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Abstract
Single ended primary inductance converter (SEPIC) is a type of DC–DC converter whose industrial applications include 
maximum power point tracking and Active power factor correction. Owing to present nonlinear circuit components, 
SEPIC has discontinuous nonlinearity and for the mathematical model determination, state space averaging or more 
advanced modeling techniques are required. Once the approximated nonlinear model is obtained, the states of the plant 
can be estimated using a nonlinear state estimator. Nonlinear estimators are preferred mostly when the real trajectory 
of the states cannot be estimated accurately by a linear state estimator and the deviation from the linear behavior and 
nonlinear one is above what is tolerable for the applications. Extended Kalman filter (EKF), being such a state estimator 
is widely employed in control and fault monitoring applications where a complete or an approximated nonlinear model 
of the plant is available. EKF especially operates well for the plants where the nonlinearity does not cause the assump-
tions behind EKF to be violated. In this study, first an approximated nonlinear model for SEPIC is determined. Using the 
model, EKF is designed to estimate the states of the plant. The efficacy of the designed EKF is demonstrated in a series 
of numerical MATLAB based simulations where the both open loop and closed loop performances are analyzed, and 
the results are detailed in the paper.
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1  Introduction

Single ended primary inductance converter (SEPIC) is a 
switching mode DC–DC power converter which has the 
ability to reduce or boost the input voltage. It is comprised 
of 2 capacitor and 2 inductors as passive components and 
2 active switching elements which are manipulated to 
control the output voltage. System input is a signal that is 
applied to the active switch. The applied continuous sig-
nal is passed through an PWM block and resulted signal 
is directly used to control the circuit. Input voltage and 
output current deviation from their steady-state values are 
considered to be disturbance signals due to the fact that 
in most cases those are not the signals that the system 

designer have control over [1, 2]. Besides being utilized in 
DC power conditioning, as it is the case in battery charg-
ing applications, SEPIC is also used in Active Power Factor 
Correction (APFC) and Total harmonic distortion (THD) 
minimization in AC systems by drawing the current that 
is determined by the control algorithm. Another preva-
lent utilization of SEPIC is Maximum Power Point Tracking 
(MPPT) application which is gaining more attention due 
to the increase in investments in the PV studies. SEPIC, 
as many power converters, has discontinuous nonlinear 
mathematical model [3, 4]. In addition to the nonlinearity 
that is inherent in the plant, a linear state space model 
from the duty cycle to the output voltage that is obtained 
by approximating the system about a determined 
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operating point is non-minimum phase which constrains 
the closed loop bandwidth that is achievable which is also 
the case in boost converter. These factors contribute to the 
problem of state estimation. For system monitoring and 
for employing feedback control algorithms, states of the 
plant are required to be estimated reliably [5].

DC–DC converters depending on the application can 
have a critical role in the power conditioning systems and 
to prevent a possible fault which can result in the disrup-
tion of the whole system, thereby causing financial loss, 
it is crucial for some of the signals that are not directly 
measurable to be predicted. To prevent this kind of pos-
sible faults from occurring, system monitoring techniques 
which includes state estimation methods may be consid-
ered. State estimation is also required for control algo-
rithms where states of the plant is required to generate 
the input signals to drive the error to zero. Although, there 
are advanced robust output feedback control algorithms 
[6–9] available in the literature where there is no demand 
for a state information, in the case of state being available 
gives the designer flexibility in producing a linear or non-
linear control laws. State estimators can also be employed 
to estimate the critical parameters of the plant where the 
parameters are considered to be additional states and the 
state vector is augmented [10]. Simultaneous state and 
parameter estimation if the model of the plant is reliable 
across a wide range of frequencies, can lead to adap-
tive control algorithms which are known to be robust to 
parameter variations.

SEPIC is often modeled as a 4-dimensional system 
which operates under CCM (continuous conduction mode) 
where the current in the inductors cannot attain to zero. 
For completely DC based applications, CCM mode assump-
tion is made which leads to simple derivation process, as 
for systems where AC voltage is present either on the sup-
ply or the load side such as APFC, DCM (Discontinuous 
conduction mode) operation is considered and a model is 
derived based on that operation [11]. SEPIC can be mod-
eled in such a way that not only the inductor currents and 
voltages across the capacitors are specified as states but 
in more advanced harmonic based modeling techniques, 
by considering the switching frequency, the harmonics of 
the current and voltage signals are considered as states 
of the plant as well which leads to the models where the 
current and voltage ripples can be accurately estimated 
and more complex behaviors of the plant can be investi-
gated [12]. However, besides resonant converter applica-
tions where the switching frequency parameter can have a 
determining impact on the system, harmonic based mod-
eling techniques are mainly employed in AC systems such 
as inverters, rectifiers and THD minimization systems, and 
their applications in DC circuits are limited [13]. To obtain 
a linear model, SSA (State space averaging) methods are 

