{
i1, i2,… , in

}
 where all jobs are available 

for processing at time 0 and setup time = 0. The machine can 

handle one job at a time and preemption is not allowed. 
Each job is associated with a normal processing time pi and 
the normal processing time of a job if scheduled at the rth 
position in a sequence p[r]. Suppose that the pir is the pro-
cessing time of job i when it is scheduled at the position r in 
a sequence. Like the study of Wang et al. [35], we consider a 
time-dependent deterioration model using Eq. (1):

In this relation, the actual processing time in position r 
depends on the basic processing time of the previous sched-
uled activity r − 1 . Where a ≥ 0 is the deterioration index.

According to the three-field notation scheme 
�|�|�  introduced by Graham et  al. [13], we show 
the problem considered in this  research as 
Pm|pir = pi

(
1 + p[1] + p[2] + … + p[r−1]

)a
, 0 < a < 1|Cmax.

Notations
m : The number of available machines.
n : The number of jobs which need to be scheduled.
j : The index of machines, j = 1,… ,m.
i  : The index of jobs, i = 1,… , n.
r : The index of the position of each job, r = 1,… , n.
Parameters
Pi : The normal processing time of job i .
tj : The setup time of the first scheduled job in machine j.
� : The deterioration index.
Decision variables
Xirj : Equals 1 when job i is done in position r on machine 

j . Otherwise, it is 0.
P[r]j : The actual processing time of the job scheduled in 

position r on machine j.
C[r]j : The actual completion time the job scheduled in 

position r on machine j.
Cmax  :  The total  complet ion t ime (comple -

tion time of the machine with the maximum 
load,Cmax = max{C|j = 1, 2,… , n}).

Based on the parameters and decision variables, a 
mixed integer programming process can be formulated.

Constraints
Constraint (2) stipulates that each job must be 

processed.

Constraint (3) guarantees that just one job be processed 
in any position on any machine.

(1)pir = pi
(
1 + p[1] + p[2] +⋯ + p[r−1]

)a

(2)
m∑

j=1

n∑

r=1

Xirj = 1 ∀i = 1,… , n.

(3)
n∑

i=1

Xirj ≤ 1 ∀j = 1,… ,m;r = 1,… , n.
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Constraint (4) guarantees that immediately after each 
job, just one of the remaining jobs can be done.

Constraint (5) shows that when job i is not in its initial posi-
tion, another job must be done immediately before job i.

Constraint (6) shows the processing time of the job sched-
uled in the first position on machine j.

Constraint (7) shows the processing time of the job sched-
uled in position r on machine j.

Constraints (8) and (9) show the actual completion time of 
the job scheduled in the first and rth position on machine j.

Constraint (10) shows the upper limit Cmax.

Constraint (11) shows the range decision variables.

Objective function
The objective of the scheduling problem in parallel 

machines is to minimize the completion time of the machine 
with the maximum load which is shown in Eq. (12).

3 � Meta‑heuristic algorithms

We propose three effective and efficient meta-heuristic 
algorithms, because the mixed integer programming 
model is not suitable for the problems over 10 jobs 

(4)

Xirj +

n∑

l=1,l≠i

Xlr+1j ≤ 2 ∀i = 1,… , n;j = 1,… ,m;r = 1,… , n − 1.

(5)

Xi,r+1,j ≤

n∑

l=1,l≠i

Xlrj ∀i = 1,… , n;j = 1,… ,m;r = 1,… , n − 1.

(6)P[1]j =

n∑

i=1

(
Pi
)
Xi,1,j ∀j = 1,… ,m.

(7)P[r]j =

n∑

i=1

(
Pi
)
Xi,r,j ∀j = 1,… ,m;r = 2,… , n.

(8)C[1]j = tj + P[1]j ∀j = 1,… ,m,

(9)

C[r]j = C[r−1]j + P[r]j

(
1 +

r−1∑

i=1

P[i]j

)�

∀j = 1,… ,m;r = 2, ..., n.

(10)C[r]j ≤ Cmax ∀j = 1,… ,m;r = 1,… , n.

(11)
Xirj = 0, 1, P[r]j ,C[r]j ,Cmax ≥ 0 ∀i = 1,… , n;j = 1,… ,m;r = 1,… , n.

(12)MinCmax

because of the long computation time [16]. The parallel 
machines scheduling with exponential time-dependent 
deterioration considered in this paper is typical combina-
torial optimization problem, and GA, SA and AIS are known 
as effective and efficient algorithms for combinatorial opti-
mization problems [3, 16, 31].

