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Abstract
The effect of distance between the primary pivots on stability of the two-chain suspension arrangement of a load has 
been explored. Based on the concept and methodology for calculating static stability, developed in previous works, it 
has been shown that the arrangement with narrow placement of the primary pivots is generally less stable than a normal 
arrangement. The reduced stability of such a system is primarily associated with a decrease in the length of the base 
of the stability triangle (ST) inside which the gravity center of the load (GCL) must be positioned. The minimal distance 
between primary pivots that provides equal stability to both arrangements (with narrow and normal primary pivots) 
has been also determined. An analytical inequality has been obtained, which allowed us to develop a decision rule to 
answer the question whether the stability of a system with narrow primary pivots is the same as that of a normal system. 
It has been shown that for the same geometric dimensions of both systems (with narrow and normal primary pivots) 
and the weight of the load, the fulfillment of the decisive inequality (rule) depends on the mass of the spreader. It has 
been shown that the stability of the system with wide position of the primary pivots is the same as for a normal system. 
Nevertheless, since the longer spreader is usually heavier than the normal one then the arrangement with wide primary 
pivots will be more stable than the normal arrangement.

Keywords  Stability · Cargo (load) suspension arrangement · Normal, narrow and wide placement of the primary pivots · 
Stability triangle

Abbreviations
ST	� Stability triangle
GCL, G	� Gravity center of the load
R	� Resultant center of gravity [the sum of forces p 

and Pc]
S	� Point of suspension of the arrangement
T	� Apex of the stability triangle (ST)
SA, SB	� Primary slings
AC, BD	� Secondary slings
AB	� Spreader
CD	� Base
SZ	� Suspension line (a vertical line through point S)
φ	� Normal primary suspension angle (angle 

between a primary sling and perpendicular to 
the spreader AB) (deg)

v	� Height of the primary chain (module) of the 
suspension arrangement (m)

l	� Half of length of the spreader (m)
r	� Length of a secondary sling (m)
y	� Horizontal offset (transversal coordinate) of the 

GCL from suspension line SZ (or point O) (m)
z	� Vertical coordinate of the GCL (above base CD) 

(m)
p	� Weight (mass) of spreader AB (N)
Pc	� Weight (mass) of a cargo unit (N)
α	� Tilting angle of the primary chain (spreader AB) 

(deg)
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β	� Slewing angle of the secondary chain (second-
ary slings) from vertical line SZ (deg)

zm	� Height of the ST (maximum allowable vertical 
distance of the GCL from base CD) (m)

Subscripts
m	� Arrangement is in the critical position of stable 

equilibrium [when GCL is placed at the left (or 
right) side of the ST]

min	� Minimum distance or angle between primary 
pivots at which the arrangement is as stable as 
normal one

Superscripts
nr	� Arrangement with narrow placement of the 

primary pivots
w	� Arrangement with wide placement of the pri-

mary pivots

1  Introduction

In recent years, more and more often, with the help of 
ships and vessels, they carry out the transportation of 
large-sized and heavy cargoes (loads), which, in the pro-
cess of loading/unloading on board ships, require rather 
complex systems for suspending the cargo to the hook 
of the lifting device. Such a two-chain suspension system 
(arrangement) is shown in the Fig. 1 as an example. The 
arrangement in which the primary and secondary slings 
are fixed to the spreader at the same points (Figs. 1, 2) 
might be called as an arrangement with normal place-
ment of the primary pivots or, simply, normal two-chain 
suspension arrangement. From the standpoint of the clas-
sical theory of stability of complex mechanical systems 
(Lagrange stability concept), such a two-chain suspension 

arrangements, due to the presence of several (two) 
degrees of freedom, are less stable than, for example, tra-
ditional (single-chain) load suspension systems.

The issues of static and tip-over stability of the normal 
two-chain suspension arrangements of loads (Figs. 1, 2) 
have been explored by Kaps [1–3] and later, in detail, by 
Nikitin [4, 5]. Specifically, it has been shown that, such a 
spatial system (Fig. 1) is capable (for various reasons) of 
swinging (oscillating) relative to the suspension point 
in any direction (vertical plane). Nevertheless, as a first 
approximation, it can be assumed that the oscillations 
(rocking) of such a system mainly occur in two vertical 
and mutually perpendicular planes. Moreover, the line of 
intersection of the planes passes through the suspension 
point S (Fig. 2). Under these assumptions, the analysis of 
vibrations and stability of the spatial suspension system 
can be reduced to the study of its movement in these two 
planes, for which the real system can be replaced by two 
flat ones (as shown in Fig. 2).

