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Abstract
Goncha Siso Eneses area of East Gojam Zone in northwestern Ethiopia is one of the most landslide-prone regions, which 
is characterized by frequent landslide occurrences causing fatalities and damages in cultivated and non-cultivated lands, 
infrastructure and properties. Hence, preparing a landslide susceptibility map is very helpful in reducing the damages in 
infrastructure and properties and loss of animal and human lives. In this study, GIS-based information value and logistic 
regression models were applied. A reliable and detailed landslide inventory with 894 landslides was prepared through 
detailed fieldwork and Google Earth image interpretation. These landslides were randomly divided into training data set 
for model development and testing data set for model validation. Nine landslide causative factors like slope, curvature, 
aspect, lithology, distance to stream, distance to lineament, distance to spring, rainfall and land use/cover were integrated 
with training landslides to determine the weight(s) of each landslide factor and factor classes using Information Value 
and Logistic Regression models, respectively. The landslide susceptibility index map was then produced by summing the 
weights of all the landslide factors using raster calculator of the spatial analyst tool in GIS. To evaluate the performance of 
the information value and logistic regression models for landslide susceptibility modeling, the relative landslide density 
index and area under the curve (AUC) of the receiver operating characteristic curves were performed on both the train-
ing and testing landslide data sets. The model has an AUC accuracy of 88.9% success rate and 85.9% prediction rate for 
information value model whereas 81.8% success rate and 80.2% predictive rate for logistic regression model.
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1  Introduction

Natural hazards, particularly landslides, are affecting most 
parts of the world by causing damages in farmlands, engi-
neering structures and loss of human lives [1–5]. These 
problems commonly occur in mountainous regions where 
the topography is rugged. These catastrophic natural haz-
ards become an impediment to the development of both 
developed and developing countries [6]. Landslides in 

Ethiopia have resulted in a loss of human and animal lives, 
damages in infrastructures and properties in the last 5 dec-
ades. From 1960 to 2010 alone, 388 people died, 24 people 
injured, a wide area of cultivated and non-cultivated land, 
environment, infrastructure, and houses were affected 
[7–10]. In 2018, rainfall triggered landslides also caused 
the death of 62 people, injury of 30 people, displacement 
of 5091 households, damage of houses and destruction of 
both cultivated and non-cultivated land in different parts 
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of the country. Although the landslide problem is critical in 
Ethiopia, still there is no adequate landslide susceptibility 
mapping in the different parts of the country. Goncha Siso 
Eneses is one of the areas that was recently affected by the 
landslide incidences and so far the area was not yet stud-
ied. Landslide in this area resulted in the damage of houses, 
gravel roads, farmlands and loss of animal and human lives. 
From local people’s witness, deep-seated rotational land-
slides occurred in 2014 and were reactivated in 2018 in Gete 
Semane village which caused the destruction of one house 
in 2014 but in 2018 landslide in the study area destroyed 
one house, cracked the floor of four houses, displaced peo-
ple from seventeen villages and damaged 44-ha farmlands 
that were covered by maize, almond, buckthorn and fruits. 
Generally, the landslide incidences in the study area caused 
damages in bridges, houses, farmlands with crops, fruits 
& eucalyptus trees and also caused few fatalities. In 2018 
alone, landslides caused the damage of 233.1 ha of farm-
land, death of eight people and destruction of five houses.

To identify the landslide-prone areas, researchers in 
different parts of the world have implemented various 
approaches and techniques. References [11–14] applied 
knowledge-based approaches. References [2, 15–18] used 
statistical approaches. Deterministic approach was applied 
by Gorsevski et al. [19], while a combination of determin-
istic and statistical modeling approaches was applied 
by Yilmaz and Keskin [20]. These techniques of landslide 
susceptibility mapping can be classified into qualitative 
and quantitative methods. The qualitative method is an 
expert-based technique that has subjectivity problem dur-
ing rating of weights for conditioning factors [21–25]. This 
relies on human judgment, but the quantitative method 
uses mathematical expressions in slope stability analysis 
rather than descriptive ones [26]. Among the quantitative 
methods, statistical methods are the most popular and 
highly applied techniques in landslide susceptibility mod-
eling. Statistical approaches are important to determine 
the spatial distribution of landslide and its relationship 
with different landslide causative factors. These methods 
are preferred in areas where geotechnical data are scarce 
and the area is relatively large. However, these methods 
do not provide the factor of safety that provides quantita-
tive information about slope instability [27]. Information 
value and logistic regression models are most commonly 
applied for landslide susceptibility mapping with a good 
degree of reliability [28]. Geotechnical approaches provide 
a numerical value that explains the intrinsic condition of 
the slope material unlike statistical approaches. However, 
the geotechnical approach is expensive and time-con-
suming. The main objective of this study is to prepare a 
landslide susceptibility map of Goncha Siso Eneses area 
using information value and logistic regression models.

1.1 � Study area

Goncha Siso Eneses area is located in Northwestern 
Ethiopia, which is characterized by mountain peaks, 
deep gorge (valley), plateau and undulating topogra-
phy with minimum and maximum altitudes of 1198 m 
and 3199 m, respectively (Fig. 1). The area is bounded 
between 37.9°E and 38.39°E longitude and 10.8°N and 
11.06°N latitude. Goncha Siso Eneses area is also charac-
terized by tropical (1830 m), subtropical (1830–2440 m) 
and cool (> 2,440 m) climate zones. Annual rainfall of the 
study area varies from 762 to 1824 mm. The annual rain-
fall distribution showed a pronounced seasonality with 
the heaviest rainfall being in July and August. The mean 
temperature of the area is 18.5 °C with a mean minimum 
and maximum daily temperature of 11.4 °C and 25.5 °C, 
respectively [29].