3.1 � Genetic algorithm

Genetic algorithm first introduced by Holland [14] is one 
of the evolutionary optimization methods that inspired 
by the laws of evolutionary biology such as inheritance, 
biology mutation and Darwin’s principles of choice. Natu-
ral selection is the process through which organisms that 
are more adapted to their environment are more likely to 
survive and reproduction and can pass on their genes to 
the next generation.This algorithm starts with an initial 
set of solutions (initial population). Each member of the 
population is called a chromosome that defines a solu-
tion to the problem. Chromosomes are evaluated based 
on the performance criterion and are evolved through 
continuous repetition. To produce each generation, the 
new chromosomes are produced by combination (the 
crossover operator) or alteration (the mutation operator) 
of the previous generation chromosomes. This process 
continues until the stopping criterion is met. In the fol-
lowing paragraph, we have briefly explained the steps of 
the proposed algorithm.

1.	 Arranging the genetic algorithm parameters.
2.	 Producing and evaluating the randomly selected initial 

population.
3.	 Selecting the individuals and the parents from the 

population to implement the mutation and crossover 
operators.

4.	 Combining the actual population, the offspring popu-
lation and the population of mutated ones to choose 
the actual population of the new generation.

5.	 Stopping at values of the predetermined repetitions.

In the present study, parents have been selected based 
on the Roulette wheel selection (fitness proportionate 
selection). It is one of the operators used in GA. In fitness 
proportionate selection, as in all selection methods, the 
fitness function assigns a fitness level to possible solutions 
or chromosomes. This fitness level is used to assign a prob-
ability of selection to each individual chromosome. If fi is 
the fitness of individual i  in the population, its probability 
of being selected is equal to relation (13).

(13)Pi =
fi

∑N

j=1
fj
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where N is the number of individuals in the population 
[4]. Moreover, we applied elitism method in which the best 
chromosomes are moved from the previous stages to the 
present stage.

3.2 � Simulated annealing algorithm

Simulated annealing algorithm (SA) is a kind of neighbor-
hood search-based meta-heuristic algorithm which uses 
probabilistic and mathematical to find the global opti-
mum. In other words, this algorithm attempts to approxi-
mate global optimization in a large space. The name of 
the aforesaid algorithm comes from annealing process in 
metallurgy which involves heating and then controlled 
cooling of a material to increase the size of its crystals. For 
the first time, this algorithm was introduced by Kirkpat-
rick et al. [18]. The main advantage of simulated annealing 
is its ability to avoid getting stuck at the local minimum. 
This approach not only accepts changes that improve the 
objective function, but also accepts some changes, with 
a certain probability, that do not improve the objective 
function solution in order not to get caught up in a local 
solution.

As a whole, the following phases were used in the algo-
rithm SA:

1.	 Define the initial configuration set S.
2.	 Set the initial temperature T > 0.
3.	 If stop criterion invalid,

3.1	 Execute the following loop
3.2	 Select a random neighborhood from S and call it S′

3.3	 Let Δ = cost S� − cost S

3.4	 If Δ ≤ 0 then S� = S.
3.5	 If Δ > 0 then S� = S with a probability e−

(
Δ

T

)

.
3.6	T  as a controlling parameter. It is small, however, 

close to 1.

4.	 Return to S.

In the simulated annealing algorithm, in addition to the 
main loop of the algorithm, we defined an internal loop for 
the algorithm. It is clear that this will only reduce the tem-
perature of the system after the inner ring is completed. 
Therefore, the search algorithm increases at a constant 
temperature and the probability of discovering better 
points increases.

3.3 � Artificial immune system algorithm

Like the genetic algorithm, artificial immune system algo-
rithm is inspired by natural behavior in the real world. It 
was first introduced by De Castro et al. [9]. This algorithm is 
inspired by the biological immune system in dealing with 

pathogens. It is similar to the genetic algorithm in many 
aspects; however, there are differences in the process 
of the algorithm that enable this algorithm to be faster 
to converge and to need lower number of calculations. 
The phases of artificial immune system algorithm are as 
follows:

1.	 Setting a randomly selected initial population of anti-
bodies.

2.	 Evaluating each antibody by the objective function.
3.	 Selecting the best antibodies to perform reproduction.
4.	 Performing the reproduction for each selected anti-

body.
5.	 Implementing the mutation operator on the repro-

duced antibodies based on the level of overlap 
between them (the objective function).

