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Abstract
The rapid advancement of remote sensing and availability of polarimetric SAR (PolSAR) data have facilitated to monitor 
the land use land cover (LULC) dynamics. In the recent past, polarimetric decomposition theorems are applied widely to 
perform LULC classification with the help of machine learning techniques. In this study, we utilized ALOS PALSAR-1 L-band 
quad polarimetric data for performing polarimetric decomposition, textural information extraction, and to generate LULC 
maps over the western part of Mizoram state, northeast India. The study area comprises three districts, namely Mamit, 
Lunglei, and Lawngtlai. We adopted two representative full-polarimetric decomposition models: classical model-based 
Freeman–Durden and Yamaguchi decomposition. These methods decompose the coherency matrix of PolSAR images 
into surface, double-bounce, and volume scattering. Textural measures, such as variance, contrast, entropy, homogene-
ity, dissimilarity, and uniformity are also retrieved using grey-level co-occurrence matrix (GLCM) for LULC classification. 
For LULC classification, we employed a support vector machine classifier and calculated the area statistics of LULC. The 
outcomes were checked with the help of confusion matrix derived for six classes, such as built-up, deciduous forest, ever-
green forest, scrubland, bareland, and waterbody. Each LULC class is separated using the scattering properties of PolSAR 
images. Results exhibited that Yamaguchi four-component decomposition (overall accuracy 90% and kappa coefficient 
0.88) gives relatively better LULC classification results than the Freeman–Durden three-component decomposition (over-
all accuracy 87% and kappa coefficient 0.84). Use of textural images of GLCM has supported the classification accuracy 
at par with the Yamaguchi model. Integration of polarimetric information offers a new dimension in LULC classification 
and produces high accuracy maps. This approach overcomes the limitations of optical data in cloud covering areas, and 
furthermore, it provides better classification accuracy.

Keywords  L-band SAR · Polarimetric SAR · Polarimetric decompositions · GLCM · Support vector machines · LULC 
mapping

1  Introduction

The alteration of terrestrial surface by human activities is 
typically known for Land use land cover (LULC) change. 
Over the last few decades, the LULC is changing rapidly 
around the globe [1]. It is widely documented that the 
alterations of LULC have caused severe environmental 
problems, such as floods, landslides, deforestation, loss of 

biodiversity, and urbanization, among others [2–7] due to 
mismanagement of agriculture, forest, urban, wetland, and 
forest. So, LULC maps are very essential for understanding 
any unprecedented changes in agriculture [8–10], forest 
ecosystems [7, 11], biodiversity/ecological process [6], 
environmental process, and hazard assessment [4]. LULC 
change information is essential for providing vital input to 
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decision-making bodies of natural resources management 
including town planning.

LULC maps can be created through field surveys or 
remote sensing techniques. As field surveys are compre-
hensive, costly and cumbersome, typically remote sens-
ing techniques were preferred in the recent years. In the 
case of remote sensing, digital image processing tech-
niques play an important role in LULC classification due 
to availability of various multi-spectral satellite images 
(Landsat, SPOT (Satellite Pour l’Observation de la Terre), 
IRS (Indian Remote Sensing satellites), ASTER (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer), 
Sentinel-2A) including the synthetic Aperture Radar (SAR) 
images, such as ENVISAT (Environmental Satellite), ALOS 
(Advanced Land Observing Satellite) PALSAR (Phased 
Array type L-band Synthetic Aperture Radar), RADARSAT 
(Radar Satellite), TSX, (TerraSAR-X), and TDX (TanDEM-X). 
Classification of remotely sensed data produces thematic 
maps; however, it is very challenging to achieve accu-
racy of classified LULC map. The precision and accuracy 
of an imagery classification depends upon many factors, 
such as complexity of the landscape, selected remote 
sensing data, spatial resolution, atmospheric condition, 
adopted image processing techniques, and classification 
approaches. All these factors can affect the effectiveness 
and accuracy of a LULC map [12]. Furthermore, the classi-
fication methods employed in mapping LULC are perhaps 
the most important one [12] and pose a challenge to the 
research community.

Numerous techniques have been developed over the 
years to produce LULC maps using the satellite images. 
The commonly used techniques are image classification 
[13, 14], principal component analysis [15], fuzzy classifi-
cation [16], artificial neural network [17], machine/deep 
learning [18, 19], and object-based classification [20]. Most 
of these supervised classification methods involve training 
and human supervision. Further, most of these techniques 
are employed with optical satellite images that have inher-
ent limitations of clouds, but these techniques are rarely 
used with the full-polarimetric SAR data. With the recent 
advancement of availability of full-polarimetric SAR data 
with multi-bands (X, C, S, L bands), there are approaches, 
namely polarimetric decomposition theorems which 
applied widely to perform LULC classification by using the 
machine learning classification methods [21–23]. Polari-
metric decomposition theorems are developed either 
based on eigenvalue decomposition or physical model-
based decomposition. Most common statistics and physi-
cal model-based decomposition methods developed for 
PolSAR data are Cloude–Pottier (H/A/α), Huynen, Cameron, 
Freeman–Durden, and Yamaguchi decompositions, which 
are being utilized to retrieve various maps, such as LULC 
maps, forest density maps, and crop type’s maps, among 

others. [22–24]. Based on the coherency and covariance 
matrix, Moriyama decomposition, Krogager decomposi-
tion, Van Zyl decomposition, and Touzi decomposition 
were also developed. Polarimetric SAR (PolSAR) images 
were analysed using decomposition theorems [21], which 
also increase the accuracy of LULC. PolSAR was intensively 
used as a monitoring tool for crops that grew during the 
rainy season [25]. Studies have also suggested that a 
combined approach of using optical and radar images 
improves the LULC maps [26, 27].