2 � Materials and methods

For this research, field survey, Google Earth image analy-
sis, GIS-based information value and logistic regression 
models were applied. Moreover, relevant data like topo-
graphic maps, DEM (30 m × 30 m resolution), geological 
reports and maps, meteorological data and borehole 
data have been collected. These data were collected 
from Ethiopian Mapping Agency, United States Geologi-
cal Survey (USGS), Geological Survey of Ethiopia (GSE), 
Ethiopian National Meteorological Agency, Amhara 
Water Well Drilling Enterprise (AWWDE), field survey and 
Google Earth image.

The landslide inventory map was prepared using 
extensive field survey and Google Earth image inter-
pretation. This was randomly divided into training and 
testing landslide data sets (Fig. 3). The testing landslide 
dataset is used to verify the accuracy of landslide sus-
ceptibility maps. Using ArcMap 10.1, conditioning and 
triggering factor maps were prepared. Slope, aspect, 
curvature and streams have been extracted from 
30-m-resolution DEM. The geology of the study area 
including the lithology and geological structures (mainly 
lineaments) was collected from field survey in order to 
update the existing lithology and structural (lineament) 
maps. During the field work, locations of springs were 
also collected. Buffering analysis was done to obtain the 
distance to lineament, distance to springs and distance 
to stream parameters. The land use map was digitized 
from Google Earth image as it was possible to get a more 
reliable result due to its high spatial resolution and easi-
ness in terms of its manual classification. Generally, the 
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Fig. 1   Location map of the study area

Fig. 2   General flowchart of the methodology applied in this study
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Fig. 3   Landslide inventory map of the study area
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general flowchart that showed the procedures to be 
followed in this research work is summarized in Fig. 2. 
The rainfall raster map was prepared by interpolating 
the 30-year rainfall data of twelve rain gauge stations 
near to the study area using the IDW spatial analyst tool 
to get an interpolated and spatially distributed rainfall 
raster map.

In landslide susceptibility mapping, building a data-
base is the most important task. Therefore, two databases 
were built for the information value and logistic regression 
models. The information value database contains landslide 
inventory and landslide factors, while the logistic regres-
sion database contains landslide and non-landslide points 
with nine landslide factors information values. After the 
calculation of information values, the information raster 
maps were prepared in ArcGIS. Then, these maps were 
summed using the raster calculator in ArcGIS to get the 
landslide susceptibility index (LSI). In the case of logistic 
regression model, the study area was classified as train-
ing landslide and non-landslide points using a random 
point in fishnet. Then, the information values of the nine 
factor maps were extracted in order to generate logistic 
regression coefficients of each landslide factor in SPSS, 
and finally, the landslide susceptibility index of the area 
was generated using the logistic regression probability 
equation in GIS.

The landslide susceptibility index maps in both meth-
ods were further reclassified using the reclassify option 
of the spatial analyst tool in order to get the predicted 
landslide susceptibility maps. In logistic regression model, 
the LSI map was extracted with training and testing land-
slides data which are used to judge the performance of the 
model using ROC, landside density and relative landslide 
index (R-index). Finally, the landslide susceptibility index 
maps were classified into very low, low, moderate, high 
and very high landslide susceptibility classes using the 
natural breaks method.

2.1 � Landslide inventory

In landslide susceptibility mapping, landslide inventory is 
the most important component of slope stability analy-
sis. In the present work, 894 landslides, which covered an 
area of 49.8 km2 (Fig. 3), were identified from old scarps 
and active slides using detailed field survey and Google 
Earth image interpretation. The landslide inventory was 
randomly classified into training (699 landslides) and test-
ing (195 landslides) datasets by considering their spatial 
distribution into account. Landslide types in the study area 
include rockslide, soil slide, debris flow, earth flow, rock fall 
and rock toppling. From Google Earth time-series image 
interpretations, the study area has been affected by land-
slide incidences since 2006.

2.2 � Landslide factors

For the selection of landslide factors, there are no well-
known standard criteria until now. However, nine landslide 
factors including lithology, land use/land cover, slope, 
aspect, curvature, distance to springs, distance to stream, 
distance to lineament and rainfall were used in this study. 
These landslide factor maps were prepared and classi-
fied into subclasses (Table 1, Fig. 4a–i) to determine the 
contribution of each factor class for landslide occurrence. 
Slope, aspect, curvature and distance to stream maps 
were derived from ASTM 30-m-resolution DEM (Fig. 4 a, 
b, e and c) and classified into different classes (Table 1). 
Lithology map (Fig. 4d) was updated based on field survey 
and the distance to lineament map (Fig. 4f ) was prepared 
using buffering analysis. Land use/cover map (Fig. 4i) was 
digitized from Google Earth image interpretation, which 
can be exported to GIS layer format and verified in the 
field for the final map. Based on spring location data from 
extensive field work, distance to spring map was gener-
ated (Fig. 4g). Rainfall map (Fig. 4h) was prepared by inter-
polating the 30-year rainfall data of twelve rain gauge sta-
tions which are found within and near to the study area 
using IDW interpolation technique of the spatial analyst 
tool in GIS. The details of all the landslide factors and their 
weights of IV with respect to landslide occurrence are sum-
marized in Table 1.

