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Abstract
Based on the modified couple stress and first-order shear deformation plate theories, a Levy-type solution is presented for 
bending, buckling, and vibration analyses of rectangular isotropic micro plates with simple supports at opposite edges 
and different boundary conditions at the other two ones. The governing equations are derived using the Hamilton’s 
principle, and then solved by a single Fourier series expansion and the state-space method, which its implementation 
has not been straightforward. The results are verified with the existing ones for a fully simply supported micro plate in 
the literature. Finally, the effect of geometric parameters and length scale parameter on bending, buckling, and vibra-
tion behaviors of micro plates is studied. Since, there are no analytical solutions for bending, buckling loads, and natural 
frequencies of Mindlin micro plates with different boundary conditions in the literature and the Navier method is the 
only available analytical solution for the Mindlin and higher order shear deformable micro plates within the modified 
couple stress theory, the results presented here can be used as a benchmark in future studies. In addition, it is shown that 
the difference between results of the Kirchhoff and the Mindlin plate models depends not only on the plate thickness 
but also on the length scale parameter to thickness ratio ( l∕h) as well as the boundary supports. This result emphasizes 
the significance of analytical solutions for shear deformation models of micro plates with different boundary supports.

Keywords Mindlin (first-order shear deformation) plate theory · Modified couple stress theory · Levy method · 
Bending · Buckling · Free vibration
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1 Introduction

Nowadays, micro-scale structures including beams and 
plates are widely used in industry and in the micro-elec-
tro-mechanical-systems (MEMS) due to their superior 
mechanical, chemical, and electronic properties [1–3]. 
Micro plates have a wide variety of applications as actua-
tors or sensors in switches, pressure sensors, micro-pumps, 
and moving valves [3]. Therefore, there is a crucial need 
to study the behavior of these structures with sufficient 
accuracy. In the literature, it is shown that the behavior of 

micro-scale structures cannot be predicted correctly based 
on the classical continuum theories and higher order 
ones are needed. To consider the size effects and over-
come the deficiency of the classical continuum models, 
some non-classical theories have been presented such as 
micropolar theory [4], non-local elasticity theory [5], strain 
gradient theory [6], surface elasticity theory [7], classical 
couple stress theory [8–10] and the modified couple stress 
theory (MCST) [11]. Based on the non-classical theories, 
a wide range of recent studies is devoted to investigate 
the mechanical behavior of size-dependent structures. To 
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mention some more recent ones, some researchers used 
the strain gradient theory to study the behavior of micro/
nano beams [12] and plates [13, 14], while some others 
used the non-local elasticity theory to analyze the size 
dependent beams [15, 16] and plates [17–19]. Among 
different non-classical continuum theories, the modified 
couple stress theory [11] incorporates only one length 
scale parameter and is preferred over the others due to 
its simplicity and has been intensively used to study the 
size dependent structures [20, 21]. Here, the studies on 
isotropic and homogenous micro plates including bend-
ing, buckling, and vibration behaviors using the MCST are 
reviewed.

Tsiatas [22] studied the bending behavior of a Kirch-
hoff micro plate with various boundary conditions using a 
meshless method. Roque et al. [23] carried out the bending 
analysis of an isotropic Mindlin micro plate using both the 
Navier method and a meshless method and presented the 
results for clamped and simply supported plates. Akbaş 
[24] studied the bending behavior of a Kirchhoff–Love 
rectangular nano plate using the differential quadrature 
method. They reported the results for simply supported 
nano plates. Shaat et al. [25] presented a bending analy-
sis of simply supported Kirchhoff nano plates employing 
the Navier method. They used surface elasticity theory 
of Gurtin and Murdoch in conjunction with the MCST in 
order to include surface effects of nano plates. Based on 
the Kirchhoff plate theory, Tahani et al. [26] analyzed the 
free vibration of electrostatically pre-deformed rectangu-
lar micro plates using the finite element method. Based on 
the Kirchhoff plate theory, Yin et al. [27] carried out a vibra-
tion analysis of rectangular micro plates employing the 
Levy method. Jomezadeh et al. [28] performed a vibration 
analysis of rectangular Kirchhoff micro plates using a Levy-
type solution method. Askari and Tahani [29] employed 
the extended Kantorovich method to analyze the vibra-
tion behavior of a Kirchhoff micro plate. They presented 
the results for a fully clamped micro plate. Asghari and 
Taati [30] proposed a general model for Kirchhoff micro 
plates with arbitrary shapes considering the MCST. Ke et al. 
[31] determined natural frequencies of a Mindlin rectan-
gular micro plate adopting the P-version Ritz method to 
examine all the possible types of boundary conditions. Ma 
et al. [32] carried out the bending and free vibration analy-
ses of a simply-supported Mindlin micro plate using the 
Navier method. Gao et al. [33] presented the Navier solu-
tion for bending and vibration analyses of isotropic sim-
ply supported micro plates based on the third-order shear 
deformation theory. Darijani and Shahdadi [34] employed 
a refined plate theory to analyze the bending and vibra-
tion of a rectangular micro plate with simply supported 
edges, using the Navier method. Lou et al. [35] performed 
the buckling and post-buckling analyses of piezoelectric 

hybrid micro plates subjected to thermo-electro-mechan-
ical loads based on the Mindlin plate theory using the 
Navier method. Based on the MCST and strain gradient 
theory, Mohammadi and Fooladi Mahani [36] determined 
the buckling loads of Kirchhoff micro plates using the Levy 
method. They compared the results obtained within the 
two mentioned theories and studied the effects of length 
scale parameters on buckling loads. Mirsalehi et al. [37] 
used spline finite strip method to study the stability of a 
Kirchhoff micro plate. Akgöz and Civalek [38] investigated 
the bending, buckling and vibration of a size dependent 
Kirchhoff plate embedded in a Winkler’s elastic medium 
using the Navier method. Zhang et al. [39] used finite ele-
ment method to study the bending, buckling, and free 
vibration of Mindlin micro plates based on the MCST. It is 
to be emphasized that boundary supports have significant 
influence on the mechanical behavior of plates and many 
attempts have been reported to study this effect via the 
Galerkin [14], Meshless [22], finite element [26, 39], Levy 
[27, 28], and spline finite strip [37] methods.