In radar polarimetry, the utilization of complete elec-
tromagnetic vector wave information has gained momen-
tum over the years. Using radar polarimetry, Cloude and 
Pottier [21], had made important contribution in the field 
of target decomposition by the help of entropy/anisot-
ropy/alpha (H/A/α) decomposition method, which is 
also known as eigenvector–eigenvalue decomposition. 
These parameters/attributes have become the standard 
tool for target characterization and image classification. 
Freeman–Durden and Yamaguchi [22, 23] introduced the 
concept of three/four scattering properties, such as sur-
face scattering, double-bounce scattering, volume scat-
tering, and helix scattering from objects. So the targets’ 
structure information can be deduced as the sum of all 
four scattering components. Typically, surface scattering 
relates to rough surfaces, such as water bodies, bare soil 
(non-vegetated), while double-bounce scattering corre-
sponds to dihedral corners, namely wetland vegetation, 
artificial targets related to ground-wall corners. Volume 
scattering relates to random oriented dipoles, namely 
the tree canopy, whereas helix scattering is associated 
with man-made structures in urban areas, but it disap-
pears in all natural distributed scattering. Thereby, the 
PolSAR can differentiate different LULC classes, such as 
bare land, buildings, water bodies, vegetation, agriculture, 
and shrubland, among others by the help of scattering 
mechanism-based PolSAR land cover classification meth-
ods [28–30]. However, there are some misclassifications 
using the attributes of scattering mechanism (i.e. the sur-
face scattering-Ps, double-bounce-Pd and volumetric-Pv)-
based PolSAR LULC classification. This is because some dif-
ferent classes can have the identical scattering mechanism 
and the same classes can have different scattering mecha-
nisms particularly for the urban areas and the vegetation 
[31, 32]. To improve LULC classification using polarimetric 
information, studies have explored PolSAR image classi-
fication methods, the image texture-based classification 
methods (like GLCM texture features), and the interfer-
ometry information [33, 34]. In addition, wide variety of 
polarimetric features like backscattering coefficients of 
different polarizations, such as linear (HH, HV, VV), circular 
(LL, RR, RL), and their ratios, were used to play up the dif-
ferences between the radar bands and polarizations which 
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can be more sensitive in certain field conditions. Despite 
these attempts, there are some deficiencies in LULC clas-
sification accuracy. Typically there are some information 
redundancies like the entropy/anisotropy/alpha (H/A/α) 
attributes that represent volume scattering (Pv), which is 
also part of the Freeman–Durden and Yamaguchi models. 
The attributes derived from Cloude–Pottier decomposition 
technique exhibited good potential to discriminate forest 
classes having more or less canopy, but it cannot distin-
guish accurately the ecological succession classes espe-
cially by utilizing H/α attributes [35]. However, attributes 
like anisotropy (A) and Pv exhibited a higher separability 
for forest classes than bare land, shrubland, and oriented 
urban classes. Most of the classification methods are pixel-
based, which results in the sensitivity to speckle noise and 
tonal information in SAR pixels. However, region-based 
classification can increase the classification accuracy by 
segmenting PolSAR images. In image segmentation analy-
sis, a variety of spatial and textural information like shape, 
texture, area, and context can be obtained, which is impor-
tant for improving the LULC classification [36].

In principle, polarimetric model decompositions are 
quite similar to feature extraction or visual interpretation 
[37]. Several algorithms such as machine learning classifier 
(neural network, support vector machine, random forest) 
[38–40], grey-level co-occurrence matrix (GLCM) [41–43], 
and Wishart classifier [44, 45] are developed to perform 
PolSAR image classification and to retrieve LULC maps. The 
Wishart classifier is a statistics-based method that applies 
perfectly if the ground target is either homogeneous or 
has only one scattering. Several studies accomplished clas-
sification of fully PolSAR data using decision tree, neural 
network, object-based, and contextual algorithms [28, 
46–48]. Among the aforesaid algorithms, support vector 
machine (SVM) is widely used for LULC classification using 
the PolSAR data [27, 40, 49, 50]. The overreaching objec-
tives of this study are: (1) to decompose the L-band full-
polarimetric ALOS PALSAR data using the physical-based 
model Freeman–Durden and Yamaguchi decomposition 
methods, (2) to explore decomposition scattering compo-
nents and GLCM-based texture features to classify LULC by 
using the SVM classifier, and (3) to compare classified LULC 
maps among Freeman–Durden, Yamaguchi decomposi-
tion, and GLCM methods.