2.3 � Information value model

The information value model is a bivariate statistical 
method which is used to predict the spatial relationship 
between landslides and landslide factor classes [30]. This 
method was developed by Yin and Yan [31] and modified 
by Sarkar et al. [32]. In the present work, the information 
values have been determined for each class of a factor 
map based on the presence of landslide in a given map 
unit. The calculated information value helps to deter-
mine the role of each factor class for landslide occur-
rence [33]. All factor maps were converted into raster 
maps with the same coordinate system (Adindan UTM 
zone 37 N) and the same pixel size (30m × 30m) and were 
reclassified into different classes. The landslide inven-
tory map was randomly divided into training landslides 
(78%) and testing landslides (22%) by considering their 
spatial distribution into account. The rasterized training 
landslide map was overlaid over the rasterized landslide 
factor maps using ArcGIS software to calculate the infor-
mation values for all classes of each factor map using 
the information value model. The information value of a 
certain factor class was calculated using the log value of 
the ratio of conditional probability to prior probability. 
The conditional probability was calculated by dividing 



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:807 | https://doi.org/10.1007/s42452-020-2563-0

Table 1   Information value for each factor class

Factors Classes Ncpix % MA Nslpix % LSA Landslide 
density

IV = log(Con_
Prob/Prior_
Prob

Slope (degree) < 5° 93,326 25.7 615 13.4 0.52 − 0.28
5°–9° 98,749 27.1 889 19.3 0.71 − 0.15
9°–14° 53,699 14.8 654 14.2 0.96 − 0.02
14°–20° 32,641 9 477 10.4 1.16 0.06
20°–27° 30,367 8.3 508 11 1.33 0.12
27°–32° 26,098 7.2 538 11.7 1.63 0.21
32°–39° 17,886 4.9 447 9.7 1.98 0.3
39°–48° 8836 2.4 389 8.5 3.54 0.54
48°–74° 2173 0.6 83 1.8 3.00 0.48

Aspect Flat 33,266 9 491 11 1.22 0.15
N 35,220 10 597 13 1.30 0.29
NE 33,165 9 414 9 1.00 − 0.01
E 35,337 10 258 6 0.60 − 0.55
SE 34,238 9 356 8 0.89 − 0.2
S 38,229 11 433 9 0.82 − 0.11
SW 40,696 11 592 13 1.18 0.14
W 41,078 11 556 12 1.09 0.07
NW 36,974 10 462 10 1.00 − 0.01
N 35,572 10 441 10 1.00 − 0.02

Land use Cultivated land 274,685 75.71 3003 65.34 0.86 − 0.06
Bare land 3278 0.9 70 1.52 1.69 0.23
Water body 7837 2.16 304 6.61 3.06 0.49
Settlement 7563 2.08 69 1.5 0.72 − 0.14
Scatter bush 9026 2.49 85 1.85 0.74 − 0.13
Grazing land 40,172 11.07 920 20.02 1.81 0.26
Wet land 12,391 3.42 17 0.37 0.11 − 0.97
Moderate Forest 7841 2.16 128 2.79 1.29 0.11

Distance to lineament (m) 0–311 95,537 26.26 1158 25.17 0.96 − 0.02
311–660 88,529 24.34 1708 37.13 1.53 0.18
660–1068 55,572 15.28 693 15.07 0.99 − 0.01
1068–1515 36,974 10.16 507 11.02 1.08 0.04
1515–2000 25,997 7.15 315 6.85 0.96 − 0.02
2000–2505 17,519 4.82 76 1.65 0.34 − 0.46
2505–3029 15,655 4.3 72 1.57 0.37 − 0.44
3029–3553 12,838 3.53 3 0.07 0.02 − 1.73
3553–4136 9726 2.67 34 0.74 0.28 − 0.56
4136–4952 5428 1.49 34 0.74 0.50 − 0.31

Lithology Slightly weathered basalt 69,871 19.2 1709 37.14 1.93 0.66
Highly weathered basalt 207,927 57.15 1850 40.21 0.70 − 0.35
Residual soil deposit 66,401 18.25 457 9.93 0.54 − 0.61
Colluvium soil deposit 11,861 3.26 519 11.28 3.46 1.24
Alluvial soil deposit 7776 2.14 66 1.43 0.67 − 0.4
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the landslide pixels in a single factor class to pixels of a 
subclass of landslide factor, while the prior probability 
was calculated by dividing the total landslide pixels in 
the study area to the total pixels in the entire study area 
using Eq. (1) as follows.

where Nslpix is a number of landslide pixels in a given 
class, Ncpix is the number of pixels in a given class, Ntspix 

(1)

IV = log

(

Conditional probability

Prior probability

)

= log

(

Nslpix∕Ncpix

Ntspix∕Ntapix

)

Table 1   (continued)