The classical plate theory (CPT) based on the Kirchhoff 
assumptions provides reliable results for thin plates since 
the transverse shear effect is neglected in this theory. To 
overcome shortcomings of the CPT, many shear deforma-
tion plate theories are introduced. Mindlin [40] and Reiss-
ner [41] proposed displacement-based and stress-based 
first-order shear deformation theories (FSDT), respectively, 
which result in constant transverse shear stresses and need 
shear correction factor. Reissner [42] was the first who 
uncoupled the six-order equations governing the mechan-
ical behavior of isotropic homogenous plates within FSDT 
into edge-zone and interior equations. Recently, Nosier 
and Fallah [43, 44] and Fallah et al. [45] carried out such 
an uncoupling for tenth-order equations within FSDT, gov-
erning linear [43] and nonlinear [44] bending behavior of 
FG plates as well as stability of sandwich shells [45]. Here, 
since the deflection, the first three natural frequencies, and 
buckling load of thin and moderately thick homogenous 
isotropic plates are reported, the FSDT (Mindlin theory) is 
accurate enough, however, in order to accurately model 
FG, composite, and sandwich beams, plates, and shells and 
overcome the drawbacks of the FSDT, many higher-order 
shear deformation theories were proposed. More recently, 
there are attempts to reduce the number of unknowns 
and remove the need to shear correction factor in shear 
deformation theories [46]. Matouk et al. [15] and Bousahla 
et al. [47] used the integral Timoshenko beam theory with 
three unknowns which needs a shear correction factor to 
study the dynamic behavior of nano-beams, while Adda 
Bedia et al. [12] developed a hyperbolic three-unknown 
beam theory, which could capture shear deformation 
effects accurately and does not need any shear correction 
factor. Boutaleb et al. [19], Joshan et al. [48], and Tounsi 
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et al. [49] employed the idea of considering an unknown 
integral term in the displacement field (as in [15, 47]) in 
conjunction with cubic, inverse hyperbolic, and trigono-
metric shear strain shape functions to have four-variable 
plate theories which consider transverse shear effects 
accurately. Sinusoidal and inverse hyperbolic shear strain 
shape functions as the plate models are used in [13, 50], 
respectively, which capture shear effects without any need 
to shear correction factor. The idea of considering the 
transverse deflection as a sum of two unknown functions 
representing the bending and shear effects as in [12] in 
conjunction with cubic and sinusoidal shape functions of 
transverse shear deformation were employed in [14, 51], 
respectively, resulting in four unknowns in displacement 
field while taking into account transverse shear effects.

Due to application of micro and nano plates as actua-
tors and sensors, it is crucial to model them with enough 
accuracy. While the effects of transverse shear and effects 
of boundary supports on the mechanical responses of 
plates are significant, it appears from the literature review 
that there is no analytical solution for micro plates having 
different boundary conditions and being modeled within 
shear deformation plate theories in conjugation with 
MCST. Even though a Levy-type solution [27, 28, 36], or 
the extended Kantorovich method [29] has been imple-
mented to analyze Kirchhoff micro plates, the governing 
equations within the first order or higher order micro 
plate theories are solved using just the Navier method 
[32–35] or numerical methods [23, 31, 39]. That is, to the 
best of authors’ knowledge, analytical solutions within 
shear deformation micro plate theories are available for 
just simply-supported ones. Since, not only the thick-
ness of micro plate but also the boundary supports have 
significant effects on accuracy and validity of the Kirch-
hoff model, there is a gap in the literature for analytical 
solutions to mechanical behavior of Mindlin micro plates 
with different boundary conditions within MCST. In this 
paper, an attempt is made to develop analytical solution 
for bending, buckling and vibration problems of Mindlin 
micro plates with different boundary conditions within 
MCST for the first time. To this end, Hamilton’s principle 
is used to derive the equations governing the bending, 
buckling and free vibration behavior of a micro plate with 
arbitrary boundary conditions based on the first-order 
shear deformation and modified couple stress theories. 
A Levy-type solution in conjunction with the state-space 
method is adopted to solve the governing equations for 
micro plates with two simple supports at opposite edges 
and arbitrary supports at the other ones. It is to be noted 
that the adoption of the state-space method in this prob-
lem was not straightforward, needed some mathematical 
operations, and is applicable within other shear deforma-
tion theories. Maybe this is the reason that the problem of 

Mindlin micro plate is not solved via the Levy method until 
now. The effect of different parameters on center deflec-
tions, buckling loads and natural frequencies of the micro 
plate is studied in detail. The analytical results presented 
here can be used as a benchmark for future studies.

2  Theoretical formulation

Here, an isotropic rectangular micro plate of length a , 
width b , and uniform thickness h under transverse ( P(x, y) ) 
and in-plane loadings ( N̂

xx
 and N̂

yy
 ) is considered. The 

geometry of the plate, the Cartesian coordinate system 
and the loadings are shown in Fig. 1.