In article [4], by the use of the Lagrange–Dirichlet sta-
bility concept [6–10], it has been proved that the stable 
equilibrium (or simply, static stability) of such flat two-
chain suspension arrangement (system) can be ensured 
only on the condition that the gravity center of the load—
GCL (point G in Fig. 2) is located inside a certain allowable 
area. In fact, this area is an isosceles triangle CDT (Fig. 2) 
called as stability triangle with the base CD and the height 
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Fig. 1   Typical two-chain suspension arrangement of the load with 
normal placement of the primary pivots
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Fig. 2   Flat model of the two-chain cargo suspension arrangement 
with normal placement of the primary pivots
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of which (zm) is not less than the height of the primary 
suspension chain (distance v in Fig. 2).

Note 1 In fact, the allowable area for the GCL position is 
not limited to the base CD, but extends below. In fact, this 
is not a triangle, but a sector with the center T bounded by 
the sides of the ST (Fig. 2). Since from a practical point of 
view the position of the GCL below the base CD is barely 
impossible, it is logical to limit the allowed area to the tri-
angle CDT.

Note 2 Sometimes the load is not placed on the CD 
platform, but is attached to the secondary slings (Fig. 1). 
In this case, the segment connecting the CD attachment 
points plays the role of a platform.

During lifting operations, it is quite often when the piv-
ots of the primary slings are placed narrower (Fig. 3) or 
wider (Fig. 4) than the pivots of the secondary slings. This 
occurs for various reasons, including due to a misunder-
standing that this can reduce (worsen) the stability of the 
suspension system. Indeed, if the primary slings are fixed 
on the spreader AB close enough [in the limiting case—
at the same point (Fig. 5)], then it is intuitively clear that 
this kind of suspension system will be very sensitive to the 
slightest transverse offset of the GCL, then is practically 
unstable. Nevertheless, there are a number of guidelines 
and articles [1, 2] following which it can be assumed that 
the distance (in particular, small distances) between the 
primary pivots does not have any effect on the stability of 
the suspension system as a whole. Therefore, the main pur-
pose of this article is to fully clarify whether the distance 

between the primary pivots affects the stability of a two-
chain suspension arrangement of a load or not.

The manuscript includes several subsections: Sect. 1: 
Introduction (summarizes the relevance and main purpose 
of the article); Sect. 2: Methodology (outlines the basic 
techniques and methods to achieve the goal); Results 
(formulas are obtained for calculating the dimensions of 
the stability triangle for a narrow and wide position of the 
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Fig. 3   Suspension arrangement with narrow placement of the pri-
mary pivots
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Fig. 4   Suspension arrangement with wide placement of the pri-
mary pivots
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Fig. 5   Limiting case: original position of the suspension system 
with narrow primary pivots (the primary pivots coincide each other 
and the stability triangle degenerates to the line segment OT)
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primary pivots, conditions are determined under which 
the narrow position of the primary pivots does not affect 
the stability of the system in comparison with the normal 
system); Sect. 3: Discussion (a comparative analysis of sus-
pension systems with a narrow, normal and wide position 
of the primary pivots is carried out, the limiting case (when 
the distance between the primary pivots is zero) is also 
analyzed, a numerical example is considered as a dem-
onstration); Sect. 4: Conclusion (general conclusions and 
proposals for further research are formulated).

2 � Methodology

The study of the influence of the distance between the 
primary pivots on the stability of two-chain suspension 
systems will be carried out on the basis of the approach 
and results presented in [4, 5]. In our opinion, this is quite 
logical, since the stability of a system with a narrow or 
wide position of the primary pivots fits well into the gen-
eral concept of stability of mechanical systems used in 
manuscripts [4, 5] and in this sense does not represent 
anything fundamentally new.

In work [4] and in this same, a study of the stabil-
ity of the suspension was carried out under the next 
assumptions:

1.	 a system with a load was considered as a flat mechani-
cal system of bodies with ideal restraints, having two 
degrees of freedom relative to a fixed suspension point 
S;

2.	 all flexible slings of the system (primary and second-
ary) are weightless and inelastic;

3.	 the load is securely fixed on the CD platform (base), 
therefore, both the load and the platform are consid-
ered in the analysis as one body, the mass of which is 
equal to their total mass (weight).