6.	 Replacing the worst antibodies in the reference popu-
lation with the best ones in the mutated population.

7.	 Return to 2, until the stop condition is reached.

3.4 � Chromosome representation

According to Fig. 1, representation of chromosomes in 
three algorithms is in form of a special character.

We have used swap and reversion mutations to imple-
ment the mutation operator in genetic algorithm, gener-
ate neighborhood solution in the simulated annealing 
algorithm and mutation on antibodies in artificial immune 
system algorithm. According to Fig. 2, in the swap muta-
tions, first a chromosome is randomly selected. Then two 
genes of the chromosome are selected randomly and 
their places are exchanged to implement the mutation 
operator. Moreover, according to Fig. 3, in the reversion 
mutation, first two points of a chromosome are randomly 
selected and the genes between these two points are 
reversed.

According to Fig. 4, in order to implement the crossover 
operator in GA of generation A, two chromosomes were 

First Machine Second Machine Third Machine      

6 2 * 4 1 * 3 5 

Fig. 1   Chromosome representation with the special character

6 2 * 4 1 * 3 5 

6 2 * 3 1 * 4 5 

Fig. 2   Swap mutation
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randomly selected and the single-point crossover was 
implemented on them to generate the offspring popula-
tion. To do this, we first perform the crossover operation 
and then by keeping the second part of the child’s chro-
mosomes constant, delete the repeated genes in the first 
part and put the values never used in the chromosome in 
the blank spots.

4 � Computational results

Based on past and extensive experiences in this field, 
in this study we adjusted the parameter levels so that 
the algorithms are optimized at a relatively equal time. 

Accordingly, we investigated the effective parameters 
of GA, SA and AIS algorithms using Taguchi method in 
Minitab software.

The method of designing Taguchi experiments was 
introduced in 1960 by Professor Taguchi [22]. Tagu-
chi developed a new experimental design method to 
increase the efficiency of implementation and evaluation 
of experiments. Its structure is more suitable for evaluat-
ing production processes because the required number 
of experiments is reduced significantly. The design of 
experiment using the Taguchi method provides a sim-
ple, efficient and systematic approach to determine opti-
mum conditions [10]. Taguchi method offers orthogonal 
arrays as a mathematical tool that analyses the small-
est number of experiments that have a large number 
of parameters. Thus, it would reduce time and effort. 
In this method, experimental results are converted to a 
signal/noise (S/N) ratio which means a ratio of an aver-
age standard deviation [30]. A larger S/N ratio indicates a 
better test result. So in experiments, a level of the factor 
which has the highest ratio represents a better perfor-
mance. The ratio allows controlling mean and variance 
while at the same time an analysis of variance (ANOVA) 
is performed. In this way, the effects of factors can be 
revealed statistically. S/N ratio can be calculated with 
Eq. (14):

n, the number of observations in the experiment and yi 
makespan values ( i = 1 ton).

The parameter levels are presented in Table 1 for all 
three algorithms. For the experiments, we considered 
100 job and 4 machines with a degradation rate of 0.45. 
The processing time of the jobs were randomly selected 
from the intervals [1, 50]. And an average of 30 times run 
were used for each experiment. To get the exact aver-
age of each. According to the number of parameters and 
levels, for each of the GA, SA and AIS algorithms, 9 dif-
ferent experiments are performed according to the table 

(14)S∕N Ratio = −10 Log10

[
1

n
×

n∑

i=1

y2

]

6 2 1 4 * 7 3 5 

6 2 3 7 * 4 1 5 

Fig. 3   Reverse mutation

Crossover point

Performing the crossover 

Replacing the repeated genes 

6 2 * 4 1 * 3 5 

3 4 * 5 2 * 1 6 

3 4 * 5 1 * 3 5 

6 2 * 4 2 * 1 6 

3 4 * 5 1 * 2 6 

6 2 * 4 3* 1 5

Fig. 4   One-point crossover

Table 1   Factors and test levels 
GA, SA and AIS

Pc : Crossover operator, Pm : Mutation operator, Npop : Initial population of chromosomes, Itr : The number 
of iterations of the algorithm, Alfa : Temperature reduction coefficient,T0 : Initial temperature, Itr1 : The 
number of repetitions of the inner loop, Na : The number of antibodies population, Nc : The number of 
antibodies that have most compatibility with the antigen.