2.1  Equations of motion and boundary conditions

Based on the Hamilton’s principle, the equations of motion 
of a rectangular micro plate are obtained. This principle 
can be expressed as [52]:

where U is the strain energy, K  is the kinetic energy, and V  
is the potential of work done by the external forces which 
are defined as follows [11]:

(1)

t

∫
0

(�U + �V − �K )dt = 0

(2a)

K = ∫
V

1

2
𝜌
(
u̇
i
u̇
i

)
dV ,U = ∫

V

1

2

(
𝜎
ij
𝜀
ij
+m

ij
𝜒
ij

)
dV , i, j = x, y, z

Fig. 1  Geometry of the rectangular plate, the coordinate system, 
and the loadings
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In Eq. (2), u
i
 are the components of the displacement 

vector, �
ij
 and m

ij
 are components of the Cauchy stress 

tensor and the deviatoric symmetric couple stress tensor, 
respectively, V  is the volume of the plate, A denotes the 
surface of the mid-plane, and a dot over the variable (.) 
indicates differentiation with respect to time. In addition, 
in Eq. (2b), the first term in the right hand side of the rela-
tion is the potential of work done by the transverse pres-
sure P (considered in bending analysis), while the second 
and third terms are the work done by the in-plane forces 
N̂
xx

 and N̂
yy

 in buckling analysis, in which any stretching 
of the middle plane is ignored and the in-plane forces are 
assumed to be constant during buckling [53]. Further-
more, the components of strain tensor �

ij
 , rotation vector 

�
i
 , and symmetric curvature tensor �

ij
 are defined as fol-

lows [52]:

(2b)V = −∫
A

(
Pu

z
−

1

2
N̂
xx

(
𝜕u

z

𝜕x

)2

−
1

2
N̂
yy

(
𝜕u

z

𝜕y

)2
)
dA

respectively, and � and � represent the small rotations of 
a transverse normal about the y and x axis, respectively.

Upon substitution of Eqs. (4) into (3), the components of 
strain and curvature fields are obtained as follows:

where

and

where

By substitution of Eq. (5) into Eqs. (1) and (2) and using 
the fundamental lemma of calculus of variation, the equa-
tions of motion of a micro plate subjected to transverse 
and in-plane loadings are obtained as follows:
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where a comma followed by a coordinate variable denotes 
partial derivative with respect to that variable and e

ijk
 is the 

permutation symbol.
The displacement field of the first-order shear deforma-

tion (Mindlin) plate theory is as follows:

where u , v , and w denote the displacements of a point on 
the mid-plane of the plate along x , y , and z directions, 

(3)

�
ij
=

1

2

[
u
i,j + u

j,i

]
, �

i
=

1

2
e
ijk
u
k,j ,�ij

=
1

2

[
�
i,j + �

j,i

]
, i, j, k = x, y, z

(4)

u
x(x, y, z, t) = u(x, y, t) − z�(x, y, t)

u
y(x, y, z, t) = v(x, y, t) − z�(x, y, t)

u
z(x, y, z, t) = w(x, y, t)
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where the stress and moment resultants and the mass 
inertias, I0 and I2 in Eq. (6) are defined as follows:

where k2 is a shear correction factor. The boundary condi-
tions corresponding to Eq. (6) require the specification of 
the followings:

(6)
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where n
x
 and n

y
 are the components of an outward unit 

normal vector to the boundary of the mid-plane.

2.2  Governing equations

The constitutive equations relate the symmetric part of the 
stress tensor and the deviatoric part of the couple stress 
tensor to the kinematic parameters as follows [11]:
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where l  is a material length scale parameter and � and � 
are the Lamé’s constants:

where E and � are the Young’s modulus and the Poisson’s 
ratio, respectively. Upon substitution of Eqs. (5) and (9) 
into (7) and the subsequent results into the equations of 
motion (6), the governing equations of motion of a rectan-
gular micro plate are obtained as follows:
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�x2�y
− A3

�w

�y
= I2

�2�

�t2

(11e)

𝛿w ∶ A1

𝜕3𝜓

𝜕x3
+ A1

𝜕3𝜓

𝜕x𝜕y2
− A3

𝜕𝜓

𝜕x
+ A1

𝜕3𝜙

𝜕y3
+ A1

𝜕3𝜙

𝜕x2𝜕y

− A3

𝜕𝜙

𝜕y
+ A1

𝜕4w

𝜕x4
+ A1

𝜕4w

𝜕y4
+ 2A1

𝜕4w

𝜕x2𝜕y2
+ A3

𝜕2w

𝜕x2

+ A3

𝜕2w

𝜕y2
+ P = I0

𝜕2w

𝜕t2
+ N̂

xx

𝜕2w

𝜕x2
+ N̂

yy

𝜕2w

𝜕y2

where the coefficients A
i
 (i = 1, 2,… , 10) are presented in 

“Appendix 1”.

3  The solution

The linear partial differential equations in (11) are solved 
by the Levy method for a micro plate with simple supports 
at two opposite edges and arbitrary supports at the other 
ones. Here, it is assumed that edges at y = 0 and y = b 
are simply supported. It is worth mentioning that u and v 
appear just in Eqs. (11a, b), i.e. extension and bending are 
decoupled in isotropic plates which results in u = v = 0 
in bending analysis of a rectangular plate with homog-
enous boundary conditions. On the other hand, in buck-
ling analysis, the mid-plane stretching is ignored and in 
vibration analysis, only the bending vibration is taken into 
account. Therefore, in the remaining, only Eqs. (11c, d, e) 
are considered.