Under the above assumptions, using the Lagrange–Dir-
ichlet theorem, the equations have been obtained that 
determine the necessary and sufficient conditions for a 
stable equilibrium of the system. These equations connect 
the main mass-dimensional characteristics of the suspen-
sion system 

(
v,

p

Pc

)
 , the coordinates of the GCL (x, z) with 

the tilting (slewing) angles of the primary ( ∝ ) and second-
ary ( � ) suspension chains. These equations look as 
follows:

(1)
tg ∝=

y

v
(

p

Pc
+ 1

)
− z

Equations (1, 2) show that under conditions of stable 
equilibrium of the system [and regardless of the tilting 
angle of the primary suspension (SAB)—∝ ], the slewing 
angle of the secondary suspension (�) is always zero, that 
is, the secondary slings will be vertical. In addition, these 
equations do not include such a quantity as the length of 
the secondary slings (r). This means that their length has 
no effect on the stability of the two-chain suspension sys-
tem. Thus, the necessary and sufficient conditions for the 
stable equilibrium of the system can be described by only 
one equation (1). Following the methodology outlined in 
[4], to assess the stability of the suspension system (no 
matter what the distance between the primary slings), it 
is necessary to determine the so-called stability triangle 
(ST): the permissible area of the position of the GCL rela-
tive to the suspension system. For this, it is necessary to 
put the latter in the so-called critical equilibrium position 
(conditions for the maximum deviation of the primary 
suspension chain ( ∝m) relative to the suspension point S). 
Specifically, for the normal suspension system the height 
of the ST (zm) as well as maximum tilting angle of the pri-
mary chain ( ∝m) can be calculated under condition that: 
y = l and z = 0 as follows [4]:

In the comparative analysis of the stability of various 
suspension systems, it is assumed to use a fairly simple and 
obvious rule: the larger the area of the stability triangle, 
the higher it is, the better the stability of the suspension 
system.

3 � Results

First, let us to explore the stability of a two-chain suspen-
sion arrangement with narrow placement of the primary 
pivots that shown in Fig. 3. Following the above methodol-
ogy, put the suspension system in a critical position of sta-
ble equilibrium. This is possible if the GCL is placed at point 
G ( y = ynr

m
;z = 0) as shown in Fig. 6. The maximum tilting 

angle of the primary chain and base CD − ∝nr
m

 (as long as 
� = 0) cannot be more than the primary slings angle �nr. 
(Otherwise, the integrity of linkages and constraints of the 
arrangement as a mechanical system will be destroyed, 

(2)� = 0

(3)zm =

(
p

Pc
+ 1

)
v

(4)∝m= arctg

⎡
⎢⎢⎢⎣

l�
p

Pc
+ 1

�
v

⎤
⎥⎥⎥⎦
= arctg

⎡
⎢⎢⎢⎣

ctg��
p

Pc
+ 1

�
⎤⎥⎥⎥⎦
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and the equilibrium stability will be lost as well.) So, the 
next inequity must be valid:

 
Taking into account inequity (5), the maximum trans-

verse offset of the GCL ( ynr
m

 ) can be determined from Eq. 1 
(under condition that z = 0 and ∝= �nr ) as follows:

As long as (v × tg�nr = lnr)—is half the distance 
between primary pivots (Fig. 3), then Eq. (6) might be rep-
resented as follows:

If value of ynr
m

 calculated by (6 or 7) is less than the half 
of the base CD (l), i.e.:

(5)∝nr
m
≤ �nr

(6)ynr
m

= v

(
p

Pc
+ 1

)
tg�nr

(7)ynr
m

=
AnrBnr

2

(
p

Pc
+ 1

)
= lnr

(
p

Pc
+ 1

)

then, the maximum tilting angle:

In addition, as long as: 𝜑nr < 𝜑 , then angle ∝nr
m

 is also less 
than the maximum tilting angle ∝

m
 (calculated for the nor-

mal arrangement by Eq. 4).
For the arrangement with narrow primary pivots and 

provided that inequity (8) is valid (Fig.6), the base segment 
of the stability triangle (ST) is equaled to 2ynr

m
 , i.e. might be 

determined as follows:

and the height of this ST (Fig. 6):

Equation (11) is completely identical to Eq. (3) that deter-
mines the height of the ST for the normal arrangement.

If value of ynr
m

 calculated by (6 or 7) is equaled to the half 
of the base CD (the GCL is placed at point D—Fig.7), then 
the maximum tilting angle of the system with narrow pivots 
is the same as for the normal suspension system ( ∝nr

m
=∝m). 

