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Abstract
This study presents the exploration of unsteady magnetohydrodynamic (MHD) free convection flow of tangent hyper-
bolic nano-fluid flow on a moving cylinder with Brownian motion and thermophoresis effects. The current flow analysis 
yields nonlinear partial differential equations. The governing equations such as continuity, momentum, temperature 
and concentration are converted into dimensionless form and then solved numerically by adopting explicit finite dif-
ference method where Compaq Visual FORTRAN 6.6.a was also used for simulating the fluid flow system. The numerical 
outcomes are showed graphically to understand the result clearly. For the accurateness of the numerical technique a 
stability and convergence analysis was carried out. The aim was to illustrate the physical impacts of chemical reaction 
parameter, thermal radiation and viscous dissipation on various fluid fields along with the advanced visualization through 
streamlines. By comparing with the previous studies it was found that this fluid influenced the mass and heat properties 
more significantly rather than the other fluid. Additionally, this model predicts the shear thinning attitude significantly 
and describes the blood flow accurately. It has also applications in biological sciences, bio-engineering maneuver, and 
petroleum industries. Eventually the obtained outcomes were validated with previously published articles.
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List of symbols
B0  External magnetic field (Wb  m−2)
CP  Specific heat at constant pressure (J  kg−1  K−1)
C  Concentration component
Cw  Concentration of the cylinder (mol.)
C∞  Concentration away from the cylinder
Cf  Skin friction (–)
DB  Brownian diffusion coefficient
DT  Thermophoresis diffusion coefficient
g  Gravitational acceleration (m  s−2)
Gr  Thermal Grashof number (–)
Gm  Mass Grashof number (–)

Kr  Chemical reaction parameter (–)
Le  Lewis number (–)
M  Magnetic parameter (–)
n  Power low index (–)
Nb  Brownian parameter (–)
Nt  Thermophoresis parameter (–)
Nu  Nusselt number (–)
Pr  Prandlt number (–)
qr  Radiative heat flux (kg  m−2)
Ra  Radiation parameter (–)
Sh  Sherwood number (–)
T  Temperature (K)
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T∞  Temperature away from the cylinder
Tw  Temperature of the fluid
t̄  Dimensional time (s)
t  Non-dimensional time (–)
u0  Uniform velocity (m  s−1)
u, v  Dimensional velocity of the fluid in x and r 

direction
U  Non-dimensional velocity (–)
We  Weissenberg number
X, R  Non-dimensional coordinate axis along and 

normal to the cylinder
x, r  Coordinate axis along and normal to the cylinder
�  Non-dimensional temperature (–)
�  Dimensionless concentration (–)

Greek symbols
�  Kinematic viscosity  (m2  s−1)
�  Thermal conductivity (W  m−1  K−1)
�T  Thermal expansion coefficient (1/K)
�C  Concentration expansion coefficient
�s  Stefan-Boltzmann constant (W m  K−4)
ρ  Density (kg  m−3)
�   Rate time constant (s)

Abbreviations
EFDM  Explicit finite difference method
MHD  Magnetohydrodynamic

1 Introduction

Over the past three decades due to multi-purpose uses in 
modern high-tech industries, nanofluid flow research has 
received considerable attention. Many researchers have 
studied nanofluids both experimentally and theoretically. 
They conclude that nanofluids upsurge the updraft con-
ductivity of convection fluid. They have restricted updraft 
conductivity properties. Because of its enormous solicita-
tions in different production processes, for example poly-
mers, textiles, nourishment industries, etc., the boundary 
layer stream of non-Newtonian liquids affected by the 
unstable cylinder has been tested for many years. Capable 
of cutting thinning phenomena, tangent fluid is pseudo-
plastic exemplary of four constants. When the pour drops 
with an accumulative rate of shear stress, the hyperbolic 
fluid trials conflict of liquid. The most common hyperbolic 
liquors are nail polish, tomato sauce, blood, varnish and 
whipped cream etc.

The influence of heat generation/absorption on tan-
gent hyperbolic nano-fluid near the stagnation point over 
a stretching cylinder has been studied by Salahuddin et al. 
[1]. The governing partial differential equations are trans-
formed into ordinary differential equation and the ordi-
nary differential equation has been solved numerically by 