According to Eqs. (8), the boundary conditions associ-
ated with Eqs. (11c, d, e) for simply-supported edges at 
y = 0 and y = b , are reduced to what follows:

The boundary conditions along the other two edges 
at x = 0 and x = a (associated with Eqs. (11c, d, e)) can be 
simply supported (S), clamped (C), or free (F) which their 
relations according to Eqs. (8) are:

Using the Levy’s methoto satisfy Eqs. (12) and based 
on a harmonic motion assumption, the displacement field 
variables � , � , and w . are assumed as follows [52]:

(12)w = H
xy
= � = G

yz
= M

y
−

1

2
H
xy
−

1

2

�G
yz

�x
= 0

(13)

S ∶ w = H
xy
= M

x
+

1

2
H
xy
+

1

2

�G
xz

�y
= � = G

xz
= 0

C ∶ w =
�w

�x
= � = � =

��

�x
= 0

F ∶ Q
x
−

1

2

(
�H

x

�y
−

�H
y

�y
−

�H
xy

�x

)
= H

xy
= M

x
+

1

2
H
xy
+

1

2

�G
xz

�y
=

M
xy
−

1

2

(
H
x
− H

z
+

�G
xz

�x
+

�G
yz

�y

)
= G

xz
= 0

T
xz
= 0

(14)

�(x, y, t) =

∞∑
m=1

�
m(x) sin

(
m�y

b

)
e
i�mt ,�(x, y, t) =

∞∑
m=1

�
m(x) cos

(
m�y

b

)
e
i�mt

w(x, y, t) =

∞∑
m=1

w
m(x) sin

(
m�y

b

)
e
i�mt
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where i  is the imaginary unit ( i2 = −1) , w
m

,�
m

 , and �
m

 are 
unknown functions of x and �

m
 is the natural frequency 

which is set to zero in bending and buckling analyses. In 
addition, the transverse load P(x, y) in bending analysis is 
expanded as follows [52]:

where P
m(x) = (2∕b)

b∫
0

P(x, y) sin
(

m�y

b

)
dy . Substituting 

Eqs. (14) and (15) into Eqs. (11) yields three ordinary dif-
ferential equations with total order of ten as follows:

(15)P(x, y) =

∞∑
m=1

P
m
(x) sin

(
m�y

b

)

(16a)
�� ∶ B1�

��
m
+ B2�m

+ B3�
���
m
+ B4�

�
m
+ B5w

���
m

+ B6w
�
m
= −I2�

2
m
�
m

where the coefficients B
i
, (i = 1… 12) are defined in 

“Appendix 2”. There is a problem for solving Eqs. (16) via a 
state-space method [54]. That is, the highest derivative of 
�
m

 (which is a third-order derivative) is appearing in Eqs. 
(16b, c). To overcome this problem, Eq. (16a) is differenti-
ated and the subsequent result is used to eliminate � ′′′

m
 

from Eqs. (16b, c) as follows:

(16b)

�� ∶ −B3�
���
m

− B4�
�
m
+ B7�

����
m

+ B8�
��
m
+ B9�m

+ B10w
��
m
+ B11wm = −I2�

2

m
�m

(16c)

𝛿w ∶ B5𝜓
���
m

+ B12𝜓
�
m
− B10𝜙

��
m
− B11𝜙m

+ B5w
����
m

+ B13w
��
m
+ B14wm
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m

−I0𝜔
2

m
w

m
+ N̂

xx
w

��
m
−
(
m𝜋

b

)2

N̂
yy
w

m

(17a)�� ∶

(
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� �
m
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(
B
2
3
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)
�����
m

+

(
B3B4
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)
���
m
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+
B3B5
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����
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+

(
B3B6
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+ B10

)
w

��
m
+ B11wm
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Table 1  Dimensionless 
center deflection of a simply 
supported square micro plate 
(SSSS) subjected to uniform 
and sinusoidal loads

Load l

h
= 0.2

l

h
= 0.5

l

h
= 1

Present ×10−7 Roque et al. 
[23]×10−7

Present ×10−7 Roque et al. 
[23]×10−7

Present ×10−8 Roque 
et al. 
[23]×10−8

Uniform 2.71218 2.7122 1.87752 1.8775 9.00619 9.0062
Sinusoidal 1.71710 1.7171 1.18876 1.1888 5.70624 5.7062

Table 2  Dimensionless buckling load parameter of a simply supported square micro plate (SSSS) (
a = b = 10h, k2 = 5∕6, E = 14.4 × 109Pa, � = 12.2 × 103Kg∕m3

)

Buckling mode l

h
= 0.2

l

h
= 0.6

l

h
= 1

Present Thai et al. [56] Present Thai et al. [56] Present Thai et al. [56]

Uniaxial buckling 41.52137 41.5214 83.65426 83.6543 163.65389 163.6539
Biaxial buckling 20.76068 20.7607 41.82713 41.8271 81.82694 81.8269
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Now, Eq. (16a), (17a, b) can be reduced to a system of 
first-order equations with total order of ten as presented 
in Eq. (18), because the highest order derivatives of �

m
 , 

�
m

 , and w
m

 (which are, respectively, second-order, fourth-
order and fourth-order derivatives) appear in the associ-
ated equations, i.e. in Eqs. (16a), (17a, b), respectively.

where

and the matrix [A] and the load vector {q} are presented 
in “Appendix 3”. It is worth mentioning that the buckling 
loads, N̂

xx
 , N̂

yy
 and the natural frequency, �

m
 appear in 

matrix [A] as some unknowns in buckling and vibration 
analyses. The general solution of Eq. (18) is as follows [54]:

where [U] is the matrix of eigenvectors of [A]10×10 , {C}10×1 
is the vector of integration constants and [D]10×10 is the 
diagonal matrix defined as follows:

(18)
{
Z
�
}
= [A]{Z} + {q}

(19)

{Z}T =

[
�
m
,
d�

m

dx
,�

m
,
d�

m

dx
,
d2�

m

d
2
x

,
d
3�

m

d
3
x

,w
m
,
dw

m

dx
,
d2
w

m

dx2
,
d3
w

m

dx3

]

(20){Z } = [U][D]{C} + [U][D]

x

∫ [D]−1[U]−1{q}

where �
i
 (i = 1… 10) are eigenvalues of [A].