Factors Classes Ncpix % MA Nslpix % LSA Landslide 
density

IV = log(Con_
Prob/Prior_
Prob

Distance to springs 0–812 37,198 10.22 1172 25.47 2.49 0.4

812–1456 51,181 14.07 761 16.54 1.18 0.07

1456–2045 53,842 14.8 602 13.08 0.88 − 0.05

2045–2633 56,407 15.5 729 15.84 1.02 0.01

2633–3193 50,375 13.85 664 14.43 1.04 0.02

3193–3753 40,850 11.23 463 10.06 0.90 − 0.05

3753–4313 31,975 8.79 137 2.98 0.34 − 0.47

4313–4901 21,642 5.95 48 1.04 0.17 − 0.76

4901–5686 15,203 4.18 25 0.54 0.13 − 0.89

5686–7142 5165 1.42 0 0 0.00
Distance to stream (m) 0–100 14,661 24.02 1647 36.14 1.50 0.41

100–231 18,023 29.52 1223 26.84 0.91 − 0.1
231–372 12,051 19.74 803 17.62 0.89 − 0.11
372–489 7701 12.61 431 9.46 0.75 − 0.29
489–589 4779 7.83 231 5.07 0.65 − 0.43
589–693 2846 4.66 166 3.64 0.78 − 0.25
693–793 729 1.19 41 0.9 0.76 − 0.28
793–1155 259 0.42 15 0.33 0.79 − 0.25

Curvature − 19 552 0.15 22 0.48 3.20 0.5
− 4 11,782 3.24 377 8.2 2.53 0.4
− 1.7 to − 0.5 52,220 14.36 1102 23.96 1.67 0.22
− 0.5 to 0.26 194,385 53.44 1943 42.24 0.79 − 0.1
0.26–1.6 92,837 25.52 925 20.11 0.79 − 0.1
1.6–6 11,511 3.16 213 4.63 1.47 0.17
6–24.2 488 0.13 18 0.39 3.00 0.46

Rainfall (mm) 205–350 12,206 3.36 17 0.38 0.11 − 0.95
350–495 11,128 3.06 9 0.2 0.07 − 1.19
495–640 15,794 4.34 91 2.01 0.46 − 0.33
640–785 36,145 9.94 1041 23.01 2.31 0.37
785–930 48,711 13.39 1035 22.88 1.71 0.23
930–10,75 51,491 14.16 350 7.74 0.55 − 0.26
1075–1220 70,316 19.33 538 11.89 0.62 − 0.21
1220–1365 58,767 16.16 882 19.5 1.21 0.08
1365–1510 38,452 10.57 446 9.86 0.93 − 0.03
1510–1655 20,732 5.7 115 2.54 0.45 − 0.35

Ncpix, number of pixels in a class; % MA, percent of landslide susceptibility classes; Nslpix, number of landslide pixels in a class; % LSA, per-
cent of the landslide area; Con_pro(a), conditional probability; Prior_prob (b), prior probability; IV, information value
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is a total number of landslide pixels in the study area, and 
Ntapix is a total number of pixels in the entire study area. 
The weights of all factor classes were calculated through 
the ratio of landslide density of each factor class to the 
landslide density of total area, or the information value 
can provide the landslide probability in each class and in 
the total area (Table 1). If IV > 0.1, the factor classes will 
have the highest probability of landslide occurrence, but 
factor classes with negative values indicate the presence 
of a factor with no significant contribution to landslide 
occurrence.

2.4 � Logistic regression model

Logistic regression is one of the popular multivariate sta-
tistical analysis models which can be used to establish a 
multivariate regression relationship between dependent 
and independent variables [34]. Among other statistical 
methods, logistic regression model has been proven one 
of the most reliable approaches for landslide susceptibil-
ity mapping and determining the most landslide influenc-
ing factors [16, 28, 35–39]. This model is advantageous as 
it does not require normal distribution and it uses con-
tinuous or discrete variables. The difficulty of using the 
logistic regression model lies on sample size selection of 

dependent and independent variables for landslide sus-
ceptibility analysis. There are three ways of sampling land-
slide and non-landslide points [40]. The first way is using 
all data from all the study areas. However, this leads to an 
uneven proportion of non-landslide and landslide pixels 
which incorporate a large volume of data in the analysis 
[41, 42]. Using all landslide pixels with equal non-landslide 
pixels is the second method which also results in a less 
reliable output, but it can reduce sample size and sam-
pling bias. The third method uses an unequal proportion 
of landslide and non-landslide pixels [1, 43]. In the pre-
sent work, the landslides of the study area were classified 
into training landslides (78% with 699 landslides) and as 
testing landslides (22% with 194 landslides). This method 
requires SPSS or R software to calculate the coefficient of 
each factor map. It can be expressed mathematically [37, 
44] as:

where P is the probability of landslide occurrence that var-
ies from zero to one. Z is the linear combination of the 
predictors and varies from − 1 < z < 0 for higher odds of 
non-landslide occurrence to 0 < z < 1 for odds of higher 
landslide occurrence. Z can be defined as:

(2)P =
1

1 + e−z

Fig. 4   Landslide factor maps, a slope, b aspect, c distance to stream, d lithology, e curvature, f distance to lineament, g distance to springs, 
h rainfall and i land use/cover maps
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where x1, x2, x3 … x
n
 are independent variables, Bo is the 

intercept of the slope of logistic regression analysis, and 
�1, �2, �3 … �

n
 are the coefficients of the logistic regres-

sion analysis.