2 � Study area

The study area is a part of Mamit, Lunglei, and Lawngtlai 
districts in Mizoram state, Northeast India. The state is situ-
ated between 21°58′ N to 24°35′ N Latitude and 92°15′ E to 
93°29′ E Longitude (Fig. 1). Total geographical area of the 
state is 21,087 km2. There are eight districts in the state, 

and the study area covers parts of three districts, namely 
Mamit in North, Lunglei in the middle, and Lawngtlai in 
the South part of Mizoram state. The study area is known 
for the tropical evergreen forest that comprises several 
hill ranges with prominent relief. The height of hill ranges 
varied from 1179 to 2157  m (above msl). The hills are 
extremely steep with rugged terrain and separated by 
rivers. Major rivers flow either to north or south are Tuirial 
River in Mamit district, Mat and Tuichang Rivers in Lunglei 
district, Kawnpui and Kaladan Rivers in Lawngtlai district, 
and these rivers create usually deep gorges. The climate 
is characterized by a tropical humid climate with cold 
winters and cool summers. The temperature varies from 
11 °C in winter to 30 °C in summer, and the annual rain-
fall received between 2000 and 2850 mm. There are three 
major types of soils, such as hill soil (colluvial soil along 
steep side slopes), valley soil (mixture of colluvial and allu-
vial), and terrace soil (deposits of cobbles and pebbles).

3 � Materials and methods

The Phased Array type L-band Synthetic Aperture Radar 
(PALSAR)-1 is a microwave sensor developed by JAXA 
with available data from 2006 to 2011 [51]. The Advanced 
Land Observing Satellite (ALOS) PALSAR-1 L-band 
(15–30 cm) is available in the form of quad polarization 
(HH + HV + VH + VV), which are sent and receive hori-
zontally (H) and vertically (V) polarized waves by radar 
antenna. It has a swath width of 30 km and temporal res-
olution of 46 days. For this study, we used level 1.1 quad 
polarized data having single look complex (SLC) format, 
which contains the amplitude and phase information. Due 
to unavailability of quad polarized data in the recent years, 
we only acquired one ALOS L-band scene that corresponds 
to 28th May 2009. The L-band data have been processed 
using the PolSARpro and SNAP software, developed by 
ESA [52]. The sensor characteristics are provided in Table 1. 
In the present study, the thematic classes, such as built-up, 
deciduous forest, evergreen forest, scrubland, bareland, 
and waterbody, are discriminated by using the PolSAR 
images with the help of PolSAR decomposition methods.

3.1 � Pre‑processing of PALSAR data (L‑band)

The flowchart of the methodology has been given Fig. 2, 
where we described satellite data pre-processing steps. The 
methodology employed is based on the use of polariza-
tion coherency matrix (T3). Prior to extraction of coherency 
matrix elements, the SLC data in slant range were converted 
to ground range using the multi-looking process (window 
size 5 × 5) that reduces coherent noise in the radar image. 
Then, a boxcar filter with 5 × 5 window size was applied to 
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3 × 3 coherency matrix (T3) to get the filtered image. The 
coherency matrix elements contain the complex informa-
tion related to different physical scatters present in the Pol-
SAR image. The physical scattering mechanisms are based 
on their geophysical parameters, such as surface roughness, 
dielectric constant, geometrical structure, shape, orienta-
tion, and reflectivity. Furthermore, the two decomposition 
algorithms, Freeman–Durden and Yamaguchi, were applied 

to separate physical scattering properties of ground target 
[22, 23]. Finally, orthorectification was applied to images 
of Freeman–Durden and Yamaguchi decomposition as it 
eliminates the height-induced azimuth and range shifts 
over this mountainous area. Training samples for the LULC 
classes, namely built-up, deciduous forest, evergreen forest, 
scrubland, bareland, and waterbody, were collected from the 
orthorectified images with the help of Google earth optical 

Fig. 1   Study area shown in colour composite image using the HH, HV, and VV polarization of L-band ALOS. The subset map a is a part of 
Mamit district, b is a part of Lunglei district, and c is a part of Lawngtlai district situated in western part of Mizoram state, Northeast India

Table 1   L-band of ALOS PALSAR and its characteristics

Satellite data were obtained from the Alaska Satellite Facility (ASF). The LULC statistics for each class were obtained from the National 
Remote Sensing Centre (NRSC). Rainfall information was obtained from Indian Meteorological Department (IMD)

Data used Acquisition date Polarimetric mode Key properties Purpose Source

ALOS PALSAR-1 28th May, 2009 (Level 1.1) HH + HV + VH + VV 30 m spatial resolution LULC classification ASF [53]
Ascending pass
Incidence angel 21.5°

LULC statistics 2011–12 – Scale: 1:50,000 LULC statistics NRSC [54]
Resourcesat‐2 used

Rainfall 25–27th May, 2009 – Mamit: 5.2 cm 3 days Cumulative rainfall IMD [55]
Lunglei: 1.5 cm
Lawngtlai: 0 cm
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imageries. The orthorectified Freeman–Durden and Yamagu-
chi decomposition images were furthermore used through 
SVM classifier. Validation and accuracy assessment of LULC 
map were undertaken by using training sample points from 
the Google earth optical imagery and treated it as a refer-
ence data source.