3.1  Bending analysis

In bending analysis, the in-plane forces N̂
xx

 , N̂
yy

 and all 
the time derivatives and consequently �

m
 are set to zero. 

(21)[D] = diag
(
e
�1x , e�2x ,… , e�10x

)

Table 3  First two dimensionless natural frequencies of a simply supported square micro plate (SSSS), (
a = b = 10h, k2 = 5∕6, E = 14.4 × 109Pa, � = 12.2 × 103Kg∕m3

)

Mode l

h
= 0.2

l

h
= 0.6

l

h
= 1

Present Thai et al. [56] Present Thai et al. [56] Present Thai et al. [56]

First mode 6.35589 6.3559 9.02611 9.0261 12.63602 12.6360
Second mode 15.10635 15.1064 21.36480 21.3648 29.45879 29.4588

Table 4  Dimensionless center 
deflection of a square micro 
plate subjected to uniform and 
sinusoidal loads

Type of boundary 
conditions

Load l = 0 l

h
= 0.2

l

h
= 0.4

l

h
= 0.6

l

h
= 0.8

l

h
= 1

SSSS Uniform 2.6676 2.4410 1.9460 1.4561 1.0785 0.8106
Sinusoidal 1.6889 1.5453 1.2320 0.9220 0.6831 0.5136

SSSC Uniform 1.8696 1.7093 1.3620 1.0198 0.7566 0.5701
Sinusoidal 1.2191 1.1147 0.8885 0.6653 0.4937 0.3722

SSCC Uniform 1.3188 1.2045 0.9593 0.7187 0.5342 0.4038
Sinusoidal 0.8949 0.8176 0.6515 0.4882 0.3629 0.2743

SSFF Uniform 9.9621 8.4118 6.2519 4.6492 3.5073 2.7072
Sinusoidal 4.9521 4.2384 3.2028 2.4023 1.8193 0.4064

SSSF Uniform 5.9059 5.0614 3.7889 2.7855 2.0654 1.5655
Sinusoidal 3.1371 2.7269 2.0753 2.0754 1.1446 0.8686

SSCF Uniform 4.3460 3.7034 2.7480 2.0079 1.4840 1.1235
Sinusoidal 2.2976 1.9902 1.5058 1.1111 0.8249 0.6257

Table 5  Dimensionless center deflection of a square micro plate 
subjected to uniform and sinusoidal loadings ( l∕h = 1)

Type of boundary 
conditions

Load a

h
= 5

a

h
= 10

a

h
= 15

SSSS Uniform 1.1927 0.8903 0.8314
Sinusoidal 0.7705 0.5678 0.5278

SSSC Uniform 0.9473 0.6570 0.5937
Sinusoidal 0.6289 0.4311 0.3882

SSCC Uniform 0.7570 0.4893 0.4276
Sinusoidal 0.5196 0.3330 0.2905

SSFF Uniform 3.3963 2.8493 2.7362
Sinusoidal 1.7967 1.4881 1.4240

SSSF Uniform 2.0979 1.6799 1.5904
Sinusoidal 1.1922 0.9385 0.8846

SSCF Uniform 1.6619 1.2510 1.1547
Sinusoidal 0.9548 0.7032 0.6452
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Therefore, there isn’t any unknown in matrix [A] (see Eqs. 
(26) and (29) in “Appendix 3”). To find the integration con-
stants, any arbitrary combination of boundary conditions 
at edges x = 0, a presented in Eq. (13) is imposed which 
yields inhomogeneous algebraic equations in terms of 
integration constants.

3.2  Buckling analysis

In buckling analysis, the transverse load P
m

 and all the time 
derivatives and consequently �

m
 are set to zero, while 

the buckling load is still unknown in matrix [A] (see Eqs. 
(26) and (29) in “Appendix 3”). Imposing the appropriate 
boundary conditions at edges x = 0, a leads to a linear 
homogeneous system of algebraic equations in terms of 

integration constants in which the buckling load is still an 
unknown in the matrix of coefficients. If the determinant 
of coefficient matrix is set to zero for a nontrivial solution, 
the bucking load is determined.

3.3  Free vibration

In vibration analysis, all external forces including P , N̂
xx

 and 
N̂
yy

 are set to zero, while the natural frequency is still an 
unknown in matrix [A] (see Eqs. (26) and (29) in “Appen-
dix 3”). By setting the determinant of the coefficient matrix 

Fig. 2  Variations of dimensionless center deflection of a SSSS, b SSCC, c SSFF square micro plate under sinusoidal loading versus l∕h ratio 
and its comparison with the results of Kirchhoff micro plate

Table 6  Dimensionless center deflection of a rectangular micro 
plate subjected to uniform and sinusoidal loads ( l∕h = 1, b = 20h)

Type of bound-
ary conditions

Load a

b
=

1

2

a

b
= 1

a

b
= 2

a

b
= 3

SSSS Uniform 2.1190 0.8106 0.1247 0.0297
Sinusoidal 1.3846 0.5136 0.0811 0.0202

SSSC Uniform 1.1282 0.5701 0.1146 0.0290
Sinusoidal 0.7790 0.3722 0.0759 0.0199

SSCC Uniform 0.6659 0.4038 0.1049 0.0284
Sinusoidal 0.4927 0.2743 0.0708 0.0197

SSFF Uniform 42.5410 2.7072 0.1647 0.0319
Sinusoidal 21.4617 1.4064 0.0963 0.0208

SSSF Uniform 5.0194 1.5655 0.1444 0.0308
Sinusoidal 2.7078 0.8686 0.0886 0.0205

SSCF Uniform 4.1618 1.1235 0.1338 0.0302
Sinusoidal 2.2176 0.6257 0.0832 0.0203

Fig. 3  Dimensionless deflection of a square micro plate under sinu-
soidal load along x axis for various boundary conditions ( l∕h = 1)
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of the linear homogenous system of algebraic equations 
(obtained by imposing the appropriate boundary condi-
tions) to zero, the natural frequency is determined.