3 � Result and discussion

3.1 � Information values (IV) model

The landslide inventory map was overlaid with the factor 
maps to determine the significance of each factor class for 
landslide occurrence. Using information value equation, 
the information value for each factor class was calculated 
and the factor classes which have positive information val-
ues of > 0.1 will have the higher probability of landslide 
occurrence (Table 1).

The IV results in Table 1 indicates that the slope of the 
study area will have a significant influence to landslide 
occurrence, especially on slope classes of 20°–27°, 27°–32°, 
32°–39°, 39°–48° and 48°–74°. This is because the mate-
rial covering these slope classes is loose unconsolidated 
sediment at a shallow depth, which will slide when it is 
subjected to heavy and prolonged rainfall and a change 
in slope geometry. However, the IV values for gentle and 
very gentle slope classes are negative which implies no 
effect on slope instability. Landslides occurred more fre-
quently on steep slopes than on gentle slopes. However, 
landslides can also occur in gentle slopes when other 
landslide factors like slope modification (excavation and 
mining), active gully and riverbank erosion/scouring are 
undertaking. Field observations showed that landslide 
can occur in gentle slopes but may not form a long run 
out distance due to its moderate slope gradient. The IV 
of aspect class in Table 1 showed that the aspect classes 
of flat, N and SW facing slopes have significant landslide 
occurrences which include 9%, 10%, 11% and 11% of the 
total landslides in the study area as streams and springs 
are concentrated in these aspect classes. However, other 
aspect classes that covered 59% of the study area have no 
slope instability/landslide problem.

Lithology is one of the most influencing factors that 
cause slope instability problems depending on the 
inherent properties of rocks and soils. From the infor-
mation value results in Table 1, the slightly weathered 
basalt and colluvial soil deposits showed high IV values 
that will have a high probability of landslide occurrence. 
The slightly weathered basalt developed thin layers of 
soils, which have a significant effect on slope instabil-
ity in the area resulting from the fast rate of saturation. 
In general, as the depth of the soil mass decreases, it will 

(3)Z = �0 + �1X1 + �2X2 + �3X3 … �
n
X
n
BnXn

saturate within a short period. This increases the probabil-
ity of slope instability in such thin soil masses. Colluvial 
soil deposit, which contains unconsolidated recent soil 
deposit, is another problematic slope mass in the study 
area that causes slope instability problem due to its loose 
nature and its dispersion ability when it gains water. Land 
use/cover is one of the most decisive factors for slope 
instability problems, but the study area is not exposed 
to huge anthropogenic activities like construction of big 
infrastructures and engineering structures. Agricultural 
activity is the most commonly and intensively practiced 
activity in the flush portion of the streams. As a result, the 
IV value for agricultural activity is negative which means 
agricultural activities have no effect on slope instability. 
Nevertheless, if the agricultural activity is practiced in the 
sheer slope portion, it might have a pronounced effect on 
slope instability. Among the land use classes, the water 
body has the highest IV values indicating that it will have 
the highest influence or effect on landslide occurrence. It 
is known that water is one of the key elements that con-
trols slope stability. This is because water can cause gully 
and riverbank erosion, can add weight on a slope due to 
saturation of the soil, can lubricate fracture and cracks of 
rocks and soil mass and can decrease the shear strength 
of the soil mass by increasing pore water pressure when 
the pore space in soil mass is filled with water. The IV value 
for moderately forested region is nearer to 0.1, indicating 
that the presence of forest on the slope is important in 
slope stabilization when the trees are planted on the slope 
toe and when the tree roots crossed the potential failure 
surface. The effects of vegetation on slope stability can 
be grouped into hydrological and mechanical effects. The 
hydrological effect can reduce soil moisture by removing 
water from the slope through evapotranspiration and 
uptake of water with its roots. This can lessen pore water 
pressure in a soil mass, whereas the mechanical effects 
of vegetation are associated with the anchorage of fail-
ure planes through their roots when the roots cross the 
failure surface in the soil mass. Landslides did not occur 
in forested parts of the study area due to the root anchor-
age by vegetation and reduction of the moisture con-
tent through evapotranspiration process. This makes the 
vegetated areas to be less susceptible to slope instability 
problem. In most cases, bare land has a great role in slope 
instability by facilitating other factors like soil erosion. 
The IV value for the bare land use type in the study area 
showed high values which can make the slope unstable. 
But this may not always be true as it is highly dependent 
on the properties of slope material. Grazing land is another 
land use type which has a great role on landslide occur-
rence as it increases the rate of soil and gully soil erosion, 
thereby making the slope to be unstable. The IV value for 
the distance to spring class in between 0 and 812 m is 
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high, indicating the high probability of landslide occur-
rence. This shows that the landslides are more frequent in 
the close vicinity of springs.

Mostly, landslides occurred closer to the river/stream 
courses because of stream/riverbank erosion. This is com-
mon in the study area. As the IV values in Table 1 indicated, 
distance to stream (0–100 m) which is closer to the river/
stream showed higher IV value with a significant effect on 
landslide occurrence. About 36.14% of the landslide areas 
are found in this factor class.