Algorithm GA SA AIS

Parameter A: [Pc, Pm] B: [Npop, Itr] A: [Alfa, T0] B: [Itr, Itr1] A: Na B: [Itr, Nc]

Level 1 0.8, 0.2 60, 200 0.90, 30 200, 50 15 200, 6
Level 2 0.75, 0.25 80, 150 0.98, 50 150, 70 20 100, 8
Level 3 0.85, 0.15 100, 100 0.95, 70 100, 100 30 50, 10
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(orthogonal), i.e. in total, for each of the algorithms, 
9 × 30 = 270 separate experiments were performed.

According to Fig. 5, we considered for GA the initial 
population of 60, the number of iterations 200, the crosso-
ver and mutation rates of 0.75 and 0.25.

According to Fig. 6, we considered for SA the iterations 
of the main loop 200, the inner loop iterations 50, the ini-
tial temperature 30 and the temperature reduction coef-
ficient 0.90.

According to Fig. 7, we considered for AIS the number 
of iterations is 200, the number of antibodies 20, and the 
number of antibodies that have the highest compatibility 
with the antigen 6. We performed the numerical experi-
ments on a computer with Intel core i3, 1.8 GHz and RAM 

4  GB. The processing time of the jobs were randomly 
selected from the intervals [1, 50].

In this paper, the quality of the answers obtained from 
the meta-heuristic algorithms has been evaluated by the 
relative percent deviation (RPD) from the best-known 
solutions. RPD is a criterion for unsealing data. The reason 
for using RPD is to normalize the outputs for comparison. 
A lower RPD RPD value indicates a more optimal answer 
which is calculated by expression (15).

where methodsol equals the value of the objective func-
tion obtained from the meta-heuristic (GA, SA and AIS) 

(15)RPD =
methodsol − Best

Best
× 100

Fig. 5   Mean and S/N ratio diagram for GA

Fig. 6   Mean and S/N ratio diagram for SA
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solution and (Best) equals the optimized answer obtained 
from the model solution by general algebraic modeling 
system (GAMS) software in the certain form. (GAMS is a 
high-level modeling system for mathematical optimization 
and designed for modeling and solving linear, nonlinear, 
and mixed integer optimization problems. The system is 
tailored for complex, large-scale modeling applications.) 
Moreover, in the following tables, m is the number of the 
machines, n is the number of jobs, and � is the deteriora-
tion rate. GA, SA and AIS in Table 3 are twice as large as 
the best obtained value and mean equals their means in 
30 times of RUN in three algorithms. MAD stands for the 
mean absolute deviation.

In Table 2, we evaluated the performance of the algo-
rithms (GA, SA and AIS) in small scales ( m = 3; n = 7, 8, 9 
and m = 4; n = 7, 8 and according to the study Wang et al. 
[35] � = 0.05, 0.45, 0.85 ) in comparison with the optimized 
answer obtained from the optimized solution (GAMS) of 
the total number of 15 problems for each methods.

The zero RPD index indicates that all three considered 
meta-heuristic algorithms are efficient for this problem. 
In Table 3, we evaluated three algorithms of GA, SA and 
AIS in average scale ( m = 3; n = 30, 40; � = 0.05, 0.45 ) and 
in large scale ( m = 4, 5, 6; n = 100, 150, 200; � = 0.05, 0.45 ) 
performing the algorithm 30 times for each problem and 
420 problems for each of the algorithms (GA, SA and AIS).

Fig. 7   Mean and S/N ratio diagram for AIS

Table 2   Test results of small-
sized problems

m n � Opt Time (s) GA SA AIS

RPD Time (s) RPD Time (s) RPD Time (s)

3 7 0.05 35.005 523 0.00 5.21 0.00 5.08 0.00 5.11
0.45 81.781 643 0.00 5.22 0.00 5.01 0.00 5.11
0.85 232.037 870 0.00 5.21 0.00 5.11 0.00 5.15

8 0.05 39.674 621 0.00 5.55 0.00 5.18 0.00 5.19
0.45 95.674 902 0.00 5.55 0.00 5.23 0.00 5.21
0.85 285.568 1022 0.00 5.58 0.00 5.20 0.00 5.23

9 0.05 45.191 1210 0.00 5.77 0.00 5.22 0.00 5.19
0.45 114.877 1335 0.00 5.72 0.00 5.24 0.00 5.25
0.85 368.529 1470 0.00 5.69 0.00 5.22 0.00 5.21

4 7 0.05 27.522 872 0.00 5.30 0.00 5.19 0.00 5.20
0.45 51.785 896 0.00 5.32 0.00 5.16 0.00 5.17
0.85 127.143 902 0.00 5.31 0.00 5.25 0.00 5.15