used where all of the circuit configurations are modeled 
and state space representations are derived, then these 
state space models are averaged using the switching time 
period. Standard SSA results in linear state space models 
for the systems where the inputs are known to be such that 
the nonlinear dynamics are not triggered, this model can 
be preferred [14]. Another prevalent modeling technique, 
GSSA focuses on the effects of the switching frequency 
on the system which achieves that by considering the 
harmonic components, often truncating at second terms. 
In this paper, an extended version of SSA method is dis-
cussed, where the nonlinear small signal (deviation from 
steady state point) terms are not considered to be negli-
gible to have a better estimate of the nonlinear dynamics 
which can be apparent when a fast-varying input signals 
are applied [15].

After the model is available, the state estimator can be 
designed. Since the model to be obtained is nonlinear, to 
have a better estimate of the states a nonlinear observer 
is studied. There are many robust nonlinear observers in 
the literature such as High Gain (HG) observer and Slid-
ing Mode Observer (SMO). HG observers are designed by 
deriving transfer functions from nonlinear model uncer-
tainty to estimation error and minimizing the H∞ norm 
of this transfer function through the observer param-
eters [16]. Another nonlinear observer type, SMO uses 
switching functions to suppress the nonlinear terms and 
forces the error dynamics to be linear after a certain point 
[17]. Despite their performance, the design processes 
of the mentioned observers become intractable for the 
high dimensional systems. Another prevalent nonlinear 
observer EKF uses KF algorithms, where the disturbance 
signals are assumed to be gaussian in nature which in 
turn leads to significant simplifications in guaranteeing 
the observer convergence and the resulting model is 
easy to derive. EKF uses KF state estimation techniques, 
to generate the state space matrices which are used to 
update the error covariance matrix, in each time step the 
nonlinear model is linearized around the estimated states 
which is computed in a previous time step [18]. Although, 
this procedure requires the state matrices to be derived 
analytically before the design, unlike sigma point Kalman 
filter (SPKF) observers where there is not analytical deriva-
tion is required [19], for the relatively small dimensional 
systems this is not a considerable problem. In this paper, 
EKF is studied and the derivation is detailed for SEPIC. The 
performance of EKF is demonstrated by means of MATLAB 
based numerical simulations. Finally, to highlight the need 
for EKF over a linear state estimator for SEPIC, a compara-
tive simulation is also presented.

This paper is organized as follows, in the Sect. 2, SEPIC 
approximated nonlinear small signal model is derived 
and discretization is addressed. In the Sect. 3, Kalman 
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filter and EKF design steps are detailed and implementa-
tion for SEPIC is addressed. To present the EKF closed loop 
performance, LQI (linear Quadratic Integral) controller is 
explained. The simulations to present the operation of the 
observers are given in the Sect. 4. In addition to the nomi-
nal open-loop simulations, a series of separate simulations 
where the values of the circuit parameters are perturbed 
as the KF and EKF design left unchanged which is based on 
the nominal parameter values are detailed to examine the 
robustness properties of the estimators. Finally, the assess-
ment of the observers and overall system performance are 
discussed in the Sect. 5.

2 � Plant model

SEPIC converter is generally modeled as 3 input and 1 out-
put system where the inputs can be stated as input volt-
age, output current and duty cycle of the signal that drives 
the active switch. The first two signals manifest themselves 
as disturbances due to the fact that in many applications 
these signals are generated by external factors such as, a 
supply line deviation and load variation. The SEPIC circuit 
diagram is given in Fig. 1.