using shooting method. Ibrahim [2] presented the effects 
of thermal radiation on magneto-hydrodynamic flow of 
tangent hyperbolic fluid with nanoparticle past an enlarg-
ing sheet with second order slip and convective boundary 
condition. Similarity transformation has been considered 
to solve the governing non-linear boundary-value problem 
into coupled higher order non-linear ordinary differential 
equations. Then the equations are solved via matlab bvp4c 
function. Khan et al. [3], they analyzed two dimensional 
flow of MHD hyperbolic tangent fluid with nanoparticles 
towards a stretching surface. The nonlinear set of partial 
differential equations has been reduced into ordinary dif-
ferential equations by using similarity transformation and 
solved numerically by using shooting method and addi-
tionally local skin friction, local Nusselt number and local 
Sherwood number has been computed and analyzed in 
their research work. Hayat et al. [4], calculated combined 
effects of Soret (thermal diffusion) and Dufour (diffusion-
thermo) in MHD stagnation point flow of tangent hyper-
bolic fluid by a stretching sheet. Similarity transformation is 
used to convert the nonlinear partial differential equations 
into ordinary differential equations. The series solutions of 
boundary layer equations along with boundary conditions 
are studied in their research work. Hayat et al. [5], premedi-
tated the inspiration of influence of applied magnetic field 
in peristalsis of hyperbolic tangent hyperbolic nanofluid. 
The relevant equations are simplified by applying long 
wave length assumption. The graphical and physical clari-
fication for velocity, temperature, concentration and heat 
transfer rate are examined through ND Solve command 
and MATHEMATICA. Khan et al. [6] studied the effects of 
chemical reactive species and solar radiation on Carreau 
nanofluid induced by a stretching sheet with variable thick-
ness. Runge–Kutta Fehlberg method for numerical solu-
tions of the dimensionless governing equations has been 
used in their experiment. Hayat et al. [7] explored magnetic 
nanoparticles in stretched flow of tangent hyperbolic nano-
fluid. In their research work, nonlinear nanofluid model due 
to Brownian motion and thermophoresis mechanisms has 
been used and a mathematical formulation is modeled 
employing boundary layer concept. Kumar et al. [8] studied 
an unsteady squeezed flow of a tangent hyperbolic fluid 
over a sensor surface in the presence of variable thermal 
conductivity. The partial non-linear differential equation 
has been converted into ordinary differential equations 
by using similarity transformation. The transformed dif-
ferential equations are solved numerically by using RKF45 
technique. Malik et al. [9] obtained a numerical solution 
of MHD flow of tangent hyperbolic fluid model over a 
stretching cylinder. Magneto hydrodynamics is a phenom-
enon in which the conducting fluid particles interact with 
electromagnetic fields. In their research work the govern-
ing boundary layer equation of tangent hyperbolic fluid 



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1256 | https://doi.org/10.1007/s42452-020-3048-x Research Article

is transformed into ordinary differential equation using 
similarity transformation and then it was solved numeri-
cally by applying the implicit finite difference method 
with Keller box scheme. The impact of thermal radiation 
on boundary layer flow of dusty hyperbolic tangent fluid 
over a stretching sheet in the presence of magnetic field 
is examined by Kumar et al. [10]. Similarity transformation 
is used to convert the partial differential equations into 
a nonlinear ordinary differential equation and solved by 
applying Runge–Kutta-Fehlberg forth-fifth order (RKF45 
method) with the help of shooting technique. Hussain et al. 
[11], analyzed thermos-physical aspects of MHD tangent 
hyperbolic fluid flow over a non-linear stretching sheet 
with viscous dissipation and convective boundary condi-
tions. Similarity variables are used to convert PDE into ODE 
and solved with homotopic analysis. Pseudo plasticity is 
the basic reason of divergence from Newtonian fluid to 
non-Newtonian fluid, because non-Newtonian fluids have 
variable viscosity due to applied force.

Nanofluid is a specific class of fluids suspended by the 
1–1000 nm size particles which have highly enhanced 
thermal properties. Heat and mass transfer of Williamson 
nano-fluid flow yield by an inclined Lorentz force over a 
nonlinear stretching sheet was discussed by Khan et al. 
[12]. Similarity transformation is used to reduce the partial 
form of the equation into ordinary form and solved numeri-
cally by using shooting method. Rahman et al. [13] intro-
duced hydro-magnetic slip flow of water based nanofluids 
past a wedge with convective surface in the presence of 
heat generation (or) absorption. Behavior of Thermal radia-
tion effects on Williamson fluid flow due to an expanding/
contracting cylinder with nano-materials is explored by 
Hashim et al. [14]. Transpiration effect on stagnation-point 
flow of a Carreau nanofluid in the presence of thermopho-
resis and Brownian motion is examined by Sulochana et al. 
[15]. Mamatha et al. [16], analyzed heat and mass flux con-
ditions on magneto hydrodynamic unsteady Eyring-Powel 
dusty nanofluid over a sheet. Runge–Kuttai system is used 
to get mathematical explanation in their investigation. 
Radiation and chemical reaction effects on MHD Casson 
fluid flow past an oscillating vertical plate embedded in 
porous medium is introduced by Hari and Harshad [17]. 
Laplace transform is performed to solve administering 
equation. Both isothermal and ramped wall temperature 
were taken into account in their experiment. Rabbi et al. 
[18] studied hydro magnetic Casson nanofluid flow through 
a stretching plane surface. Their analysis depicted the heat 
and mass transport phenomena for both stretching and 
shrinking cases. Explicit finite scheme together with stabil-
ity and convergence analysis were also discussed in their 
investigation. However, in recent time lots of researchers 
have carried out their work by considering the above dis-
cussed explicit technique. Various types of Newtonian and 

non-Newtonian fluids had been investigated by consider-
ing different physical aspects. For details, one can refer the 
following articles [19, 20]. Combined techniques of nano-
particles and wavy duct have been studied by Ma et al. [21]. 
It is been seen that on a wavy surface entropy generation 
acts as a reducing function of nanoparticle concentration. 
Hsiao [22] studied energy conversion problem for electric 
hydro magnetic heat and mass mixed convection in an 
incompressible second grade Maxwell fluid with radiation 
and viscous dissipation effects. Similarity transformation 
and finite difference method have been imposed to solve 
the governing equations numerically. A coupled radiation 
heating was introduced in this work. Second law man-
agement for iron oxide nanofluid inside a porous plate is 
contemplated by Sheikholeslami [23]. Due to the reduc-
tion of magnetic force and permeability exergy drop and 
Bejan number got detract. Heat transmission augmenta-
tion through nanofluid is investigated by Qi et al. [24]. The 
influence of rotated twisting tape has been considered. In a 
circular tube the exergy efficiency was found in a significant 
way with this twisted tape. However, Zhao et al. [25] did an 
experimental work with the exergy efficiency of cylindri-
cal grooves. Additionally, entropy generation and thermal 
efficiency were also considered.