8 0.05 32.671 1008 0.00 5.51 0.00 5.23 0.00 5.33
0.45 61.187 1023 0.00 5.56 0.00 5.54 0.00 5.39
0.85 159.375 1097 0.00 5.59 0.00 5.29 0.00 5.29

Average 0.00 0.00 0.00
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Solving the problem in medium and large scales shows 
that in 30 times running the algorithms according to the 
best solution obtained, the mean of the answers and the 
values of MAD, SA are more optimum than GA and AIS. 
Moreover, as we employed the exponential function of 
deterioration, we witness some differences in the final 
answers given the deterioration rate and the size of the 
problem that MAD values indicate this.

According to Figs. 8, 9 and 10, we see that the con-
vergence speed of the SA is higher. In the following, we 
interpret the results of three algorithms using Wilcoxon 
rank-sum test in Minitab software. Mann–Whitney U test 
or Wilcoxon rank-sum test is a nonparametric test that 
examines the difference between two independent 

groups regarding a variable with rank or sequential data 
[21]. In fact, this test is the nonparametric equivalent of the 
independent t test, but with the difference that the t test 
is parametric and its data is continuous, while the Mann 
-Whitney U test is nonparametric and is performed with 
rank data. The null and two-sided research hypotheses for 
the nonparametric test are stated as follows:

1.	 All the observations from both groups are independ-
ent of each other,

2.	 The responses are ordinal (i.e., one can at least say, of 
any two observations, which is the greater),

3.	 Under the null hypothesis H0, the distributions of both 
populations are equal [25].

Table 3   Test results of medium and large-sized problems

m n � GA Time (s) Mean MAD SA Time (s) Mean MAD AIS Time (s) Mean MAD

3 30 0.05 176.936 13.43 177.565 0.595 176.043 10.68 176.215 0.168 176.063 12.61 177.016 0.280
0.45 858.958 13.24 863.387 1.782 857.968 10.97 861.316 1.699 858.782 12.54 862.906 1.450

3 40 0.05 299.025 16.42 300.1219 0.601 298.803 13.39 299.084 0.169 298.780 15.37 299.885 0.706
0.45 1805.363 16.36 1815.367 6.291 1799.957 13.19 1806.372 2.654 1804.255 15.59 1812.792 6.149

4 100 0.05 637.979 33.82 639.246 0.514 636.361 25.51 637.858 0.236 637.427 31.43 638.635 0.612
0.45 5341.278 34.32 5365.571 7.421 5315.243 25.46 5322.625 3.624 5338.459 31.56 5348.935 6.915

5 100 0.05 504.075 34.41 505.21 0.401 501.873 26.84 502.539 0.275 503.463 31.54 504.231 0.534
0.45 3823.52 34.25 3840.796 7.956 3798.292 26.9 3803.117 2.739 3807.588 32.18 3823.823 6.897

5 150 0.05 746.734 48.11 747.729 0.446 744.468 34.11 745.169 0.447 746.219 45.14 747.498 0.722
0.45 6694.974 48.18 6708.089 7.666 6642.251 34.24 6653.157 4.758 6679.131 45.23 6691.918 7.066

6 150 0.05 615.708 49.57 617.185 0.865 613.839 34.12 614.451 0.358 614.999 45.53 616.561 0.819
0.45 5121.318 48.32 5137.351 7.061 5060.628 35.53 5068.282 5.683 5092.047 45.23 5111.098 7.185

6 200 0.05 809.827 62.12 811.912 0.613 807.498 46.55 808.351 0.502 809.670 58.26 810.764 0.504
0.45 7516.581 62.65 7528.973 7.939 7459.001 46.58 7466.895 5.101 7505.705 58.44 7517.854 7.339

Fig. 8   Convergence diagram of GA with � = 0.45, n = 200 and m = 6



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:333 | https://doi.org/10.1007/s42452-021-04333-w

4.	 The alternative hypothesis H1 is that the distributions 
are not equal.

The Mann–Whitney test statistic is defined as Eqs. (16) 
and (17), [38]:

where n1 and n2 are the sum of groups 1 and 2 and R1 and 
R2 are the sum of the ranks of groups 1 and 2, respectively. 
A smaller value between U1 and U2 is used for comparison 
in the test phase. Therefore according to Eq. (18):

If the U statistic at the 1 − � confidence level is 
greater than the value obtained from the table, the 

(16)U1 = R1 −
n1
(
n1 + 1

)