4  Numerical results

For the purpose of numerical illustration, unless men-
tioned otherwise, the material properties of the plate 
and its geometry are assumed to be E = 1.44 × 109Pa,

� = 0.38, � = 1.22 × 103
Kg

m3
, and l = 17.6 × 10−6m (which 

is determined experimentally) [55] and a = b = 20h . Also, 
the shear correction factor is considered to be k2 = 0.8 [23, 
32].

Table 7  Dimensionless 
buckling load parameter of a 
square micro plate

Type of bound-
ary conditions

l = 0 l

h
= 0.2

l

h
= 0.4

l

h
= 0.6

l

h
= 0.8

l

h
= 1

SSSS Uniaxial 5.9992 6.5563 8.2236 10.9892 14.8334 19.7290
Biaxial 2.9996 3.2781 4.1118 5.4946 7.4167 9.8645

SSSC Uniaxial 7.1770 7.8438 9.8368 13.1352 17.7052 23.5005
Biaxial 3.9382 4.3047 5.3993 7.2105 9.7199 12.9024

SSCC Uniaxial 9.7714 10.6810 13.3926 17.8640 24.0274 31.7916
Biaxial 5.5411 6.0587 7.5988 10.1380 13.6383 18.0491

SSFF Uniaxial 1.7051 2.3773 4.2629 7.2579 11.3030 16.3584
Biaxial 0.9718 1.2778 1.9692 2.8172 3.8189 5.0169

SSSF Uniaxial 2.0481 2.8174 4.8933 8.0139 12.0360 16.9097
Biaxial 1.0119 1.3622 2.2235 3.3631 4.7373 6.3873

SSCF Uniaxial 2.0483 2.8204 4.9505 8.2707 12.6935 18.1580
Biaxial 1.0629 1.4380 2.4033 3.7613 5.4393 7.4509

Table 8  Dimensionless buckling load parameter of a square micro 
plate (l/h = 1)

Type of boundary 
conditions

a

h
= 5

a

h
= 10

a

h
= 15

SSSS Uniaxial 13.1495 17.8455 19.1983
Biaxial 6.5747 8.9227 9.5991

SSSC Uniaxial 13.8048 20.4206 22.6006
Biaxial 7.7592 11.2415 12.4120

SSCC Uniaxial 16.3376 26.1029 30.0335
Biaxial 9.4900 14.8921 17.0647

SSFF Uniaxial 9.6235 14.3270 15.8987
Biaxial 4.0034 4.7481 4.9412

SSSF Uniaxial 10.0707 14.6781 16.2265
Biaxial 4.8969 5.9932 6.2780

SSCF Uniaxial 10.3866 15.5447 17.3498
Biaxial 5.5050 6.8978 7.2927

Fig. 4  Variations of dimensionless buckling load of a SSSS, b SSCC, c SSFF square micro plate under uniaxial loading versus l∕h ratio and its 
comparison with the results of Kirchhoff micro plate
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4.1  Verification studies

Here, to verify the results of the present study, three exam-
ples including bending, buckling, and free vibration of a 
simply-supported micro plate are provided.

4.1.1  Bending

The dimensionless central deflections ( w(a∕2, b∕2)∕h ) of 
a fully simply-supported micro plate subjected to sinusoi-
dal ( P(x, y) = 0.1 sin

(
n�x

a

)
sin

(
m�y

b

)
N∕m) and uniform 

(P = 0.1N∕m) loadings for different ratios of length scale 
parameter to thickness are presented in Table 1 and com-
pared with those reported by Roque et al. [23]. Excellent 
agreement is seen to exist between the results. It is 
recalled that in reference [23] the bending analysis of an 

isotropic Mindlin micro plate is carried out using the 
Navier method.

4.1.2  Buckling

In Table 2, the dimensionless buckling loads ( N
cr
(a2∕Eh3 )) 

of a fully simply supported Mindlin micro plate under 
uniaxial 

(
N̂
xx
= N

cr
, N̂

yy
= 0

)
 and biaxial 

(
N̂
xx
= N̂

yy
= N

cr

)
 

in-plane compressive forces are presented and compared 
with those reported in Ref. [56]. It is again seen that the 
Levy solution presented here for the buckling analysis is 
in excellent agreement with the Navier solution in [56].