Getting motivated by the work of Salahuddin et al. [1] and 
Hayat et al. [7], the present analysis explored the impression 
of unsteady magneto hydrodynamic (MHD) free convection 
flow of tangent hyperbolic nano-fluid impinging on a mov-
ing cylinder with Brownian motion and thermophoresis 
effects. The mentioned authors depicted their work on usual 
flow filed by considering the impact of three or four param-
eters. The physical impacts of chemical reaction parameter, 
thermal radiation and viscous dissipation were unexplored 
by them, which is explored in this paper. However, in addi-
tion the advanced visualisation of the fluid flow has also 
been depicted newly in this paper through streamlines. The 
novel aspect of this work is to make a comparative study 
between present and previous study and observe that the 
fluid influence in the thermal and mass properties are more 
significant in the present study. However, one of the major 
cause is the mentioned fluid has extensive application in 
metallurgy, penetrating processes, biological sciences, bio-
engineering maneuver, geophysics, chemical and petroleum 
industries. Additionally, the tangent hyperbolic fluid model 
is one of the important fluid model in the group of non-New-
tonian fluid models. From laboratory experiments it is found 
that this model predicts shear thinning phenomenon very 
precisely. Additionally, this model describes the blood flow 
very accurately. In this work, firstly, a mathematical model 
has been established by considering some physical aspects. 
Then in the next section the dimensionless form of the fun-
damental equations are solved by imposing explicit scheme 
followed by the stability and convergence analysis. Further, 
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a result and discussion section has been presented precisely 
with graphical illustration and eventually a concluding sec-
tion has been depicted briefly. For grid independency test 
an appendix section has also been given lastly.

2  Mathematical model

In this investigation, a tangent hyperbolic unstable two-
dimensional progression of incompressible nanofluid flow 
over an extensible cylinder has been illustrated. Here, stream 
is thought to be located at area r > 0 . Cylinder is placed 
at r = R , here; r is harmonizing normal to cylinder. Flow is 
produced by activity of two fold equivalent and contrast-
ing strength laterally x axis with velocity u and v is normal 
to the flow in r direction. An identical magnetized field Bo 
is executed along r axis and cylinder being enlarged along 
x axis with velocity. T∞ and C∞ are considered surrounding 
temperature and surrounding concentration correspond-
ingly. It is seen from the experiment that no particle motion 
is present at surface and influence of Brownian motion and 
thermophoresis are considered in the energy and concen-
tration principal equations. The wall temperature and wall 
concentration are controlled by Tw and Cw respectively (See 
Fig. 1).

The heat Radiative flux is assumed as:

Here, k∗ and �∗ are Rossseland’s factor and Stefan-
Boltzmann constant respectively where expansion of 
T 4 about T0 can be described by utilizing Taylor sequence 
as,

(1)qr =
4�∗

3k∗
�T 4

�r

(2)T 4 ≅ 4T 3
0
T − 3T 4

0

Constitutive equation of hyperbolic fluid is seen through 
Eq. (3)

In the above equation n represents power law index, � rep-
resents stress tensor, �∞ represents viscosity of immeasur-
able shear rate, �0 is rate with zero viscosity, �  Williamson 
factor and symbol ̄̇𝛾 can be defined in the below form

It isn’t thinkable to deliberate the matter when immeas-
urable shear level viscidness �∞ = 0 for the Eq. (4) and 
𝛤 ̄̇𝛾 < 1 . Then Eq. (4) can be written as

Now it is time to discuss our main mathematical model i.e. 
governing equations which is formed by taking continuity, 
momentum, energy and concentration equations. These 
four equations with boundary layer approximation are 
given below (Salahuddin et al. [1]; Hayat et al. [7]):

where u, v represents velocity in x and r direction indi-
vidually, T  be fluid temperature, C be fluid concentration 
and Gr, Gm, �,Cp , �T , �C �,n denotes thermal Grashof num-
ber, modified Grashof number, fluid density, specific heat 
capacity, volumetric expansion for temperature, volumet-
ric expansion for concentration, kinematic viscosity and 
power law index respectively. � denotes heat source when 
𝜆 > 0 and heat sink when 𝜆 < 0,DT  be thermophoresis 

(3)𝜏 = [𝜇0 + (𝜇0 + 𝜇∞) tanh(𝛤 ̄̇𝛾)n] ̄̇𝛾 (Akbar et al. 2013)
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Fig. 1  Physical model and co-ordinate system (Salahuddin et al. [1]; 
Malik et al. [9])
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diffusion coefficient, �  be Williamson factor, DB be Brown-
ian diffusion coefficient.