To compare the LULC statistics under each LULC class, 
the available LULC data at 1:50,000 scale were used and 
these data were from National Remote Sensing Centre 
(NRSC) [54], Department of Space (DoS), Government 
of India. The LULC of NRSC was prepared based on the 
Resourcesat‐2 terrain corrected Linear Imaging Self-scan-
ning Sensor (LISS)‐III data of year 2011–12. Due to lack 
of data on LULC statistics of NRSC for the year 2009, we 
compared with the closest period data period 2011–12 by 
assuming slow response of LULC at demi-decadal period.

3.2 � Polarimetric decomposition methods 
and image texture analysis using GLCM

The major advantage of PolSAR data is the utilization of 
backscatter coefficients that strongly depends on the 

scattering properties of ground target. For full-polari-
metric data analysis, we attempted a three-component 
polarimetric decomposition model called Freeman–Dur-
den Decomposition (henceforth called FDD) as a large 
area was covered by natural forest in the study area. This 
model describes the scattering contributions from sur-
face, double-bounce, and volume by phase and intensity 
information. The detailed mathematical equations related 
to scattering coefficients were provided in [22], wherein 
scattering attributes were obtained directly from a scat-
tering coherent matrix. The backscattering matrix of vol-
ume scattering is modelled as a thin infinite dipole, the 
double-bounce is modelled by a dielectric dihedral cor-
ner reflector, and the surface (single-bounce) scattering 
is modelled by a first-order Bragg scattering. The surface 
scattering component is associated with water bodies, 
bare or ground soil (i.e. non-vegetated surface), a dihedral 
scattering component is associated with oriented urban 
areas and wetland vegetation, and a volume scattering 
component is associated with vegetation.

A four-component polarimetric decomposition model 
called Yamaguchi decomposition (henceforth called YD) 

Fig. 2   The detailed flowchart 
of the methodology adopted 
to map LULC in parts of three 
districts in Mizoram state
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was also attempted [23]. This model describes the scatter-
ing contributions from surface, double-bounce, volume, 
and helix by phase and intensity information. This scheme 
basically includes a three-component introduced by Free-
man and Durden, which deals with the reflection symme-
try that the co-pol and the cross-pol correlation were close 
to zero. Helix scattering power is added as a fourth com-
ponent, which generally appears in complex urban areas 
describing man-made targets in urban area scattering [23].

Image texture analysis has been broadly used to char-
acterize diverse land features and useful for generating 
accurate LULC classification [56, 57]. The widely used tex-
ture method is grey-level co-occurrence matrix (GLCM), 
wherein wavelets, Gabor filters, and local binary patterns 
(LBPs) were also used for extracting the texture features. 
Initially, Haralick et al. [41] proposed 14 texture measures 
from the probability matrix, and in the present study, we 
used six texture measures, i.e. variance, contrast, entropy, 
homogeneity, dissimilarity, and uniformity. Texture fea-
tures extracted from radar images provide useful informa-
tion. Texture measures were extracted from HH, HV, VV, 
and SPAN amplitude images. The SPAN image is an aver-
age of HH, HV, VV, and, consequently, has a lower speckle 
noise than individual HH, HV, VV images. We have set the 
quantization level at 64, window size 7 × 7, and angle 90 
degree. A total of 24 GLCM texture features were extracted 
as input layers for SVM classification.

3.3 � Support vector machine (SVM) classifier

The SVM classifier has been used often for LULC mapping 
using PolSAR satellite images [38]. This classifier is devel-
oped based on machine learning theory [39], which pro-
vides higher accuracies in LULC classification as compared 
to other classifiers. SVM classifier discriminates the classes 
by fitting an optimal separating hyperplane to the training 
samples in a multi-dimensional feature space [58]. It uses 
kernel function to make nonlinear decision boundaries 
into linear ones in a high-dimensional space [58, 59]. In 
this study, the SVM classification was performed using Pol-
SARpro 5.0 software, wherein two decomposition images 
(FDD and YD) were used as an input data to classifier. Fur-
thermore, the GLCM texture images were used as an input 
data for SVM classification.

3.4 � Training samples collection and accuracy 
assessment

The training samples selected for LULC classes are given 
in Table 2, and furthermore, these samples were used for 
classification and validation. There is no overlap between 
the training and testing data, wherein about 70% of pixels 
were used for training purposes. The remaining 30% pixels 

were used for validation. In addition, some points were 
also obtained from the Google earth high-resolution opti-
cal imageries and considered as reference data for accu-
racy assessment of LULC map.

The typically an error or confusion matrix is commonly 
used for accuracy assessment of LULC classified maps. The 
confusion matrix contains class types obtained from the 
classified map in rows, whereas class types obtained from 
the reference data in columns. The correctly classified pix-
els were allocated in diagonals, while misclassified pixels 
were represented in the off-diagonal one. To evaluate LULC 
classification map, four metrics, such as producer accuracy, 
user accuracy, overall accuracy, and kappa coefficient, 
were derived based on confusion matrix [60].