The slope instability problem is also associated with 
slope gradient, slope aspect and slope curvature. As the 
information value results in Table 1 indicated, the slope 
curvature has great contribution to landslide occurrence 
in the study area. The slope curvature can be classified 
into flat, concave and convex shapes. The concaveness of 
the slope has a significant impact on landslide occurrence 
in Inegode and Angot villages which covered 33% of the 
total landslides. When the slope shape is bowl-shaped, it is 
favorable for water impoundment. The impounding water 
infiltrated into the ground and developed pore water pres-
sure that can reduce the effective stress of the soil. About 
5% of the landslide areas are found in convex slopes which 
promote landsliding due to the effect of gravity.

3.2 � Landslide susceptibility index (LSI)

After information values are assigned for each factor class, 
landslide susceptibility index map of the study area was 
prepared by summing all the information value raster maps 
using a raster calculator in the spatial analyst tool of ArcGIS 
as shown in Eq. (4). The landslide susceptibility index map 
requires further reclassification. For this purpose, various 
classification techniques are available like natural breaks, 
standard deviation, equal interval, manual and quantile 
techniques in GIS. However, the classification techniques to 
be applied depend on the type and distribution of data. The 
natural breaks method is important for unevenly distributed 
data, and it is capable of classifying the landslide susceptibil-
ity index map into different categories based on the inherent 
data value similarity [17, 45]. In the present work, the final 
landslide susceptibility index map of the study area was clas-
sified into five classes of very low, low, moderate, high and 
very high susceptibility using the natural breaks as indicated 
in Figs. 5 and 6. The high and very high landslide susceptibility 
classes covered 36% and 20% of the study area for the infor-
mation value and logistic regression models, respectively. 

These classes mostly fall in a steep slope, concave-shaped 
slopes, river gorge and active gully soil erosion areas. The very 
low and low landslide susceptibility classes are found in low 
land and in plateau areas. The moderate susceptibility classes 
are concentrated along small streams. The result of landslide 
susceptibility map from information value model in Table 2 
revealed that 23% and 13.3% of the area fall under high and 
very high landslide susceptibility classes, but the remaining 
11.4%, 22.8% and 29.5% of the area fall under very low, low 
and moderate susceptibility classes, respectively.   

In the case of logistic regression model, 12.6% and 7.1% 
of the area fall under the high and very susceptibility classes 
but the rest classes that comprise 28.6%, 30.8% and 20.9% of 
the area fall under very low, low and moderate susceptibil-
ity classes, respectively (Table 3). Using SPSS software, the 
intercept values and coefficients of all the factor maps were 
determined and an equation constituting these coefficients 
and intercept value were established as can be seen in Eq. (5) 
and Table 4 and the final landslide susceptibility map from 
logistic regression was obtained using Eq. (6). 

(4)

LSI = IV Slope + IV Aspect + IV Curvature + IV Lithology

+ IV Distance to Str + IV Distance to Springs

+ IV Rainfall + IV Land use + IV Distance to Lineaments

(5)
Z = − 0.614 + 0.395 ∗ Slope + 0.123 ∗ Lithology + 0.172 ∗ Distance to Lineaments + 0.01 ∗ Aspect

+ 0.089 ∗ Land use + (−0.031) ∗ Curvature + (−0.051) ∗ Rainfall

+ (−0.22) ∗ Distance to Sream + (−0.276) ∗ Distance to Spring

3.3 � Model validation

Landslide susceptibility map without validation will not 
give meaning in the scientific sense. For this purpose, vari-
ous validation techniques were applied. In the case of model 
validation, the landslide area has been classified based on 
time, space and random partition [16, 17, 46]. In the present 
work, the landslide area was randomly classified into 78% 
landslides for training and 22% landslides for model valida-
tion by keeping their spatial distribution into account using 
the random partitioning technique [17, 46]. The landslide 
susceptibility model for the study area was developed using 
the training dataset. The models were validated by apply-
ing various validation techniques like simple overlay, rela-
tive landslide density index (R-index) and receiver operating 
characteristics (ROC) curve (Figs. 7 and 8).

(6)P =
1

1 + e−Z
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Fig. 5   Landslide susceptibility model using information value method
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Fig. 6   Landslide susceptibility model using the logistic regression method
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Table 2   Information value model summary

LSP, landslide susceptibility pixels; LSI, landslide susceptibility index; TLSP, training landslide pixel; LSMA, landslide susceptibility map area; 
VLSP, validation landslide pixel; VLS, validation landslide; DVLS, density of validation landslide; DTLS, density of training landslide; VLS, LS, 
MS, HS, and VHS mean very low, low, moderate, high and very high landslide susceptibility, respectively

LSP LSI LSM classes % LSMA(b) LSM area (km2) TLSP %TLS(a) VLSP %VLS Landslide den-
sity = a/b

DVLS DTLS

40,467 − 3.9 to − 1.6 VLS 11.4 36.2 62 1.4 20 1.9 0.2 0.1
81,269 − 1.6 to − 0.84 LS 22.8 73 241 5.4 78 7.4 0.3 0.2
105,114 − 0.84 to − 0.16 MS 29.5 95 614 13.7 194 18.3 0.6 0.5
81,804 − 0.16 to 0.6 HS 23.0 73.7 1369 30.6 299 28.2 1.2 1.3
47,308 0.6–2.8 VHS 13.3 42.4 2191 48.9 469 44.2 3.3 3.7

Table 3   Logistic regression model summary

LSM, landslide susceptibility map

LSI LSM classes LSM pixel % LSM area (b) LSM area (km2) Landslide pixel % landslide 
area (a)

Landslide 
density (a/b)