Then associated frontier conditions are

The non-dimensional quantities are considered as,

By applying Eq. (10), the governing equation i.e. continuity, 
momentum, energy and concentration eqs. are attained as

The boundary condition becomes

where the acquired physical factors are, Weissenberg num-
ber, We =

√
2n�u0

r0
 , Magnetic factor, M =

�B2
0
r2
0

��
 , thermal Gra-

shof number,Gr =
g�T r

2
0
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u0�
 , modified Grashof number, 
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g�C r

2
0
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u0�
 , Prandtl number, Pr =

�cp�

K
 , radiationi fac-
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KeK

4�sT
3
∞
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�
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 , 

Brownian factor, Nb =
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 ,  L e w i s  n u m b e r ,  Le =

�

DB

 , 

Ke = mean absorption coefficient , chemical reaction fac-
tor, Kr =

Kcr2
0

�
.

(9)

t ≤ 0 ∶ u = 0, v = 0, T = T∞,C = C∞ for all x ≥ 0 and r ≥ 0

t ≥ 0 ∶ u = u0, v = 0, T = Tw ,C = Cw at r=r0

u = 0, v = 0, T = T∞,C = C∞ at x = 0 and r ≥ r0

u → 0, T → T∞,C → C∞ as r → ∞
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(15)

t ≤ 0 ∶ U = 0, V = 0, 𝜃 = 0,𝜙 = 0 everywhere

t > 0 ∶ U = 1, V = 0, 𝜃 = 1,𝜙 = 1 at R= 1

U = 0, V = 0, 𝜃 = 0,𝜙 = 0 at X = 0 and R ≥ 1

U → 0, V → 0, 𝜃 → 0,𝜙 → 0 as R → ∞

The physical non-dimensional quantities such that 
specific skin frictions, Nusselt and Sherwood numbers are 
depicted as,

The stream function �  satisfies the continuity equation 
and connected with dimensionless velocityi components 

in standard form as U =
��

�Y
, V = −

��

�X
.

3  Numerical technique

Here, the non-dimensional coupled differential Eqs. (11) 
to (15) are elucidated numerically by utilizing explicit 
finite difference technique. For finite difference analysis 
it is divided the tangent hyperbolic fluid flow into grid 
spaces which is analogous to X and R is perpendicular to 
cylinder. In this investigation, it is taken that the altitude 
of the cylinder Xmax = 20.0 i.e. X fluctuates from 0 to 20 
and Rmax = 50.0 , as R → ∞ . Along the X and R coordi-
nates, subscripts i and j indicate grid points respectively. 
The geometrical configuration of finite difference grid 
spacing has been showed in the Fig. 2. Let U′, V ′, �′ and �′ 
represents the value of U, V , � and � at termination of 
time period respectively. Then by explicit finite difference 
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estimation, it is obtained proper form of continuity, 
momentum, energy and concentration equations as

(19)
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Fig. 2  Finite difference grid space (Rabbi et al. [20])

The primary boundary condition with finite difference 
scheme as

Here it has been considered M = 100 and N = 200 in X and 
R directions respectively. It is assumed that ΔX and ΔR 
are constant sizes along X and R directions respec-
tively and taken as follows ΔX = 0.202(0 ≤ X ≤ 20) 
and ΔR = 0.251(0 ≤ R ≤ 50) with the smaller time step 
Δt = 0.001.

4  Stability and convergence analysis

Due to the implementation of explicit finite differ-
ence technique, a stability and convergence study is 
extremely needed to fulfill our investigation.

The continuity equation i.e. Eq. (19) is neglected 
because Δt does not appear in it. The common relations 
of the Fourier extension for U, � and � at time t = 0 are all 
ei�Xei�Y  separately from a constant where i =

√
−1 . At a 

time t = � , these terms become;

(22)

��(i, j) − �(i, j)

Δt
+ U(i, j)

�(i, j) − �(i − 1, j)

ΔX

+ V (i, j)
�(i, j + 1) − �(i, j)

ΔR

=
1

Le

[
�(i, j + 1) − 2�(i, j) + �(i, j − 1)

(ΔR)2
+

1

1 + (j − 1)ΔR

�(i, j + 1) − �(i, j)

ΔR

]

+
(
Nt

Nb

)( �(i, j + 1) − 2�(i, j) + �(i, j − 1)

(ΔR)2
+

�(i, j + 1) − �(i, j)

ΔR

)
− Kr�(i, j)

(23)

when, t ≤ 0 then, U0
j
= 0, T 0

j
= 0, C0

j
= 0, everywhere

when, t > 0 then U0
j
= 1, T 0

j
= 1, C0

j
= 1, for all R = 1

Un
j
= 0, Tn

j
= 0, C0

j
= 0 as R → ∞
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When the time phase changes these expressions become

Presently substituting the Eqs. (24) and (25) into the 
momentum, energy and concentration equation, with 
respect to the coefficient U and V as constant, the momen-
tum, energy and concentration equations are gained as;

where,

(24)

U ∶ �(�)ei�Xei�R

� ∶ �(�)ei�Xei�R

� ∶ �(�)ei�Xei�R

(25)

U ∶ � �(�)ei�Xei�R

� ∶ ��(�)ei�Xei�R

� ∶ ��(�)ei�Xei�R

(� � − �)ei�xei�R

Δ�
+ Ui

(1 − e−i�ΔX )ei�xei�R

ΔX
+ V

�(ei�R − 1)ei�xei�R

ΔR
=

+(1 − n)