Consequently it might be calculated by Eq. (4). In other 
words, when inequity (8) is not valid, then the stability of 
the suspension system with narrow pivots is precisely the 
same as for a normal one.

Second, let us to explore the stability of a two-chain sus-
pension arrangement with wide placement of the primary 
pivots that shown in Fig. 4. Again, following the accepted 
methodology, put the suspension system in a critical posi-
tion of stable equilibrium that shown in Fig. 8 (here, the GCL 
is placed at point C so that: y = l; z = 0). Such a position is 
really critical one with respect to stable equilibrium of the 
arrangement with wide primary pivots because any further 
offset of the GCL (from point C to the left) will cause the vio-
lation of linkages, constraints and integrity of the arrange-
ment as a mechanical system; therefore, the loss of balance 
and stability.

Providing that all mass and geometric parameters of the 
arrangements with wide and normal primary pivots (except 
for the spreader length) are the same, the height of the ST 
( zw

m
 ) and maximum tilting angle �w

m
 of the primary chain of 

the arrangement with wide primary pivots can be deter-
mined by Eqs. (3) and (4) as follows:

(8)ynr
m

= lnr
(

p

Pc
+ 1

)
< l

(9)∝nr
m
= �nr

(10)2ynr
m

= 2v

(
p

Pc
+ 1

)
= 2lnr

(
p

Pc
+ 1

)

(11)znr
m

= ynr
m
ctg�nr = v

(
p

Pc
+ 1

)
= l

(
p

Pc
+ 1

)
ctg�

(12)zw
m
= zm =

(
p

Pc
+ 1

)
v

Fig. 6.   Critical position of the stable equilibrium of the arrange-
ment with narrow placement of the primary pivots (inequity 8 is 
valid)
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The base segment of the ST will be exactly the same as 
for the normal suspension system hence it will be equaled 
to length of the base CD (2l).

4 � Discussion

Let us begin the discussion with an analysis of the stabil-
ity of systems with narrow primary pivots. Equations (10), 
(11) show that, if inequity (8) is valid, then the ST area of 
the arrangement is less than for the normal arrangement. 
It happens due to reduction in the length of the base 

(13)�w
m
=∝m= arctg

⎡
⎢⎢⎢⎣

l�
p

Pc
+ 1

�
v

⎤
⎥⎥⎥⎦
,

segment of the ST while the heights of both triangles are 
the same (Fig. 6).

From Eq. (10), it follows that the narrower the primary 
pivots are (the smaller the value of lnr ), then the smaller 
the base and the area of the ST and the narrower the sta-
bility triangle will be. Therefore, the stability of the sys-
tem will be worse. Moreover, in the limiting case, when 
the distance between the primary pivots is zero [they are 
attached to the same point of the spreader AB (Fig. 5)], 
the ST degenerates into a line segment of length zm, the 
area of which is zero. In this case, it becomes quite obvi-
ous that with the slightest transverse offset of the GCL, the 
suspension system (with “rather narrow” pivots) becomes 
unstable. This limiting case shows how important it is to 
evaluate not only the permissible height of the GCL (zm), 
as was done in [1–3], but also the entire area of the per-
missible position of the GCL, that is, the dimensions of the 
stability triangle.

Note Examples of practical application of a suspen-
sion system with very little stability (almost zero area of 
the stability triangle) can be the lifting of a copy of the 
Santa Maria ship (Fig. 1.4) or the lifting of a catamaran hull 
(Fig. 1.6) given in [2].
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Fig. 7.   Critical position of stable equilibrium of the arrangement 
with narrow (or normal) placement of the primary pivots providing 
that equity (8) is not valid
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Transforming inequity (8), it is possible to get the 
next:

The last expression shows that if the weight of the 
spreader AB is much less than the cargo weight [ p ≪ Pc 
and 

(
p

Pc
+ 1

)
≈ 1] , then inequities (14) and (8) as well are 

valid (due to l
lnr

> 1 ). That is, the stability of a system with 
narrow primary pivots, especially when the weight of 
spreader is much less than the weight of the load, is 
always worse than for a normal system.

On the other hand, the heavier the spreader AB, the 
more difficult it is to keep inequalities (8) and (14). In 
other words, as the weight of the spreader increases, 
then the stability of the system with narrow pivots more 
and more approaches the stability of the system with 
normal pivots. That is, the weight of the spreader plays 
a stabilizing role for the two-chain suspension system, 
regardless of the distance between the primary pivots.