As it can be seen from the illustration, considering the 
inductor currents and the capacitance voltages, SEPIC is 
modeled as a 4-dimensional system. Due to the present 
discontinuity caused by the discrete component in the cir-
cuit, a complete and accurate mathematical model is not 
feasible for linear control-based applications. To obtain a 
more tractable model, traditionally state space averaging 
is employed. SSA method is detailed in [20], and obtained 
average large signal model is derived as,

which can be expressed in a compact form as,

(1)
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where AALSM contains d term which denotes the large sig-
nal duty cycle term. It is also expected that BALSM to have d 
term, however for SEPIC, this is not the case, but this will 
lead to some simplifications further ahead. The subscript 
stands for average large signal model. To obtain the small 
signal dynamics, the following substitution is carried out,

where ALSM components are decomposed to their steady 
state and small signal parts. This leads to the following,

where the matrices are given explicitly as follows,

where IL1 , IL2 , VC1 and VC2 are the steady state values of the 
states. The steady state terms are obtained as,
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Fig. 1   SEPIC converter circuit [24]
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Using this expression leads to the following,

where the 2nd and 3rd terms are explicitly can be written 
as,

By expanding individual terms, small signal dynamics are 
obtained as,

For a complete linear model, the third term is ignored. 
From now on, the following notational changes are intro-
duced to simplify the manipulations further ahead,

Using the given substitutions, the ZOH discretized ver-
sion of the approximated nonlinear small signal model 
for SEPIC is obtained explicitly as,
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where Ts is sample period. This is written in a compact form 
as,

where v  is defined as the sensor noise, f  is nonlin-
ear state function, g is measurement function, y is the 
measurement.
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(23)x(k + 1) = f (x(k), u(k),w(k))

(24)
y(k) = g(x(k), u(k),w(k))

= x4 + v
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3 � Observer design

3.1 � KF design

Before discussing the EKF, in this subsection KF is dis-
cussed to facilitate the explanation of EKF. For a discrete 
linear system whose dynamics are given as,

where A, B,C ,D, Bw ,Dv matrices are state matrices. The KF 
equations for the given linear system are given as,

where A(k − 1), B(k − 1),C(k − 1) matrices are standard 
state marices, this variable names are chosen to prevent 

(25)
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(27)x̂(k|k − 1) = A(k − 1)x̂(k − 1) + B(k − 1)u(k − 1)

(28)
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w
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]

(31)P(k) =
[
I − K (k)C(k)

]
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any confusion between the state matrices that are given in 
the previous section and the state matrices that are gen-
erated by the EKF in the next subsection. In (Eq. 25), the 
state time update is performed. The (Eq. 26) describes the 
state error covariance matrix time update. In (Eq. 27), the 
Kalman gain is computed which is the gain factor of the 
error between the KF output estimated and real measured 
output, which is called innovation term given in (Eq. 28). In 
the final step, the state error covariance matrix is corrected 
considering the calculated Kalman gain. Q and R are KF 
parameters to be chosen, known as process noise covari-
ance and sensor noise covariance matrices, respectively. 
They are determined considering the effect of each noise 
term on the estimation performance. In addition to those 2 
parameters, initial state estimate, x̂(0) and initial state error 
covariance matrix, P(k − 1) are selected [21].

3.2 � EKF design

The nonlinear discrete time system, whose dynamics are 
given as,

where the state equation and measurement equation are 
both considered to be nonlinear. In addition to that, the 
effects of the process and sensor noises on the system are 
considered to be nonlinear by using this general form. The 
linearized version of the dynamics is given as,
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The EKF steps are given as,

where w̄ and v̄ are the estimated mean values of the pro-
cess and sensor noise signals, in most application they are 
assumed to be zero, but if there is a prior knowledge about 
their mean values, the information can be contributed 
these terms. In (Eq. 36), the Â(k − 1) and B̂w(k − 1) matri-
ces are computed using the input to the system and state 
value estimate which is computed in the previous time 
step. In (Eq. 37), the state prediction is performed using 
the system nonlinear model information only. In (Eq. 38), 
state error covariance matrix is updated using the state 
matrices that are computed in (Eq. 36). (Equation 38) is 
used to compute measurement equation matrices around 
the state prediction and input values. Kalman filter gain 
is calculated in (Eq. 39) as this is the case in KF, given in 
(Eq. 29). Finally, state estimate using the Kalman filter gain 
weighted innovation value and state error covariance 
matrix is updated [22].