{
2�(cos �ΔR − 1)ei�xei�R

(ΔR)2
+

1

R

�(ei�R − 1)ei�xei�R

ΔR

}

+Wei

{
�(ei�R − 1)ei�xei�R

ΔR
+

1

2R

�(ei�R − 1)ei�xei�R

ΔR

}
+ Gr�i + Gm�i +M� i

� � = �[1 − UΔ�
(1 − e−i�ΔX )ei�xei�R

ΔX
− VΔ�

(ei�R − 1)ei�xei�R

ΔR

+ (1 − n)Δ�

{
2(cos �ΔR − 1)ei�xei�R

(ΔR)2
+

1

R

(ei�R − 1)ei�xei�R

ΔR

}

WeΔ�

{
(ei�R − 1)ei�xei�R

ΔR

2(cos �ΔR − 1)ei�xei�R

(ΔR)2
+

1

2R

(ei�R − 1)ei�xei�R

ΔR

}

−MiΔ�] + Gr�Δ� + Gm�Δ�

(26)⇒ � � = A1� + A2� + A3�

where,

�� = �[1 − UΔ�
(1 − e−i�ΔX )

ΔX
− VΔ�

(ei�ΔR − 1)

ΔR

+
1

P
r

(1 +
4

3R
a

)

{
2(cos �ΔR − 1)

(ΔR)2
+

1

R

(ei�ΔR − 1)

ΔR

}

+ NbΔ�
�(ei�ΔR − 1)

ΔR
i
�(ei�ΔR − 1)

ΔR

+ NtΔ��i

{
�(ei�ΔR − 1)

ΔR

}2

+ Q�Δ�

(27)�� = A4�

A4 = 1 − UΔ�
(1 − e−i�ΔX )

ΔX
− VΔ�

(ei�ΔR − 1)

ΔR
+

1

Pr

(
1 +

4

3R
a

)

Δ�

{
(2 cos �ΔR − 1)

(ΔR)2
+

1

R

(ei�ΔR − 1)

ΔR

}
+ NbΔ��

(ei�ΔR − 1)2

(ΔR)2

+ Nt�Δ�

(
ei�ΔR − 1

ΔR

)2

�� =�[1 − UΔ�
(1 − e−i�ΔX )

ΔX
− VΔ�

(ei�ΔR − 1)

ΔR

+
1

Le

{
2(cos �ΔR − 1)

(ΔR)2
+

1

R

(ei�ΔR − 1)

ΔR

}

Δ� − KrΔ�] +
(
Nt

Nb

){
2(cos �ΔR − 1)

(ΔR)2
+

(ei�ΔR − 1)

ΔR

}
�

A1 = 1 − UΔ�
(1 − e−i�ΔX )ei�xei�R

ΔX
− VΔ�

(ei�R − 1)ei�xei�R

ΔR

+ (1 − n)Δ�

{
2(cos �ΔR − 1)ei�xei�R

(ΔR)2
+

1

R

(ei�R − 1)ei�xei�R

ΔR

}

WeΔ�

{
(ei�R − 1)ei�xei�R

ΔR

2(cos �ΔR − 1)ei�xei�R

(ΔR)2
+

1

2R

(ei�R − 1)ei�xei�R

ΔR

}
−MΔ�

(28)�� = A5� + A6�A2 = GrΔ� , A3 = GmΔ�
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where,

Equations (26), (27), (28) can be presented as matrix form

where,

For finite difference study, the dimensionless interval Δ� 
is minor i.e. inclines to zero. Underneath this complaint, 
we can write iA2 → i0, iA3 → i0, iA5 → i0 and the value 
of T will be

The Eigen values are iA1 = i�1, iA4 = i�2, iA6 = i�3 . For 
stability criteria, the Eigen values do not exceed unity in 
modulus. Under this criterion the stability situations can 
be written as,

Now for convergence test, let

Then we obtain,

A5 =
(
Nt

Nb

){2(cos �ΔR − 1)

(ΔR)2
+

(ei�ΔR − 1)

ΔR

}

A6 = [1 − UΔ�
(1 − e−i�ΔX )

ΔX
− VΔ�

(ei�ΔR − 1)

ΔR
+

1

Le

{
2(cos �ΔR − 1)

(ΔR)2
+

1

R

(ei�ΔR − 1)

ΔR

}
Δ� − KrΔ�]

⎡
⎢⎢⎣

� �

��

��

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

A1 A2 A3

0 A4 0

0 A5 A6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�

�

�

⎤
⎥⎥⎦

i.e. �� = T�

�� =

⎡⎢⎢⎣

� �

��

��

⎤⎥⎥⎦
, T =

⎡⎢⎢⎣

A1 A2 A3

0 A4 0

0 A5 A6

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦

T =

⎡⎢⎢⎣

A1 0 0

0 A4 0

0 0 A6

⎤⎥⎥⎦

||A1
|| ≤ 1, ||A4

|| ≤ 1, ||A6
|| ≤ 1

a
1
=

Δ�

RΔR
, b

1
=

|U|Δ�
ΔX

, c
1
=

|−VΔ�|
ΔR

,

d
1
= Δ� , e

1
=

2Δ�

(ΔR)2
, f

1
=

Δ�

ΔR

A1 = 1 − b1(1 − e
−i�ΔX ) − c1(e

i�ΔR − 1)

+ (1 − n){e1(cos �ΔR − 1) + a1(e
i�ΔR − 1)}

+We

{
f1(e

i�ΔR − 1) +
a1

2
(ei�ΔR − 1)

}
−Md1

The possible values are A1 = −1, A4 = −1, A5 = −1

Hence the stability conditions are,

With initial boundary conditions U = V = � = � = 0 and 
for Δ� = 0.001 , ΔX = 0.202 and ΔR = 0.251 then the model 
will be congregated at Prandtl number, Pr ≥ 0.342 and 
Lewis number, Le ≥ 0.163.