4 � Results

4.1 � Freeman–Durden and Yamaguchi 
decomposition scattering images

The orthorectified decomposed scattering properties of 
a target using FDD are shown in Fig. 3. In the FDD image, 
double-bounce scattering is shown in red and scattering 
relates to artificial targets like ground-wall corners, and 
building blocks. Volume scattering is shown in green and 
scattering represents forests. The surface scattering is 
shown in blue and scattering represents bare soil, fallow-
land, and rivers. It can be noted that volume scattering is 
dominant within the extensive areas of hill ranges with 
forest and scrubland coverage across the three districts. 
Strong surface scattering also appeared over the Lawngtlai 
district representing the agriculture fields, flat terrain, and 
urban scattering.

The scattering properties of targets produced by Yama-
guchi decomposition were quite similar to the three-
component-based FDD across the three districts (Fig. 4). 
However, the helix scattering is stronger especially over 
the Lawngtlai district, which generally appears in complex 
urban areas. These areas can appear as red colour which 
reflect from the urban scatters.

Table 2   Training set and testing samples used for LULC classifica-
tion

LULC classes Training pixels Validation pixels Total

Built-up 6208 2113 8321
Deciduous forest 8735 3247 11,982
Evergreen forest 6741 2314 9055
Scrubland 3325 1713 5038
Bareland 5236 2345 7581
Waterbody 2135 1103 3238
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4.2 � SVM‑based LULC classification using FDD image

The LULC classification map derived from SVM classifier 
is presented in Fig. 5 over the parts of three districts in 
the state. This classification was performed based on six 
LULC classes, namely built-up, deciduous forest, evergreen 
forest, scrubland, bareland, and waterbody, and each 
LULC class was separated using the scattering properties 
of images. The results indicated that the predominant 

classes are evergreen and deciduous forest and they were 
marked by green colours in the map of Mamit, Lunglei, and 
Lawngtlai district. The scrubland is presented in yellow, 
while rivers or water bodies were presented in blue col-
our. The built-up and fallowland classes were prominent 
especially in Lawngtlai district. The detailed area statistics 
of each class are presented in Table 3.

The classified LULC map as per SVM using FDD image 
showed that the forest accounted for 76%, 77%, and 73% 

Fig. 3   Orthorectified Freeman–
Durden decomposition images 
with the double-bounce in red, 
volume scattering in green, 
and surface scattering in blue. 
The zoomed subset represents 
a volume, b double-bounce, 
and c surface scattering over 
the three districts, namely 
Mamit, Lunglei, and Lawngtlai

Fig. 4   Orthorectified Yama-
guchi decomposition images 
with the double-bounce in red, 
volume scattering in green, 
and surface scattering in blue. 
The zoomed subset represents 
a volume, b double-bounce, c 
surface scattering and d Helix 
scattering over the three dis-
tricts, namely Mamit, Lunglei, 
and Lawngtlai
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of area, in Mamit, Lunglei, and Lawngtlai districts, respec-
tively. Across these three districts, forest cover is a domi-
nant class followed by scrubland (about 17–18%). This 
class mostly comprised a series of hills range throughout 
the district. The hilly regions have dominantly covered 
with evergreen, deciduous, and mixed forests. The major 
vegetation types are (1) Cachar tropical semi-evergreen 
forest, (2) secondary moist Bamboo, (3) pioneer Euphor-
biaceous scrub (appeared over steep slopes), 4) moist 
mixed deciduous forest (Albizia spp, Artocarpus spp) (5) 
subtropical wet hill forest (Litsea spp, Quercus spp), and (6) 
subtropical pine forest (Quercus spp, Schima wallichii, Rho-
dodendron spp). The area occupied by bareland is about 
3–6%, and most of this area is a part of forest clearance 
used for jhum cultivation (also known as shifting cultiva-
tion). The hilly range of these districts is occupied by < 1% 
area for urban/built-up, whereas rivers and water bodies 

account for about 1–3% of area. In the case of Lunglei dis-
trict, the built-up land is also relatively higher compared 
to other two districts.

4.3 � SVM‑based LULC classification using YD image

The LULC classification map derived from SVM classifier 
using YD image is presented in Fig. 6. The classification 
map showing built-up, deciduous forest, evergreen for-
est, scrubland, bareland, and waterbody is similar to SVM 
classifier based on FDD image. The detailed area statistics 
of each class are presented in Table 4. The LULC statistics 
were comparable to SVM classifier based on FDD image; 
however, relatively higher area under the urban scatters 
was obtained in SVM classification map obtained from YD 
image. It was observed that in case of volume scattering, 
comparatively good separation is shown for forest class. 