As mentioned above, if the maximum transverse off-
set of the GCL (at which a system with narrow pivots 
can remain in stable equilibrium—Fig. 7) is equaled to 
the half-length of the base CD, then such a system has 
stability equal to that of a normal system.

Note Ratio l
lnr

 might be less than 
(

p

Pc
+ 1

)
 . This means 

that the GCL is located to the left of sling AC (to the left 
from point C of the base CD—Fig. 6) or to the right of 
sling BD ( ynr

m
> l ). In this case, the entire arrangement 

after its hanging will be definitely destroyed. Therefore, 
this case is not taken into account.

Thus, the decisive rule for determining whether the 
stability of a system with narrow pivots is the same as for 
a normal system is the observance of inequalities (8) or 
(14). It is noteworthy that for the same geometric dimen-
sions ( v, l, lnr ,�,�nr ) and the weight of the load (P), the 
fulfillment (or non-fulfillment) of inequality (8) depends 
on the mass (weight) of the spreader (p). The higher the 
mass of the spreader, the more likely it is that inequality 
(8) will not hold, and hence the stability of the suspen-
sion system will correspond to the normal system. And 
vice versa, with an insignificant weight of the spreader, 
inequality (8) will most likely be fulfilled, which means 
that the stability of the system will be less, since the ST 
will have a smaller base, and it must be calculated by 
formula (10).

As for the suspension system with wide primary piv-
ots, then Eqs. (12) and (13) show even though the dis-
tance between primary pivots (2lw) is longer than sec-
ondary pivots distance (2l), there is no any effect on the 
stability of the arrangement at all. Consequently, using 

(14)
lnr

l

(
p

Pc
+ 1

)
< 1 or

l

lnr
>

(
p

Pc
+ 1

)

the spreader that is longer than the distance between 
secondary slings makes no sense. Nevertheless, if the 
spreader AwBw is not only longer than AB, but also heav-
ier than the last one ( pw > p ), then the stability of the 
arrangement with wide primary pivots is higher than the 
stability of the normal arrangement. Really, in this case, 
the ST height zw

m
 (calculated by Eq. 12) is bigger than z

m
 

as long as:

Maximum tilting angle �w
m

 of the arrangement with 
wide primary pivots (calculated by Eq. 13) is smaller than 
for the normal arrangement due to inequity (15), too.

For greater clarity of the comparative analysis and 
demonstration of the practical application of the 
obtained methods for calculating the stability of systems 
with a narrow, normal and wide position of the primary 
pivots, consider a numerical example. The initial data 
on the mass-dimensional characteristics of the systems 
are presented in Table 1 (lines 1–7). It is necessary to 
determine:

1.	 the allowable area of the GCL placement (base side 
and height of the ST) and the maximum tilting angle 
∝m at which each of the systems will still hold the bal-
ance and stability;

2.	 the minimal primary slings angle �nr
min

 and the mini-
mal distance between primary slings ( 2lnr

min
 ) at which 

the stability of the arrangement with narrow primary 
pivots will be the same as for the normal arrangement;

3.	 to carry out a comparative analysis of the stability of 
the considered systems, while answering the question 
of whether it was justified with such initial data to use 
a system with narrow primary pivots.

Solution

1.	 For the system with narrow pivots:

Using Eq. (6), value of ynr
m

 is to be calculated as fol-
lows:

As long as: ynr
m

= 1.713m < 4m , then inequity (8) is 
valid. It means that the maximum tilting angle at 
which the suspension arrangement will still hold the 
balance and stability is: ∝nr

m
= �nr = 180.

The height of the ST is to be calculated by Eq. (11) 
as follows:

(15)

(
pw

Pc
+ 1

)
>

(
p

Pc
+ 1

)

ynr
m

= v

(
p

Pc
+ 1

)
tg�nr = 4.44

(
300

1600
+ 1

)
tg180 = 1.713m.
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and its base side: 2ynr
m

= 1.713 × 2 = 3.426m

Minimal primary slings angle �nr
min

 at which the sta-
bility of the arrangement will be the same as for the 
normal arrangement might be calculated by Eq. (6):

The minimal distance between primary slings 
( 2lnr

min
 ) at which the stability of the arrangement 

will be the same as for the normal one is to be cal-
culated by Eq. (14):
2lnr =

2l(
p

Pc
+1

) =
2×4(
30

160
+1

) = 6.74m.