Fig. 5  Variations of dimensionless fundamental frequencies of a SSSS, b SSCC, c SSFF square micro plate versus l∕h ratio and its comparison 
with the results of Kirchhoff micro plate

Table 9  Dimensionless two 
first frequencies ( m = 1 ) of a 
square micro plate

Type of bound-
ary conditions

l = 0 l

h
= 0.2

l

h
= 0.4

l

h
= 0.6

l

h
= 0.8

l

h
= 1

SSSS First mode 7.6798 8.0699 9.1375 10.6735 12.4950 14.4814
Second mode 18.7894 19.7053 22.2114 25.8086 30.0516 34.6388

SSSC First mode 9.1078 9.5629 10.8039 12.5853 14.6947 16.9879
Second mode 21.9079 22.9773 25.8671 29.9952 34.8388 40.0407

SSCC First mode 10.9932 11.5349 13.0003 15.1011 17.5798 20.2623
Second mode 25.3303 26.5798 29.9016 34.6166 40.1124 45.9685

SSFF First mode 3.3240 3.7071 4.4416 5.2534 6.1161 7.0254
Second mode 5.0090 5.8522 7.6049 9.6167 11.7281 13.8955

SSSF First mode 3.9327 4.4449 5.4487 6.5800 7.7896 9.0607
Second mode 10.0431 10.8307 12.8265 15.4841 18.4750 21.6331

SSCF First mode 4.1947 4.7673 5.9050 7.1863 8.5446 9.9615
Second mode 11.9279 12.8023 15.0382 18.0493 21.4522 25.0406
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4.1.3  Free vibration

In Table 3, the first two dimensionless natural frequencies (
�
m

(
a2

h

√
�

E

))
 of a fully simply supported Mindlin micro 

plate in the plane-stress state are given and compared to 
those presented in Ref. [56] in which the Navier method is 
employed. It is seen that the results are in excellent agree-
ment [56].

4.2  Parametric studies

Here, the bending, buckling and free vibration of micro 
plates with different boundary conditions subjected to 
two types of loadings; sinusoidal P = P0 sin

(
n�x

a

)
sin

(
m�y

b

)
 

and uniform P = P0 loadings are considered. Recall that the 
two edges at y = 0 and y = b are simply supported and 
the others can have simple support (S), clamped support 
(C), or free edge (F). For convenience, the following dimen-
sionless parameters are introduced:

4.2.1  Bending

The dimensionless center deflection, w  of micro plates 
with six possible types of boundary conditions subjected 
to both sinusoidal and uniform loadings are obtained 
and presented in Tables  4 and 5. In Table  4, various 
ratios of material length scale parameter to thickness 
(l∕h = 0, 0.2, 0.4, 0.6, 0.8, 1) are considered and in Table 5 
the effect of side-to-thickness ratio (a∕h = 5, 10, 15) is 

(22)

w =
100Eh3

P0a
4

w(a∕2, b∕2),�m
= �

m

a2

h

√
�

E
,N

cr
=

(
N
cr

a2

Eh3

)

studied. The variations of dimensionless center deflec-
tion of micro plates with three types of boundary condi-
tions (SSSS, SSCC and SSFF) and two ratios of a∕h = 10, 20 
versus l∕h ratio are depicted in Fig. 2 and compared with 
the results of Kirchhoff micro plate ( K2

→ ∞) . In Table 4 
and Fig. 2, it is observed that the classical continuum the-
ory ( l = 0 ) overestimates the deflection and by increas-
ing the length scale parameter ( l∕h ), the deflections of 
micro plates with all types of boundary supports become 
smaller, i.e. the micro plate becomes stiffer. In Table 5 and 
Fig. 2, it is seen that as the ratio of (a/h) increases, i.e. the 
micro plate becomes thinner; the dimensionless deflec-
tion decreases because it is nondimensionalized as in (22), 
however, the deflection per se increases, as expected. In 
addition, it is seen in Fig. 2 that the difference between 
the Kirchhoff micro plate (KP) and the Mindlin micro plate 
(MP) exists even for a thin plate (MP) especially for SSCC 
micro plate and this difference for all types of boundary 
supports increases as the micro plate becomes thicker or 
as l/h ratio reduces.

In Table 6, the effect of aspect ratio (a∕b) on dimen-
sionless center deflection, w of micro plates with various 
types of boundary conditions subjected to both sinusoi-
dal and uniform loadings are studied. It is observed that 
by increasing the aspect ratio (a∕b) , the dimensionless 
deflection (see Eq. (22)) reduces while the deflection per 
se increases, as expected.

Variations of dimensionless deflection of a square 
micro plate under sinusoidal load along x axis for all six 
possible boundary conditions are shown in Fig. 3. In Fig. 3 
and Tables 4, 5, and 6, it is expectedly seen that as the 
boundaries become more rigid, the deflections decrease, 
e.g. among three types of boundary conditions SSFF, 
SSCF and SSSF, plates with SSFF supports have the larg-
est deflections and plates with SSFC supports have the 
smallest ones.

4.2.2  Buckling

Dimensionless buckling load, N
cr

 , of a micro plate with six 
possible types of boundary conditions subjected to uni-
axial 

(
N̂
xx
= N

cr
, N̂

yy
= 0

)
 and biaxial in-plane compressive 

forces (N̂
xx
= N̂

yy
= N

cr
 ) for different ratios of length scale 

parameter to thickness (l∕h = 0, 0.2, 0.4, 0.6, 0.8, 1) and 
side-to-thickness ratio (a∕h = 5, 10, 15) are obtained and 
presented in Tables 7 and 8, respectively. The variations of 
buckling load of a plate under uniaxial loading versus l∕h 
ratio for three types of boundary conditions (SSSS, SSCC 
and SSFF) and two ratios of a∕h = 10and20 are presented 
in Fig. 4 and compared with those of Kirchhoff micro plate 
( K2

→ ∞) . In Table 7 and Fig. 4, it is observed that the clas-
sical continuum theory ( l = 0 ) underestimates the buck-
ling load and increasing the length scale parameter ( l∕h) 

Table 10  Dimensionless first- and second-mode frequencies of a 
square micro plate, ( l∕h = 1,m = 1)