The linearized system state matrices for SEPIC, using the 
discrete time small signal approximated nonlinear func-
tions, given in (Eq. 32) and (Eq. 33) are derived explicitly as,

(36)

Â(k − 1) =
𝜕f

𝜕x

|||| x = x̂(k − 1)

u = u(k − 1)

w = w̄

, B̂w(k − 1) =
𝜕f

𝜕w

|||| x = x̂(k − 1)

u = u(k − 1)

w = w̄

(37)x̂(k|k − 1) = f (x̂(k − 1), u(k − 1), w̄)

(38)

P(k|k − 1) = A(k − 1)P(k − 1)AT (k − 1)

+ Bw(k − 1)Q(k − 1)BT
w
(k − 1)

(39)

Ĉ(k) =
𝜕g

𝜕x

|||| x = x̂(k|k − 1)

u = u(k)

w = w̄

, D̂v(k) =
𝜕g

𝜕v

|||| x = x̂(k|k − 1)

u = u(k)

w = w̄

(40)
K (k) = P(k|k − 1)CT (k)

[
C(k)P(k|k − 1)CT (k) + Dv(k)R(k)D

T
v
(k)

]−1

(41)x̂(k) = x̂(k|k − 1) + K (k)
[
y(k) − g(x(k), u(k), v̄)

]

(42)P(k) =
[
I − K (k)C(k)

]
P(k|k − 1)

(43)Â(k − 1) =

⎡⎢⎢⎢⎢⎢⎣

1 0 −
(1−D)

L1
Ts +

1

L1
Tsu −

(1−D)

L1
Ts +

1

L1
Tsu

0 1
D

L2
Ts +

1

L2
Tsu −

(1−D)

L2
Ts +

1

L2
Tsu

(1−D)

C1
Ts +

−1

C1
Tsu −

D

C1
Ts +

−1

C1
Tsu 1 0

(1−D)

C2
Ts +

−1

C2
Tsu

(1−D)

C2
Ts +

−1

C2
Tsu 0 1

⎤⎥⎥⎥⎥⎥⎦

�����������x=x̂(k−1)
u=u(k−1)

This state matrices are computed numerically in each time 
step in order to update the Kalman gain, state and state 
error covariance matrices in EKF.

3.3 � LQI design

Linear quadratic regulator uses a static gain matrix and 
determines an input to be supplied to the plant that is 
controlled. For a given linear discrete time system,

The control law is given as,

where KLQR is the static state feedback gain matrix. The 
closed loop dynamics resulting in employing this control 
law is given as,

Consequently, by changing the KLQR static gain matrix, 
eigenvalues of the closed loop state matrix 

[
A − BKLQR

]
 

can be assigned, therefore the control is achieved. As 
for the Linear Quadratic Integral controller, for reference 
tracking applications and to suppress the non-zero mean 
disturbance signals, integral of error between the desired 
output signal and measured output signal is introduced. 
Integrated error state is denoted by xi(k) [23]. System 
states x(k) are augmented as

(44)B̂w(k − 1) =

⎡
⎢⎢⎢⎢⎣

1

L1
Ts 0

0 0

0 0

0 −
1

C2
Ts

⎤
⎥⎥⎥⎥⎦

(45)Ĉ(k) =
[
0 0 0 1

]

(46)D̂v(k) = [1]

(47)x(k + 1) = Ax(k) + Bu(k)

(48)y(k) = Cx(k)

(49)u(k) = −KLQRx(k)

(50)x(k + 1) =
[
A − BKLQR

]
x(k)
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Again, for reference tracking and for the closed system to 
have an integral control type of property, augmented state 
vector is considered.

(51)xa(k) =

[
x(k)

xi(k)

] By applying the same procedure, and augmented static 
gain matrix is calculated, so that the eigenvalues of the 
augmented dynamics are located at the desired locations, 
therefore the control and reference tracking is achieved. 
The procedure is illustrated by the block diagram given 
in Fig. 2.

Fig. 2   State observer based 
LQI control for SEPIC [24]

Table 1   The circuit parameters Parameter Vg Vo ILoad C1 C2 L1, L2 D Ts

Value 12 V 15 V 1.33 A 1 μF 50 μF 0.2646 mH 0.55 1 × 10−4 s

Fig. 3   Comparison of EKF and KF in estimating the SEPIC states a x1, b x2, c x3, d x4
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4 � Numerical simulations

4.1 � About the system simulated

In this section, to assess the performance of the EKF whose 
design process are detailed in the previous section, an 
open loop and close loop simulations are carried out.

The parameters of the SEPIC simulated are given in the 
Table 1 above [24]. The parameters are used, and the simu-
lation is carried out using MATLAB/powersim toolbox.