0.009–0.2 VLS 101,958 28.6 91.5 545 12.2 0.43
0.2–0.3 LS 109,558 30.8 99.0 650 14.6 0.47
0.3–0.44 MS 74,252 20.9 66.6 1047 23.5 1.12
0.44–0.62 HS 44,933 12.6 40.4 1147 25.7 2.04
0.62–0.94 VHS 25,261 7.1 22.7 1073 24.0 3.38

Table 4   Logistic regression (LR) 
coefficients, multicollinearity 
test and model statistics

VIF, variance inflation factor

Landslide Factor LR coefficient (β) Collinearity statistics

Tolerance VIF Model statistics Value

Lithology 0.123 0.726 1.377 Chi Square 7.718
Aspect 0.01 0.979 1.021 Cox & Snell R square 0.188
Land use 0.089 0.842 1.188 Nagel Kerke R square 0.251
Curvature − 0.031 0.997 1.003 Significance 0.461
Slope 0.395 0.617 1.620
Distance to lineament 0.172 0.673 1.486
Annual rainfall − 0.051 0.778 1.286
Distance to springs − 0.276 0.759 1.318
Distance to stream − 0.22 0.951 1.052
Constant − 0.614
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3.3.1 � Overlay method

From the overlay of training and validation landslide data 
sets over the landslide susceptibility map, the percent and 
density of training and validation landslides were calculated 
which increases from very low to very high landslide suscep-
tibility classes. This again confirmed that the model is reliable 
and accurate (Table 5 and Fig. 7). The higher the number of 
landslide pixels in the high and very high landslide suscepti-
bility index, the higher will be the model accuracy [17].

3.3.2 � Relative landslide density index (R‑Index)

The landslide susceptibility models in this study were also 
validated using a relative landslide density index which is 
calculated using the following equation.

where ni is the number of landslide in a landslide suscep-
tibility classes, while Ni is the number of landslide suscep-
tibility class pixel within that class. The relative density 
can be calculated using Eq. (7) through a comparison of 
landslide susceptibility map with landslide inventory data 
[47, 48]. The fact that R-index value increases from very 
low to very high landslide susceptibility classes (Table 5 
and Fig. 7a) confirms that the model is accurate and reli-
able [47, 48].

(7)R - Index =

ni

Ni

∑ ni

Ni
∗ 100

Table 5   Landslide density and relative landslide index (R-index)

TLSPX, training landslide pixel; TLSP, training landslide point; TLS, training landslide; VLSPX, validation landslide pixel; VLSP, validation land-
slide points; VLS, validation landslide; LSMP, landslide susceptibility map pixels; LSMA, landslide susceptibility map area

LSMP % LSMA(b) TLSPX TLSP R-index %TLS(a) VLSPX VLSP R-index %VLS Landslide 
density = a/b

Description

Information value method
40,467 11.4 62 23 28.9 1.4 20 11 49.1 1.9 0.2 0.1 VLS
81,269 22.8 241 40 25 5.4 78 23 51.1 7.4 0.3 0.2 LS
105,114 29.5 614 108 52.2 13.7 194 35 60.2 18.3 0.6 0.5 MS
81,804 23 1369 207 128.5 30.6 299 58 128.1 28.2 1.2 1.3 HS
47,308 13.3 2191 323 346.7 48.9 469 70 267.4 44.2 3.3 3.7 VHS
Logistic regression method
101,958 28.6 545 49 23.8 12.2 122 16 27.8 11.5 0.4 0.4 VLS
109,558 30.8 650 98 44.3 14.6 165 36 58.2 15.6 0.5 0.5 LS
74,252 20.9 1047 169 112.7 23.5 205 50 119.3 19.3 0.9 1.1 MS
44,933 12.6 1147 205 225.9 25.7 272 45 177.4 25.7 2 2.0 HS
25,261 7.1 1073 198 388.1 24 296 54 378.6 27.9 3.9 3.4 VHS
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Fig. 7   a Relative landslide 
index (R-index) and b landslide 
density

3.3.3 � Receiver operating characteristics (ROC) curve

The area under the receiver operating characteristics 
(ROC) curve was considered in evaluating the success 
and predictive rates of both training and testing data 
sets for information value and logistic regression mod-
els using real statistics in Microsoft Excel. The area under 
the curve (AUC) value ranges from 0.5 to 1 [49]. When the 
AUC value is in between 0.9 and 1, the model will have 
excellent performance; if AUC value is in between 0.8 
and 0.9, the model will have very good performance. If 
the AUC value is in between 0.7 and 0.8, the model will 

have good performance. If AUC value is between 0.6 and 
0.7, the model will have average performance. However, if 
AUC value is between 0.5 and 0.6, the model will have fair 
performance, but if AUC value is equal to or less than 0.5, 
then the model will have poor performance. Based on the 
above explanation, the AUC values in the present models 
for both success and predictive rates lie in the range of 
0.8 and 0.9 showing a very good performance (Fig. 8 and 
Table 6). Therefore, based on the result of AUC value in the 
ROC curve, both models that have developed using logis-
tic regression and information value methods are reliable 
and accurate.
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3.3.4 � Model comparison