Type of bound-
ary conditions

a

h
= 5

a

h
= 10

a

h
= 15

SSSS First mode 11.4784 13.6242 14.2387
Second mode 23.6268 30.6944 33.4206

SSSC First mode 12.7629 15.6274 16.5814
Second mode 25.8991 34.4253 38.2087

SSCC First mode 14.3136 18.1244 19.5911
Second mode 28.3041 38.3359 43.3586

SSFF First mode 6.1817 6.7839 6.9677
Second mode 11.2180 13.1112 13.6672

SSSF First mode 7.7320 8.6919 8.9650
Second mode 16.1861 19.8767 21.1067

SSCF First mode 8.2608 9.4518 9.8228
Second mode 17.7902 22.4515 24.2277
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or using more rigid boundaries leads to a stiffer micro 
plate and larger buckling loads. In Table 8 and Fig. 4, it 
is seen that as the ratio of (a∕h) increases, i.e. the micro 
plate becomes thinner; the dimensionless buckling load 
increases because it is nondimensionalized as in (22), while 
the buckling load per se decreases. In addition, it is seen 
in Fig. 4 that the difference between the Kirchhoff micro 
plate (KP) and the Mindlin micro plate (MP) is more pro-
nounced in SSCC micro plates and this difference for all 
types of boundary supports increases as the micro plate 
becomes thicker or as l∕h ratio increases. The differences in 
buckling loads predicted by the Kirchhoff and the Mindlin 
plate models for a∕h = 20 (which is considered to be a thin 
plate and results of the Kirchhoff model is valid for) and 
l∕h = 1 are 8.5%, 3.7%, and 2.1% for, respectively, SSCC, 
SSSS, and SSFF boundary conditions.

4.2.3  Vibration

Two first dimensionless frequencies, �
m

 , of square micro 
plates with six possible types of boundary conditions 
for different ratios of length scale parameter to thick-
ness (l∕h = 0, 0.2, 0.4, 0.6, 0.8, 1) and side-to-thickness 
ratio (a∕h = 5, 10, 15) are presented in Tables 9 and 10, 
respectively. In addition, the variations of fundamental 
dimensionless frequency in terms of l∕h for three types 
of boundary conditions (SSSS, SSCC and SSFF) and two 
ratios of a∕h = 10, 20 are presented in Fig. 5 and compared 
with those of Kirchhoff micro plate ( K2

→ ∞). In Table 9 
and Fig. 5, it is observed that the classical continuum the-
ory ( l = 0 ) underestimates the natural frequencies and 
increasing the length scale parameter (1/h) or using more 
rigid boundaries leads to a stiffer micro plate and larger 
natural frequencies. In Table 10 and Fig. 5, it is seen that 
as the ratio of (a∕h) increases, the dimensionless frequen-
cies (see Eq. (22)) increases, while the natural frequencies 
per se decrease. In addition, it is seen in Fig. 4 that the 
difference between natural frequencies within the Kirch-
hoff micro plate (KP) and the Mindlin micro plate (MP) is 
more pronounced in SSCC plates. This difference for all 
types of boundary supports increases as the micro plate 
becomes thicker (as expected) or as l∕h ratio increases. For 
a∕h = 20 and l∕h = 1 , the differences between fundamen-
tal frequencies within the Kirchhoff and the Mindlin plate 
models are 5.1%, 2.1%, and 2.8% for, respectively, SSCC, 
SSSS, and SSFF boundary supports.

5  Conclusion

In this study, bending, buckling, and free vibration behav-
ior of a rectangular micro plate is studied considering 
the modified couple stress theory and first-order shear 
deformation plate theory. The equations of motion are 
derived using the Hamilton’s principle and solved by the 
Levy’s method and the state-space method. However, 
some mathematical operations are necessary to render 
the state-space method feasible. The results are verified 
with the ones available for fully simply supported micro 
plates in the literature. The Levy’s solution available in the 
literature for micro-plates is limited to the Kirchhoff micro-
plates. Consequently, the results presented here for the 
Mindlin micro-plates with different boundary conditions 
using an analytical approach can serve as a benchmark 
and are more accurate than the results within the Kirch-
hoff theory for thicker plates (even for a micro-plate with 
a∕h = 20) . The difference in results obtained by the Kirch-
hoff and the Mindin plate models depends not only on the 
plate thickness but also on the length scale parameter to 
thickness ratio ( l∕h) as well as on the boundary supports. 
This difference is more pronounced in SSCC boundary sup-
ports and for higher ratios of l∕h , the difference in results of 
natural frequencies and buckling loads between the Kirch-
hoff and the Mindlin plate theories increases. In addition, 
the numerical results show that the fundamental frequen-
cies and buckling loads increase (and transverse deflection 
decreases) with increasing the l∕h ratio and decreasing 
the side-to-thickness ratio (a/h). Furthermore, more rigid 
boundary conditions increase frequencies and buckling 
loads and reduce the transverse deflection, as expected. 
It is to be noted that the micro plates considered in this 
study are limited to the ones with the two opposite edges 
simply supported and arbitrary conditions of support on 
the remaining edges. Presenting semi-analytical solutions 
for micro plates with completely arbitrary boundary condi-
tions should be addressed in future studies.
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Appendix 1

The coefficients appearing in Eqs. (11) are defined as 
follows:

Appendix 2

The coefficients appearing in Eqs. (16) are defined as 
follows:

Appendix 3

The matrix [A] and the load vector {q} appearing in Eq. (18) 
are defined as follows:

(23)
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where

and the coefficients E
ij(i = 1, 2andj = 1...6) are the compo-

nents of matrix [E]2×6 which is obtained as follows:

where
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