4.2 � Open loop simulations

In the first simulation, the system is subjected to the input 
signal that is a sinusoidal whose frequency increases as 
time progresses. The initial frequency of this chirp input 
signal is 10Hz and this frequency is increased linearly. At 
the t = 0.1 s , the frequency reaches at 100Hz . The real 
small signal states are compared with the estimated ones 
by the linear and nonlinear estimators. The results are 
given in Fig. 3.

As it can be illustrated in the figures, the initial perfor-
mances of the KF and EKF estimators are close and these 
estimators are able to accurately estimate the real states. 
However, as the frequency of the input signal gradually 
increases over time, since this fast changing input signal 
is capable of triggering the nonlinear dynamics to become 
apparent, KF estimated states drifts from the true states, 
whereas EKF is able to accurately estimate even when 
these nonlinear dynamics becomes prominent. The per-
formance differences of the estimators especially become 
clear for the x1 and x2 states.

Fig. 4   The applied input signal to the SEPIC

Fig. 5   State estimation errors of the EKF and KF under a series of simulations to test parameter uncertainty
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4.3 � Open loop simulations under parameter 
uncertainty

In this section, to assess the robustness of the estimators 
to parameter variations, values of the parameters of the 
circuit is perturbed up to 30%. The parameters that are 
perturbed are L1, L2,C1,C2, R,D . To test the accuracy of the 
estimators, EKF and KF are built on the parameters that are 
listen in Table 1, and simulated on the same SEPIC circuit 
whose parameter values deviate up to 30%. To illustrate 
the results of these simulations, in Fig. 5, estimation error 
of each state is given for the KF and EKF. To induce the 
nonlinear dynamics, a chirp signal input is applied to the 
SEPIC, which is given in Fig. 4.

This input signal is chosen to cause the small nonlin-
ear terms to become more prominent. As these nonlinear 
terms increase, the estimation performance of EKF over KF 
becomes clear (Fig. 5). 

It is also important to indicate that after t = 0.07 s , 
as the frequency of the applied input increases and the 
nonlinear terms dominate the dynamics, the estimation 
performance of the KF degrades significantly as the per-
formance level of the EKF stays steady.

4.4 � Closed loop simulations

In this section, the EKF performance is also tested in 
a closed loop where a discrete time LQI control law is 
employed. Simulation scenario can be summarized as fol-
lows, at t = 2 s , input voltage is changed from 12 V to 14 V , 
at t = 4 s , the current that is drawn from the converter is 
increased from 1.33 A to 1.53A , and finally, at t = 6 s , the 
reference output voltage that the converter outputs is 
increased from 15 V to 18 V . Q and R are as identity matrices 
of suitable dimensions as the controller parameters and 
the rationale behind this is addressed in [24].

The output signal as a large signal is given in Fig. 6, 
where it is apparent that the control law in coopera-
tion with the EKF is capable of maintaining the stable 

operation, despite of the disturbances and reference 
change applied to the system during the operation.

5 � Conclusion

In this study, SEPIC converter approximate nonlinear 
model is derived by using the conventional state space 
averaging technique and considering the nonlinear 
small signal terms that are usually neglected for the sake 
of obtaining a completely linear model. The resulted 
approximated nonlinear small signal model, then is used 
to design an EKF to estimate the plant states during the 
operation. To assess the performance of the EKF, open loop 
as well as closed loop simulations are conducted, where 
in the closed-loop simulations, a liner control algorithm is 
employed. To explain the need for an EKF over KF whose 
design process is detailed in section IV, an open loop simu-
lation is set up where a chirp signal injected to the system. 
As the frequency of this small signal duty cycle is increased 
linearly, KF performance degrades due to the fact that this 
increase in the frequency causes the nonlinear dynamics 
to be apparent, which is not considered by the KF. Unlike 
KF, EKF performance remains steady since it is designed 
such a way that the neglected nonlinear dynamics are 
considered to a degree in the design procedure of EKF. In 
the final simulation, to demonstrate that the utilization of 
the EKF into the closed loop does not cause any instability, 
LQI control law is also used and the output voltage level is 
controlled through the control algorithm. As seen from the 
results, the closed loop system is capable of suppressing 
the effects of the disturbances. Although, EKF has a higher 
computational cost compared with a KF, since in addition 
to the standard operations of KF, EKF also linearizes the 
model in order to obtain the state matrices, in each time 
step. For the more critical and expensive active power fac-
tor correction applications, where the state monitoring is 
of crucial importance and the normally neglected nonlin-
earities may have a determining effect on the operation, 
these types of more elaborate designs to estimate the 
states may be warranted.
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