Fig. 5   LULC classification map 
using SVM algorithm based 
on FDD scattering image. The 
three subset represents a part 
of a Mamit, b Lunglei, and c 
Lawngtlai districts

Table 3   Area statistic (km2) of SVM (FDD)-based LULC classification map in three districts of Mizoram state, wherein FDD scattering image 
was used

The total area of the districts are 1746.0, 2445.5, 904 km2 for Mamit, Lunglei, and Lawngtlai districts, respectively. The values inside bracket 
are in %. The LULC statistic of NRSC [54] is also provided

LULC classes Area (km2) (%) (Mamit) Area (%) 
NRSC [54]

Area (km2) (Lunglei) Area (%) 
NRSC [54]

Area (km2) (Lawngtlai) Area (%) 
NRSC [54]

Built-up 7.98 (0.46) 0.55 11.51 (0.47) 0.62 7.01 (0.77) 0.93
Deciduous forest 670.01 (38.37) 75 1332.35 (54.48) 70.6 386.19 (42.75) 66.2
Evergreen forest 664.53 (38.06) 550.97 (22.53) 281.10 (31.1)
Scrubland 292.19 (16.73) 20 423.11 (17.30) 23.6 165.71 (18.33) 22.5
Bareland 60.98 (3.49) 0.9 96.84 (3.96) 0.39 53.02 (5.87) 4.56
Waterbody 50.30 (2.88) 0.64 30.71 (1.26) 0.86 10.98 (1.21) 0.98
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Furthermore, a constant value is exhibited in the water 
body and scrubland, where volume scattering tends to be 
negligible. In the case of urban scatters, the helix scatter-
ing based on YD provides higher area classified under the 
urban class.

As per the National Remote Sensing Centre report [54] 
and LULC map (scale: 1:50,000) of 2011–12, the forest cover 
occupied 75%, 70.6%, and 66.2% of area in the Mamit, Lun-
glei, and Lawngtlai districts, respectively (Table 3). These 
reported statistics were very close to our estimates based 
on decomposition models (FDD and YD) assessed by SVM 
classifier. As per the NRSC [54], the scrubland occupied 
20%, 23.6%, and 22.5% of area in the Mamit, Lunglei, and 
Lawngtlai districts, respectively. As compared to NRSC 
LULC statistics, we estimated 17–18% of the area is clas-
sified as scrubland. As per the NRSC, bareland occupied 
0.9%, 0.39%, and 4.56% of area in the Mamit, Lunglei, and 
Lawngtlai districts, respectively (Table 3). Our estimated 

statistics are underestimated by 2–3% as compared to 
NRSC LULC statistics for scrubland and bareland. As per 
the NRSC [54], built-up area accounts for 0.55%, 0.62%, 
and 0.93% in the Mamit, Lunglei, and Lawngtlai districts, 
respectively, and these statistics are quite close to the 
results obtained from two decomposition models as 
assessed by SVM classifier. In the case of water bodies, it 
accounts for 0.64%, 0.86%, and 0.98% of area in the Mamit, 
Lunglei, and Lawngtlai districts, respectively. As per the 
decomposition models, water bodies areal statistics var-
ied from 1.2 to 2.8%. There are some discrepancies in area 
statistics of LULC between NRSC and SVM-based classifier, 
which could be attributed to the extent of the study area. 
In other words, area statistics of NRSC represented whole 
districts, whereas the satellite L-band ALOS scenes did not 
cover the whole district. Furthermore, there is a difference 
in resolution used by NRSC and L-band PolSAR data. Nev-
ertheless, the estimated LULC statistics by SVM classifier 

Fig. 6   LULC classification map 
using SVM algorithm based 
on YD scattering image. The 
three subset represents a part 
of a Mamit, b Lunglei, and c 
Lawngtlai districts

Table 4   Area statistic (km2) 
of SVM (YD) based LULC 
classification map in three 
districts of Mizoram state, 
wherein FDD scattering image 
was used

The total area of the districts are 1746.0, 2445.5, 904 km2 for Mamit, Lunglei, and Lawngtlai districts, 
respectively

LULC classes Area (km2) 
(Mamit)

Area (%) Area (km2) 
(Lunglei)

Area (%) Area (km2) 
(Lawngtlai)

Area (%)

Built-up 8.78 0.50 11.90 0.49 7.21 0.80
Deciduous forest 670 38.37 1331.0 54.45 386.11 42.71
Evergreen forest 663.02 38.00 551.95 22.55 279.31 30.89
Scrubland 293 16.78 423.32 17.31 167.21 18.50
Bareland 61.6 3.52 97.32 3.98 53.12 5.88
Waterbody 49.6 2.84 29.77 1.22 11.12 1.23
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are well representative of statistics given by NRSC and the 
spatial distributions are also quite similar.

4.4 � SVM‑based LULC classification using GLCM 
texture images

The LULC classification map derived from SVM classifier 
using GLCM texture images is presented in Fig. 7. The spa-
tial distribution of LULC map showing built-up, deciduous 
forest, evergreen forest, scrubland, bareland, and water-
body was quite similar to SVM classifier based on decom-
position models. The detailed area statistics and confusion 
matrix of each class are presented in Table 5. The LULC area 
statistics were also comparable to decomposition models.

4.5 � Accuracy assessment of LULC map

The performance of FDD and YD output in relation to 
LULC classification by using the SVM classifier is presented 
in Tables  6 and 7. The confusion matrix and accuracy 

assessment showed that the overall classification accuracy 
was 87.1–89.9% with a kappa coefficient 0.84–88 as per 
the FDD and YD, respectively. The producer and user accu-
racy are shown in Tables 6 and 7. The overall classification 
accuracy was improved to 90.3% with a kappa coefficient 
0.88 by using SVM classification based on GLCM-based 
texture images (Table 8).