2

(17)U2 = R2 −
n2
(
n2 + 1

)

2

(18)U = min
{
U1,U2

}

null hypothesis is not accepted. In the statistical signifi-
cance test of U , if the smaller group size is 20 items or 
less and the larger sample size is 40 items or less, the 
U Mann–Whitney critical value table is used. However, 
if the volume of both groups is greater than 20 or the 
volume of one of them is greater than 40, then the dis-
tribution of the U statistic tends to the normal distribu-
tion. In this case, by calculating the mean and standard 
deviation, U is calculated and the Z  statistic is calculated 
using Eq. (19).

where in mu =
n1n2

2
 Average u �u =

√
n1n2(n1+n2+1)

12
 the 

standard deviation is U . If the value of Z statistic is greater 
than the value obtained from the standard normal distri-
bution table for the 1 − � confidence level, the null hypoth-
esis is not confirmed. Therefore, in this study, we examined 
the results of SA with GA and AIS in the confidence interval 
of 0.95.

(19)z =
U −mu

�u

Fig. 9   Convergence diagram of 
SA with � = 0.45, n = 200 and 
m = 6

Fig. 10   Convergence diagram 
of AIS with � = 0.45, n = 200 
and m = 6
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In the SA, GA test, H0: The average SA population is 
lower than GA, and In the SA, AIS test, H0: The average SA 
community is less than AIS.

In Table 4, given a significance probability of 0.3826, we 
cannot reject the null hypothesis. Therefore, SA is less than 
GA and AIS.

In Fig. 11, we see the problem solving time diagram 
with the three algorithms GA, SA and AIS, which show that 
in larger sizes the time to solve SA is less than GA and AIS.

In Fig. 12, we see the most optimal solving values in 30 
times the iteration of the solution with the three meta-
heuristic algorithms GA, SA and AIS, which shows that the 
SA method provides more optimal values.

In Fig.  13, we see the mean values of the solutions 
obtained 30 times in the solution of the three meta-heu-
ristic algorithms GA, SA and AIS. Which shows that the SA 
method provides more optimal values.

5 � Conclusions

In this paper, we considered scheduling problem with 
exponential time-dependent deterioration in the study of 
Wang et al. [35] in which they assessed the actual process-
ing time of jobs according to the previous scheduled jobs. 

They formulated the model and proposed a mixed integer 
programming formulation for this problem and used two 
heuristic algorithms which utilize the V-shaped property 
for the problem of the smallest total completion time and 
showed that the proposed algorithms provide the optimal 
solution. Due to the importance of the problem and its 

Table 4   Wilcoxon rank-sum 
test results

N: Sample size, CI: Confidence intervals, W: Wilcoxon W test statistics

Sample N Descriptive statistics Estimation for difference Adjusted for ties

Median Difference CI for difference Achieved 
confidence

W-value P value

SA, GA SA 14 834.8 − 3.1 (− 1334.2,1287.6) 95.4 196.0 0.3826
GA 14 837.6

SA, AIS SA 14 834.8 − 2.4 (− 1310.4,1301.9) 95.4 196.0 0.3826
AIS 14 836.8

Fig. 11   Comparison of the solution time of GA-SA-AIS method
Fig. 12   Comparison of the best answer with 30 times of repetition

Fig. 13   Comparison of mean values with 30 times of repetition
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implications in different settings, we reached a more effec-
tive approach by implementing the aforesaid relation in 
the setting of identical parallel machines. (Theoretically, 
the problem of parallel machines can be regarded as the 
generalization of single-machine problems and a special 
form of existing scheduling problems in flexible produc-
tion systems. When it comes to practice, there are also 
some similar working stations in many production set-
tings that have a lot of similar equipment with similar or 
different practical characteristics). To solve the problem in 
small scale, we developed a mixed integer programming 
model with the objective function Cmax that improves the 
optimized use of the machine and the level of efficiency. 
In order to solve the problem in larger scales, we applied 
three meta-heuristic algorithms GA, SA and AIS. Finally, 
after tuning of parameters GA, SA and AIS using Taguchi 
method and analyzing the results with Wilcoxon rank-sum 
test, we showed that by expanding the problem scale and 
the deterioration rate, SA has a higher efficiency than GA 
and AIS. Future studies can evaluate the effectiveness of 
other meta-heuristic algorithms related to this problem. 
Moreover, they can analyze scheduling problem with 
exponential deterioration in other scheduling environ-
ment that embraces a vast area in scheduling problems.
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