2.	 For the systems with normal and wide pivots:

by the use of Eqs. (3) and (12), the height of the ST 
is to be calculated as follows:
zm = zw

m
=

(
p

Pc
+ 1

)
v =

(
300

1600
+ 1

)
4.44 = 5.27m.

The length of the ST base is the same as length of 
base AB, so it will be 2l = 2 × 4 = 8m.
Maximum tilting angle at which the systems will be 
still stable are to be calculated by Eqs. (4) or (13):

znr
m

= ynr
m
ctg�nr = 1.713ctg180 = 5.272m

�nr
min

=∝m= arctg

⎡⎢⎢⎢⎣
l

v
�

p

Pc
+ 1

�
⎤⎥⎥⎥⎦
= arctg

�
4

5.2725

�
= 37, 180.

All numerical results calculated above are represented 
in Table 1 (lines 8–12). From these numbers, it might be 
seen that the area of the ST for the arrangement with nar-
row primary pivots is more than twice less than for the 
normal system (base of the ST: 2ynr

m
= 3.426 m < 2l = 8 m ). 

The minimal distance between primary pivots at which the 
arrangement will have the same stability as the normal 
one is 6.74 m (instead of 2.89 m according to the example).

Thus, our numerical example shows, that stability of 
the systems with normal and wide primary pivots are the 
same, and it is almost twice better than the stability of the 
system with narrow primary pivots. So, with such initial 
data, the use of a system with narrow primary pivots is 
hardly justified.

5 � Conclusion

Thus, the study shows that the distance between the 
primary pivots of two-chain suspension systems can be 
important for its stability. Especially, this is critical when 
the primary pivots are located narrower than the second-
ary ones. Our study also shows how important it is when 
assessing the stability of two-chain suspension systems to 

∝m= arctg

⎡⎢⎢⎢⎣
l�

p

Pc
+ 1

�
v

⎤⎥⎥⎥⎦
= arctg

⎡⎢⎢⎢⎣
4�

300

1600
+ 1

�
4.44

⎤⎥⎥⎥⎦
= 37.20

Table 1   Initial numerical data and the main results of calculating the stability of suspension arrangements with a normal, narrow and wide 
position of the primary pivots

Value Term and unit of value Type of suspension 
arrangement

Normal Narrow Wide

1 Weight of load Pc, kN 1600 1600 1600
2 Wright of spreader p, kN 300 300 300
3 Half of length of spreader (distance between secondary slings or points A and B ) l, m 4 4 4
4 Height of the primary suspension v, m 4.44 4.44 4.44
5 Normal primary suspension angle �, deg 42 42 42
6 Narrow primary suspension angle �nr , deg – 18 –
7 Wide primary suspension angle �w , deg – – 64
8 Maximum tilting angle at which the arrangement is still stable ∝m,∝

nr
m
,∝w

m
, deg 37.2 18 37.2

9 Length of the ST base 2y, 2ynr
m
, 2yw

m
, m 8 3.43 8

10 Height of the ST zm, z
nr
m
, zw

m
, m 5.27 5.27 5.27

11 Minimal narrow primary suspension angle (at which the stability of the arrange-
ment is the same as for the normal one)

�nr
min

, deg – 37.2 –

12 The minimal distance between primary slings (at which the stability of the 
arrangement will be the same as for the normal

2lnr
min

 , m – 6.74 –
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calculate not only the maximum height of the safe posi-
tion of the GCL (zm), but also the entire area where it can 
be located (that is, the dimensions of the stability triangle).

The research carried out also demonstrates the impor-
tance of the height of the primary chain of suspension (v) 
and the mass of the spreader AB (p) for ensuring the stabil-
ity of the suspension system as a whole (regardless of what 
is the distance between the primary pivots). The higher 
primary chain of suspension (v) and the greater the mass 
of the spreader (more precisely, the ratio p

Pc
 ), the greater 

the height and the area of the ST, which means the higher 
the stability of the system as a whole.

Further research in the field of studying the stability of 
two-chain suspension systems should be aimed at taking 
into account such factors as possible sudden offsets of the 
suspension point S (or its periodic oscillations), which is 
associated with the inclination (rolling) of the vessel, since 
in this and previous works the suspension point of the sys-
tem was taken to be fixed.

In addition, since in this work suspension systems were 
studied only with parallel secondary slings, then in the 
future (if necessary) it is possible to continue studies of 
stability, taking into account the fact that the secondary 
slings may not initially be parallel.

Finally, in the future, not only static, but also dynamic 
stability of complex (multi-chain) load suspension systems 
should be considered and evaluated.
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