Using Freeman–Durden-based volume scattering attrib-
utes, the forest types, such as deciduous and evergreen 
forest, were not having good classification accuracy due 
to the presence of dense vegetation along the hilly terrain 
with prominent relief that ranged from 1179 to 2157 m 
(above msl). This can be assessed using the commission 
error (misclassification pixels) from Tables 6 and 7. How-
ever, misclassification of forest pixels decreased in case of 
Yamaguchi scattering attributes leading to improvement 
of classification accuracy. The forest class was misclassified 
as a bareland in all the two decomposition techniques due 
to double-bounce scattering from the forests along the 
high reliefs, and most of the bareland are predominantly 

Fig. 7   LULC classification map 
using SVM algorithm based 
on GLCM texture images. The 
three subset represents a part 
of a Mamit, b Lunglei, and c 
Lawngtlai districts

Table 5   LULC area statistic 
(km2) of SVM-based LULC 
classification map in three 
districts of Mizoram state, 
wherein GLCM texture images 
were used

LULC classes Area (km2) 
(Mamit)

Area (%) Area (km2) 
(Lunglei)

Area (%) Area (km2) 
(Lawngtlai)

Area (%)

Built-up 8.65 0.50 11.95 0.49 7.20 0.80
Deciduous forest 670.35 38.39 1331.70 54.46 386.12 42.71
Evergreen forest 662.00 37.92 551.85 22.57 278.30 30.79
Scrubland 294.00 16.84 423.00 17.30 167.20 18.50
Bareland 61.60 3.53 97.30 3.98 54.16 5.99
Waterbody 49.40 2.83 29.70 1.21 11.10 1.23
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formed due to shifting cultivation practices. The evergreen 
forest was misclassified as a built-up in all the two decom-
position techniques due to double-bounce scattering 
from the forest classes. The scrubland was misclassified 
as forest in all the two decomposition techniques due to 
similarity of volume scattering attributes from the forest 
classes, but misclassification of scrubland pixels decreased 

in case of Yamaguchi-based volume scattering that has led 
to improvement of classification accuracy using Yamagu-
chi decomposition model. The bareland associated with 
surface scattering exhibited lowest classification accuracy 
in both the decomposition models. However, bareland is 
also misclassified as water bodies owing to confusion of 
surface scattering between bareland and water bodies in 

Table 6   Confusion matrix of 
SVM classification based on FD

The user accuracy, producer accuracy, and overall accuracy are abbreviated as UA, PA, OA, respectively. 
The classified map represented in row, whereas the reference data represented in column

Classified LULC Reference data

DF BU EF SL BL W UA (%)

DF: Deciduous forest 86 2 3 1 3 0 90.53
BU: Built-up 2 81 4 7 4 0 82.65
EF: Evergreen forest 3 5 74 4 1 0 85.06
SL: Scrubland 1 4 4 65 3 0 84.42
BL: Bareland 2 0 0 2 40 6 80.00
W: Waterbody 0 0 2 1 1 94 95.92
PA (%) 91.5 88.0 85.1 81.3 76.9 94.0
OA (%) 87.1
kappa coefficient 0.84

Table 7   Confusion matrix of 
SVM classification based on YD

The classified map represented in row, whereas the reference data represented in column

Classified LULC Reference data

DF BU EF SL BL W UA (%)

DF: Deciduous forest 87 1 1 1 3 0 93.5
BU: Built-up 1 80 2 4 2 0 89.9
EF: Evergreen forest 2 4 73 3 1 0 88.0
SL: Scrubland 1 3 4 69 2 0 87.3
BL: Bareland 3 0 0 2 41 5 80.4
W: Waterbody 0 0 3 1 1 95 95.0
PA (%) 92.6 90.9 88.0 86.3 82.0 95.0
OA (%) 89.9
kappa coefficient 0.88

Table 8   Confusion matrix of 
SVM classification based on 
GLCM texture images

The classified map represented in row, whereas reference data represented in column

Classified LULC Reference data

DF BU EF SL BL W UA (%)

DF: Deciduous forest 86 1 2 1 2 0 93.5
BU: Built-up 1 81 1 3 2 0 92.0
EF: Evergreen forest 2 4 72 3 1 0 87.8
SL: Scrubland 1 3 4 70 2 0 87.5
BL: Bareland 3 0 0 2 42 5 80.7
W: Waterbody 0 0 3 1 1 95 95.0
PA (%) 92.5 91.0 87.8 87.5 84.0 95.0
OA (%) 90.3
kappa coefficient 0.88
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both the decomposition models. YD model performed 
better results, mainly in oriented urban areas (built-up) 
due to the helix scattering component, followed by FDD. 
Nevertheless, the comparisons of two decomposition 
theorems assessed by SVM classifications revealed that 
the classification based on Yamaguchi decomposition pro-
vides relatively higher accuracy of LULC map as deduced 
from the kappa coefficient. The texture analysis of the 
GLCM-based model resulted in some improvement of clas-
sification accuracy in the built-up class, whereas the accu-
racy levels for the remaining classes are quite similar to 
SVM classification using Yamaguchi decomposition model.