Among different GIS-based statistical models, informa-
tion value and logistic regression are the most commonly 
used models for landslide susceptibility mapping. Besides 
their merits, these models have also limitations. The infor-
mation value method cannot determine the relationship 
between landslide factors and landslide, but it helps to 
know the effects of each factor class on landslide occur-
rence. As shown in Table 1, the probability of each factor 
class to cause a landslide incidence can be predicted, but 
it cannot distinguish which landslide factor is controlling 
more in the case of information value model. However, this 
limitation can be solved using logistic regression model 
which determines the significance of each landslide factor 

by calculating the logistic regression coefficients of each 
landslide factor. Nevertheless, this model has also limita-
tions of generalization and simplification of landslide fac-
tors. According to [50, 51], the information value method 
provided a more realistic landslide susceptibility map with 
a high prediction accuracy than the logistic regression 
one. However, Bui et al. [51] reported that the accuracy of 
the two models showed almost an equal predicting capac-
ity, with prediction rates of 94.2% and 95%, respectively. 
As stated by Zhang et al. [40], the logistic regression model 
is better than the information value model in landslide sus-
ceptibility mapping based on the success and predictive 
rate curves. However, in the present study, the success rate 
curve value is 88.6% and the predictive rate curve value 
is 85.9% for the information value model which is better 

Fig. 8   Receiver operating characteristics curve (ROC)

Table 6   Relative error and area 
under the curve (AUC) result 
summary for information value 
and logistic regression models

Model AUC-calibration AUC-validation Relative error ( � ) 
for calibration

Relative error 
( � ) for valida-
tion

Information value (IV) 0.886 0.859 0.2 0.4
Logistic regression (LR) 0.818 0.802 0.4 0.5



Vol.:(0123456789)

SN Applied Sciences (2020) 2:807 | https://doi.org/10.1007/s42452-020-2563-0	 Research Article

than the success rate curve value of 81.8% and the predic-
tive rate curve value of 80.2% for logistic regression model. 
Therefore, the information value model has a better per-
formance than the logistic regression model in predicting 
the probability of landslide occurrence. This is because 
logistic regression model has oversimplified the statistical 
significance of landslide factors. In the present study, land-
slide factors were classified into different classes and the 
information value for each factor class was determined. 
Based on the results of information value, not all factor 
classes have a significant effect on landslide occurrence. 
Nevertheless, some of the factor classes in a single factor 
have a greater effect on landslide occurrence as shown in 
Table 1. Accordingly, the negative information values have 
less or no significance on landslide occurrence, while the 
positive information values that are greater than 0.1 have 
greater roles in landslide occurrence.

4 � Conclusion

In the present work, information value and logistic regres-
sion models were applied to prepare the landslide sus-
ceptibility maps of the study area. From information value 
model, the weights of each landslide factor classes were 
calculated while in logistic regression model, the logistic 
regression coefficients for all landslide factors were deter-
mined. Using logistic regression analysis, coefficients of all 
the landslide factors with statistical significance to land-
slide occurrence include slope, land use/cover, lithology, 
aspect and distance to lineament. But the rest landslide 
factors like rainfall, curvature, distance to stream and 
springs with negative coefficients implied that these fac-
tors have less significance for landslide occurrence, while 
the information value of each factor class shows about the 
contribution of each factor class on landslide occurrence 
when its value is greater than 0.1.

Based on information value analysis, the factor classes 
with IV greater than 0.1 include slope (20°–74°), land use 
(bare land, grazing land and water body), lithology (collu-
vial soil and slightly weathered basalt), distance to stream 
(0–100 m), distance to lineament (0–311 m), distance to 
spring (0–812 m), curvature (concave and convex), aspect 
(flat, north and southwest) and rainfall (640–785  mm, 
785–930 mm).

From the information value and logistic regression ras-
ter maps of all the landslide factors, the landslide suscep-
tibility index maps were prepared using a raster calculator 
of the spatial analyst tool in GIS. These maps were fur-
ther reclassified in GIS using natural breaks classification 

method into very low, low, moderate, high and very high 
landslide susceptibility classes. The road section from 
Debre Birhan–Tora Meda to Debre Yakob, Tora Meda to 
Inegode village and new road from Arib Gebeya to Angot 
village fall under moderate, high and very high landslide 
susceptibility classes because of intense and active gully 
erosion, presence of spring, concaveness and convexness 
of the slope in the area.

The accuracy of the final landslide susceptibility model 
was tested using the receiver operating characteristics 
(ROC) curve, simple overlay and the relative landslide 
density index (R-index) methods by comparing landslide 
raster with the landslide susceptibility map. From the suc-
cess and predictive rates of the receiver operating charac-
teristics (ROC) curves, the area under the curve has been 
determined for each model. Since the value of the area 
under the curve is close to one, the landslide susceptibil-
ity models of the present study have shown acceptable 
accuracy. Based on the AUC values, the information value 
model is better than the logistic regression model.

The resulting maps have provided the spatial distribu-
tion of landslide occurrences, but these cannot forecast 
the time, degree of landslide occurrences and how often 
it can occur [52]. However, these maps can be used by 
decision-makers, civil engineers or geologists for regional 
land use and urban planning and for landslide prevention 
and mitigation. Therefore, the government bodies at the 
Federal, Regional, Zonal and District levels should take 
concrete actions to mitigate the problem by afforestation 
of barren lands, constructing check dams, gabion and 
retaining walls, relocation of people from unstable slopes 
and a combination of these remedial measures.
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