A4 = 1 − b1(1 − e
−i�ΔX ) − c1(e

i�ΔR − 1)

+
1

Pr

(
1 +

4

3Ra

)
{e1(cos �ΔR − 1) + a1(e

i�ΔR − 1)}

+ Nb
e1

2
(ei�ΔR − 1)2� + Nt

e1

2
(ei�ΔR − 1)2�

A5 = 1 − b1(1 − e
−i�ΔX ) − c1(e

i�ΔR − 1)

+
1

Le
({e1(cos �ΔR − 1) + a1(e

i�ΔR − 1)} − Krd1

A1 = 1 − 2[b1 + c1 + (1 − n)(e1 + a1) +We(f1 + a1) −M
d1

2

A4 = 1 − 2[b1 + c1 +
1

Pr

(
1 +

4

3Ra

)
(e1 + a1) − Nb�e1 − Nt�e1

A5 = 1 − 2[b1 + c1 +
1

Le
(e1 + a1) − Kr

d1

2
]

UΔ�

ΔX
+ V

Δ�

ΔR
+

1

Pr

(
1 +

4

3Ra

)(
VΔ�

(ΔR)2
+

Δ�

RΔR

)

− Nb�
2Δ�

(ΔR)2
− Nt�

2Δ�

(ΔR)2
≤ 1

UΔ�

ΔX
+ V

Δ�

ΔR
+

1

Le

{
VΔ�

(ΔR)2
+

Δ�

RΔR

}
+

1

2
KrΔ� ≤ 1

Table 1  Skin friction coefficient comparison table (M = 0, We = 0)

EFDM explicit finite difference method

Le Kumar et al. [10]
(RKF-45 method)

Salahuddin et al. [1]
(Shooting method)

Present result
(EFDM)

1 − 1.52432 − 1.52432 − 1.52432
8 − 2.47291 − 2.47291 − 2.47295
20 − 3.78263 − 3.78263 − 3.78264
50 − 7.83024 − 7.83024 − 7.83026
100 − 15.58307 − 15.58307 − 15.58308
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5  Results and discussion

Chemically reactive unsteady magnetohydrodynamic two 
dimensional tangent hyperbolic nanofluid flows with on 
moving cylinder with Brownian movement and thermo-
phoresis impacts have been investigated. Nanoparticles 
have higher thermal conductivity and the heat transfer 
enhancement between these particles can be observed 
from the point of interaction force. However, by acquiring 
physical intensity of this issue, the velocity outlines, tem-
perature outlines, concentration outlines, skin friction and 
Nusselt number outlines are plotted. Moreover, Tables 1, 
2 and 3 are exhibited for the validation of the ongoing 
investigation. The validations of the results are self-evident 
in the mentioned tables.

Figure 3 represents the illustration of thermal Grashof 
number (Gr) on velocity outlines. It is examined from the 
figure that velocity field increases with the expanding 
estimations of thermal Grashof number (Gr). The large 
value of Gr represents the highest velocity and low value 
of Gr represents the lowest velocity. It is perceived, Veloc-
ity upsurges at a proportional rate with thermal Grashof 
number but there is no impact of thermal Grashof num-
ber on energy and concentration distributions. Because 
of increment of thermal buoyancy power which increases 
the fluid velocity for gravitational strength that helps to 

Table 2  Comparison of energy distribution for different values 
chemical reaction (Kr) when M = 0, We = 0, n = 0, R = 0

IFDM implicit finite difference method, EFDM explicit finite differ-
ence method

Kr Malik et al. [9]
(IFDM)

Presents result
(EFDM)

1 − 0.6734 − 0.6742
3 − 1.8426 − 1.8429
5 – − 1.9373
10 − 2.3809 − 2.3811
100 – − 7.7560

Table 3  Graphical comparisons 
with previous results

Dec decrease, Inc increase

Factor Hussain et al. [11] Salahuddin et al. [1] Present result

U � � U � � U � �

M Dec Dec Dec
Le Inc Dec Dec Dec Dec Dec
Q Inc Dec Inc Inc Dec Inc Inc Dec
Nb Inc Inc Inc Inc Dec Inc Inc Dec
Nt Dec Inc Inc Inc Inc Inc Inc Inc
We Dec Dec Inc Dec
Kr Dec Dec Dec Dec Dec
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develop the velocity fields. The increasing rate of velocity 
outline from Gr = 5.0 to Gr = 10.0 is 36.8421%, Gr = 10.0 to 
Gr = 15.0 is 26.345% and Gr = 15.0 to Gr = 20.0 is 18.181% 
at R = 2.