5 � Discussion and conclusions

Rapid advancement of SAR-based sensors has provided 
large volumes of full-PolSAR data, but these polarimetric 
are also complex to interpret objects unlike optical sen-
sors data. Thereby, the polarimetric target decomposi-
tion turned out to be a useful tool for understanding 
the PolSAR images by separating the radar backscatter 
into basic scattering mechanisms [61, 62]. The scatter-
ing matrix comprises magnitude and phase information 
at four polarizations (HH + HV + VH + VV), which are sent 
and received horizontally (H) and vertically (V) polarized 
waves by radar antenna. Thereby in recent years, use of 
PolSAR has become widespread because it supports a 
higher amount of information on scattering objects than 
in single/double polarization data. PolSAR data usually 
characterized by changes of microwave polarization, 
which is mainly influenced by the dielectric properties 
and terrain features, so LULC classification is the most 
important application of PolSAR data [63]. Cloude and 
Pottier [21] developed an eigenvector decomposition of 
a covariance matrix, which plays a vital role for capturing 
scattering properties of each pixel and for LULC classifica-
tion. Other physical-based model decompositions, namely 
FDD and YD, have been also widely used to classify ground 
objects using the three-component and four-component 
scattering mechanism model, respectively. By using afore-
mentioned decomposition methods, several studies per-
formed the LULC and crop classification by employing 
mostly the machine learning-based classifiers [64, 65]. 
As such, PolSAR has the potential to differentiate forest, 
agriculture, scrubland, fallowland, bareland, buildings, and 
water bodies, among others, with the help of surface scat-
tering, double-bounce scattering, and volume scattering 
[66]. The estimated area statistics of LULC classes are well 
comparable to the report of NRSC [54] as provided by the 
Department of Space (DoS), Government of India.

Here, we explored two classical model-based decompo-
sition models, namely FDD and YD for ALOS full-pol L-band 

data for performing LULC classification. A machine learn-
ing SVM classifier is adopted for LULC classification. The 
key findings revealed that the four-component decompo-
sition scheme (YD) outperformed the three-component 
decomposition scheme (FDD) for classifying LULC in three 
districts of the Mizoram state as evaluated by kappa coef-
ficient. The study region is mostly dominated by a series 
of hill ranges with forest coverage up to 75%. This is in 
line with the other previous studies which suggested that 
the four-component decomposition scheme comprising 
the scattering contributions from surface (single-bounce), 
double-bounce, volume, and helix performed better than 
the three-component decomposition scheme [23, 59]. 
Notably, Varghese et al. [21] adopted six decomposition 
methods (i.e. Huynen, Freeman–Durden, Yamaguchi, 
Cloude, Van zyl, and H/A/α) and the performance of each 
decomposition was assessed using a SVM classifier and 
concluded that Yamaguchi four-component scheme had 
a better accuracy in forest canopy mapping followed by 
Van Zyl and Freeman–Durden decomposition. Our results 
suggested that the helix scattering as a fourth component 
of Yamaguchi decomposition assisted to discriminate 
man-made targets in urban area scattering especially in 
Lawngtlai district of Mizoram state. There is a confusion 
between forest and bareland in both decomposition mod-
els, which are associated with double-bounce scattering 
from the forests along the high reliefs. There is a confusion 
especially between evergreen forest and built-up due to 
double-bounce scattering from the evergreen forest. There 
is also a confusion between forest and scrubland associ-
ated with similar volume scattering attributes from both 
classes. There is a confusion between bareland and water 
bodies in both the decomposition models associated 
with surface scattering characteristics from both classes. 
Nevertheless, misclassification of forest and scrubland 
decreased in Yamaguchi-based scattering attributes lead-
ing to improvement of classification accuracy. Yamaguchi 
decomposition performed better especially in built-up 
areas associated with helix scattering components. By 
using only six texture measures of GLCM, the SVM clas-
sifier exhibited classification accuracy at par with the 
Yamaguchi-based model. In particular, the GLCM model 
delivered a better accuracy for built-up class compared 
to Yamaguchi scattering model. This displays that texture 
information is appropriate for urban land cover classifica-
tion and similar conclusions were also drawn in several 
studies that have used texture measures from PolSAR data 
[67, 68]. Nevertheless, textural images have improved the 
accuracy of LULC classification, but there are some limita-
tions related to appropriate texture features, high amount 
of features and computation time, window size, and noise 
in some features [69].
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The six LULC classes were separated using the scat-
tering properties of PolSAR images. The LULC classifica-
tion accuracy was confirmed using the confusion matrix. 
The accuracy varied from 87 to 90% as evaluated by the 
SVM classifier. The kappa coefficient (0.88) is higher for YD 
image as compared to FDD image (0.84). The accuracy of 
LULC was also improved especially when texture features 
are utilized from GLCM. These results highlight the signifi-
cance of PolSAR data and polarimetric decomposition for 
LULC mapping with reasonably high accuracy.
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