Impacts of different values of power law parameter on 
velocity dissemination are depicted in the Fig. 4. In that 
figure it is perceived that at first velocity upsurges with 

growing value of power parameter index but for a cer-
tain value of R the velocity will be equal for all power law 
indices, probably the value is R = 2.3 and after a while it is 
also detected that for increasing of power law parameter 
decreases the velocity dissemination. The rate of increase 
of velocity outlines from n = 0.1 to n = 0.3 is 10.526%, 
n = 0.3 to n = 0.5 is 9.523% and n = 0.5 to n = 0.7 is 13.043% 
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at R = 0.8 and decreasing rate from n = 0.1 to n = 0.3 is 
33.333%, n = 0.3 to n = 0.5 is 50.000% and n = 0.5 to n = 0.7 
is 48.455% at R = 4.

The variation of chemical reaction factor on velocity 
profile is illustrated in the Fig. 5. Larger values of chemical 
reaction factor help to reduce the velocity field. Chemical 
reaction is directly proportional to kinematic viscosity. So 

for the growing of chemical reaction factor, the kinematic 
viscosity upsurges and the velocity get decrease. The 
curve to curve decreasing rate of velocity from Kr = 0.5 to 
Kr = 1.0 is 5.526%, Kr = 1.0 to Kr = 1.5 is 3.111% and Kr = 1.5 
to Kr = 2.0 is 1.043% at R = 2.0.
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Figure 6 indicates the stimulus of Lewis parameter (Le) 
on velocity distribution. Lewis parameter (Le) is directly 
proportional to kinematic viscosity,� . When Lewis number 
upsurges then kinematic viscosity also upsurges. For the 
reason of increasing of kinematic viscosity the velocity will 
decrease. The decreasing rate of velocity from Le = 1.0 to 
Le = 2.0 is 5.321%, Le = 2.0 to Le = 3.0 is 2.234% and Le = 3.0 
to Le = 4.0 is 1.356% at R = 2.0.

The impacts on velocity outline have been exhibited 
for dissimilar estimation of magnetic factor (M) in Fig. 7. 
Here the outcomes are perceived that the velocity outline 
eases with increment of magnetic factor. The reason is that 
existence of magnetic field creates an obstruction force 
on the fluid flow. These kinds of power are called Lorentz 
force which impedes the movement of fluid. The decreas-
ing rate of velocity form curve to curve from M = 1.0 to 
M = 2.0 is 25.321%, M = 2.0 to M = 3.0 is 22.234% and M = 3.0 
to M = 4.0 is 14.356% at R = 0.6.

The velocity profile for various values of Brownian 
motion factor (Nb) is depicted in the Fig. 8. The larger 
particle has weak Brownian motion and for that case the 
values of (Nb) is small and vice versa. So the increasing 
value of Brownian factor (Nb) represents the nanoparticle 
with higher motion. It is detected from figure that velocity 
distribution upsurges for large value of Brownian motion 
factor and velocity reduces for its small value. So, the con-
tradiction is that velocity upsurges at a proportional rate 
with Brownian motion factor. The increasing rate from one 

curve to other curve is shown with percentage. The rate 
from Nb = 1.0 to Nb = 2.0 is 3.152%, Nb = 2.0 to Nb = 3.0 is 
0.134% and Nb = 3.0 to Nb = 4.0 is 4.356% at R = 2.0. Fig-
ure 9 is depicted for velocity distribution for dissimilar val-
ues of thermophoresis number. Thermophoresis factor (Nt) 
usually warms up the boundary layer. So the increasing 
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value of thermophoresis factor, the velocity distribution 
will improve. Rate of increase from Nt = 1.0 to Nt = 2.0 is 
7.152%, Nt = 2.0 to Nt = 3.0 is 11.34% and Nt = 3.0 to Nt = 4.0 
is 14.356% at R = 2.0.

The impacts of dissimilar values of temperature gen-
eration (Q) on velocity outline are presented in Fig. 10. 
It is detected from Fig. 10 that velocity upsurges for the 
increasing value of heat generation/absorption (Q) factor 
because increasing value of heat generation/absorption 
factor upsurges kinematic vitality of the fluid particles. 
Figure 11 portrays the impacts of Weissenberg number 
(We) on velocity outline. It is seen from figure, lessen-
ing in velocity profile is detected for every growth in the 
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value of Weissenberg number (We), since after growing 
Weissenberg number (We) the reduction time upsurges 
which impedes the drift of fluid and henceforth velocity 
condenses.

The impacts of Brownian factor (Nb) on temperature 
outline are introduced in the Fig. 12. It is detected from 
graph that, since Brownian motion factor (Nb) upsurges 
the irregular movement of liquid particles the tempera-
ture of fluid upsurges. The rate of increment from Nb = 1.0 
to Nb = 2.0 is 16.152%, Nb = 2.0 to Nb = 3.0 is 14.134% and 
Nb = 3.0 to Nb = 4.0 is 11.111% at R = 2.1.

The influence of thermophoresis factor (Nt) on tempera-
ture outline is inspected in the Fig. 13. As the values of 
thermophoresis factor (Nt) upsurges, the liquefied parti-
cles transfer from warmer section to cooler section and 
henceforth velocity of the fluid upsurges. Likewise, the 
boundary layer upsurges by larger thermophoresis factor 
Nt.

Figure 14 demonstrates the conduct of Lewis quan-
tity (Le) on concentration outline. It is realized that for 
expanding the Lewis quantity (Le) the concentration out-
line decreases. Since for expanding the Lewis number (Le) 
the mass diffusivity diminishes, so concentration outline 
diminishes.

The influence of heat generation/absorption factor (Q) 
on concentration outline is depicted by the Fig. 15. It is 
detected that the increasing value of heat generation/
absorption factor reduces the concentric filed. Due to the 
divergence of heat flux the fluid velocity increases which 
declines the fluid concentration and vice versa. The curve 
to curve decreasing rate is from Q = 0.5 to Q = 1.0 is 3.4%, 
Q = 1.0 to Q = 1.5 is 2.454%, Q = 1.5 to Q = 2.0 is 1.345% at 
R = 2. Skin friction for different values of magnetic factor 
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Fig. 20  Streamlines flood view for tangent fluid when Pr = 1.8 and 
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Fig. 21  Streamlines for tangent fluid when Ra = 2.5 (green line) and 
Ra = 2.0 (red line)
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(M) has been depicted by the Fig. 16. It is seen that the skin 
friction outlines decline for the growing values magnetic 
factor (M) respectively. Because at the wall, Lorentz force 
helps to impedes the fluid velocity. The properties of ther-
mophoresis factor on Nusselt number outlines have been 
shown by the Fig. 17. It is realized from the figure that the 
Nusselt number declines for growing value of thermo-
phoresis factor. Sherwood number outlines for dissimi-
lar values of heat generation/absorption factor (Q) have 
been depicted in the Fig. 18. It is seen from figure that the 
Sherwood number upsurges for the increasing values of 
generation/absorption factor (Q). The curve increasing rate 
from Q = 0.5 to Q = 1.0 is 12.16%, Q = 1.0 to Q = 1.5 is 16.49% 
and Q = 1.5 to Q = 2.0 is 22.20%.

The dimensionless equation has been solved by using 
different transformations. This is why, X and R alliance are 
dimensionless that indicate mesh theme altered from the 
arithmetical argument of view. Additionally, streamlines 
outlines represent improve visualizations of fluid fields. 
It shows velocity course of fluids correspondingly. The 
stream lines can be gained by illustration tangent line to 
the decorations. The boundary layer structure of variation 
can be presented by an isotherm, where the temperature 
can be constant Streamlines are illustrated by the Figs. 19, 
20, 21 and 22. The Fig. 19 shows the line view of stream-
lines for Pr = 1.8 and Pr = 1.2 and the Fig. 20 shows the flood 
view of streamlines for Pr = 1.8 and Pr = 1.2. It is detected 
from the streamlines that the streamlines decrease for 
large values of Prandtl number because for Prandtl num-
ber the thermal conductivity is inversely proportional to 
the kinematic viscosity.

Figures 21 and 22 depict the streamlines for radiation 
factor when Ra = 2.5 and Ra = 2.0 and the streamlines 
are increasing for increasing value of radiation param-
eter. Because radiation parameter helps to accelerate the 
divergence of heat flux which eventually increase the fluid 
velocity as well as the temperature.

6  Conclusions

The motivation of this investigation is to do the numeri-
cal explanations of time subservient incompressible tan-
gent hyperbolic liquid with nanoparticle concerning a 
moving cylinder. The impressions of destructive chemi-
cal reaction, heat source and thermal radiation were also 
taken under consideration. The dimensionless forms of 
the fundamental equations were solved numerically 
through the implementation of explicit finite difference 
technique. The default numerical values considered for 
carrying out the whole investigation are n = 0.1, We = 0.1, 

Gr = 5.0, Gm = 5.0, M = 1.0, Nb = 1.0, Nt = 1.0, Pr = 1.2, 
Ra = 0.2, Q = 0.5, Le = 1.0, Kr = 0.5 and P = 1.0. The work 
is an extension of the work of Salahuddin et al. [1] and 
Hayat et al. [7]. The physical impacts of chemical reac-
tion parameter, thermal radiation and viscous dissipa-
tion are explored newly in this work. The main concern 
was how the tangent hyperbolic nanofluid behaves 
when the above discussed physical impacts are consid-
ered in the flow. Again, another concern was to exhibit 
the developed visualisation of the fluid flow, which has 
also been illustrated newly in this paper through stream-
lines. However, for future studies the streamlines and iso-
therm analysis can be extended for the cases of those 
parameters which actually appear due to the presence 
of nanoparticles. Also, to know the different behavior of 
nanoparticle interaction this work can be extended by 
considering the magnetic field in sinusoidal form rather 
than using the usual magnetic term. Moreover, it is a 
theoretical investigation and more accurate investiga-
tion can be done with the implementation of Runge-
Kutta based shooting technique. The major findings of 
this work are:

The velocity fields exhibit the accelerating attitude when 
the values of Grashof number, thermophoretic, heat source 
and Brownian parameters get increase whilst the concen-
tric and the velocity fields got reduce due to the develop-
ment of chemical reaction, Lewis number, Weissenberg 
number, magnetic and heat source parameters. It has been 
also noticed that the interaction between the nanoparticles 
upsurge the temperature field significantly. However, the 
skin friction and the heat transfer near the wall get reduce 
for magnetic and thermophoretic parameters whereas the 
mass transportation near the wall increases for heat source 
parameter. Additionally, Prandtl number exhibits the reduc-
ing behavior in the depiction of streamlines whilst radiation 
parameter represent opposite behavior.
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Appendix

For grid independency test, we have carried out the solu-
tions for different m and n. From Fig. 23, we notice that 
after m = n = 120 the profiles exert a little change. There-
fore, the present results are grid independent.
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