
Vol.:(0123456789)

SN Applied Sciences (2020) 2:142 | https://doi.org/10.1007/s42452-019-1928-8

Research Article

A public key cryptosystem and signature scheme based on numerical 
series

Khaled A. Nagaty1 

Received: 20 March 2019 / Accepted: 20 December 2020 / Published online: 1 January 2020 
© Springer Nature Switzerland AG 2020

Abstract
A public key cryptosystem and signature scheme based on a proposed key exchange algorithm are introduced. The key 
exchange algorithm is based on the difficulty of calculating the nth partial sum of infinite numerical series where no 
exponentiation computation is required to share a secret key between two parties as in the Diffie–Hellman algorithm. 
With the proposed public key cryptosystem ciphering and deciphering of messages, online signing documents and 
verifying signatures do not require exponentiation computation while providing higher security level than the state-of-
the-art cryptosystems that depend on the difficulty of discrete logarithmic problem or factorizing large prime numbers. 
The proposed cryptosystem and signature scheme do not depend on elliptic curve cryptography or RSA cryptography 
that are computationally too slow, this makes the proposed cryptosystem and signature scheme computationally faster, 
easier to implement and more practical to be used in online transactions. It also provides a higher level of security as it 
provides forward secrecy and using large size symmetric keys to encrypt and decrypt messages in a significantly short 
time. Moreover, the proposed signature scheme can be used as a cryptographic hash function as the hash value signifi-
cantly changes when a single letter in the document is changed. In comparison with the state-of-the art the experimental 
results show the superiority of the proposed key exchange algorithm and public key cryptosystem.

Keywords  Cryptography · Key exchange · Public key · Partial sum · Subset sum · Diffie–Hellman algorithm · Numerical 
series · Security · Signature scheme

1  Introduction

In 1975 Diffie–Hellman proposed the public key cryptosys-
tem [1]. It is a key exchange algorithm that is used to share 
public and private keys for ciphering and deciphering of 
messages in a secure way. To our best knowledge all crypto-
systems are based on the difficulty of three problems namely 
the problem of factoring large integers, problem of comput-
ing nth residue classes and problem of computing discrete 
logarithms. Cryptosystems that are based on factoring 
large integers are the RSA cryptosystem that was described 
by Rivest–Shamir–Adleman [2] and probabilistic ciphering 
system that was described by Goldwasser and Micali [3]. 

Cryptosystems that are based on the difficulty of comput-
ing the nth residue classes are Paillier ciphering scheme 
described in [4], BGN described in [5] by Boneh–Goh–Nissim 
and Okamoto–Uchiyama in [6] which resembled the Paillier 
ciphering scheme. Taher ElGamal described a public crypto-
system and signature scheme based on the difficulty of com-
puting discrete logarithms in [7]. Athena et al. introduced 
elliptic curve cryptography (ECC) uses the properties of ellip-
tic curves to generate keys in [8]. In [9] Freeman used prime-
order elliptic curve groups to construct secure pairing-based 
cryptosystem. In [10], Bahadori et al. proposed a method to 
speed up a secure generation of RSA public and private key 
values that are equipped on smart cards. In [11], Blackburn 
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et al. involved the certification authority to generate RSA-
keys. The certification authority (CA) does not now about the 
user’s private key. In [12], Sharma et al. presented a modified 
version of subset-sum problem over RSA algorithm called 
RSA algorithm using modified subset sum cryptosystem that 
relies on the fact that given a set of integers, does the sum 
of some non-empty subset equal exactly zero. However, this 
method still relies on RSA cryptography which makes it com-
putationally too slow. Moreover, it is useless for authentica-
tion by cryptographic signing of documents. In [13], Ge et al. 
presented an efficient authentication method for secure key 
exchange among set of devices that have a single trusted 
administrator. In [14], Nagar et al. proposed a new method 
to exchange the values of the RSA-key offline generations 
between gateways. All generated key values are saved in 
tables within a database. Each key value includes the public 
and private key values. In [15], Patidar et al. proposed a modi-
fied form of RSA algorithm to speed up the implementation 
of RSA algorithm during data exchange across the network. 
The authors introduced a third prime number to produce 
modulus n that is not easily decomposed by intruders. In [16], 
Ashutosh Kumar Dubey et al. proposed a novel cloud-user 
security method which is based on RSA cryptography and 
MD5 for resource attestation and sharing in java environ-
ment. In [17], Wuling Ren et al. proposed a hybrid-ciphering 
algorithm based on the integration between DES and RSA 
to enhance the security of data transmission in Bluetooth 
communication. In this approach, DES algorithm is used for 
data transmission because of its higher efficiency in block 
ciphering, and RSA algorithm is used for the ciphering of 
the key of the DES because of its management advantages 
in key cipher. In [18], Arazi integrated the Diffie–Hellman 
key exchange into digital signature algorithm (DSA) by 
replacing a message in digital signature algorithm (DSA) 
with exchange key in the Diffie–Hellman to achieve mutual 
authentication of exchanged keys. In [19], Harn et al. pro-
posed an enhanced integration of the Diffie–Helman and 
DSA for key exchange by providing three round protocols. 
In [20], Bernstein, released a key exchange protocol referred 
to as, Curve25519 that is an elliptic curve Diffie–Hellman key 
exchange protocol to establish a shared secret. More details 
on Curve25519 found in [21]. In [22, 23] a high-performance 
elliptic curve referred to as FourQ was introduced by Cos-
tello, C. and Longa, P. FourQ is 128-bit security level. In [24], 
Alvarez et al. showed that standard Diffie–Hellman is little 
slower than the elliptic curve variants in key pair generation 
and much slower than elliptic curve invariants in secure 
key exchange. In [25], Kumar et al. proposed an enhanced 
Diffie–Hellman algorithm for reliable key exchange by 
employing the concept of primitive roots. In this algorithm, 
the sender and receiver to obtain a shared-secret key use 
conventional Diffie–Hellman algorithm. Then the sender 
and receiver find the primitive root of their shared-secret 

key. The Diffie–Hellman algorithm is used again to get a 
second secret key. Finally, the sender and receiver multi-
ply their second shared-secret key with their own random 
number and exchange it for getting a new-shared secret 
key for every message and even for the same message. 
This enhanced Diffie–Hellman algorithm still relies on the 
conventional Diffie–Hellman algorithm for two rounds and 
use exponentiation computation in employing the primi-
tive roots which make this algorithm computationally too 
slow. All the previous public key cryptosystems based on the 
standard Diffie–Hellman key exchange algorithm that based 
on the difficulty of discrete logarithmic problem. All cipher-
ing schemes based on discrete logarithms require expo-
nentiation operations for ciphering and deciphering which 
is computationally time consuming. The modified subset 
sum cryptosystem relies on RSA cryptography that requires 
the generation of two large prime numbers p and q which is 
the most difficult process in the RSA algorithm. All methods 
rely on RSA cryptography are computationally slow. Moreo-
ver, the modified subset sum cryptosystem does not allow 
for secure key exchange between two ends of a conversa-
tion. The proposed key exchange algorithm allows for secure 
exchange of shared secret key that does not require expo-
nential time computation because no exponentiation opera-
tions are used. RSA cryptosystems based on elliptic curves 
are difficult to implement and computationally too slow. The 
elliptic curve Diffie–Hellman (ECDH) key exchange algorithm 
allow for two parties to exchange a shared secret key but it is 
also based on Diffie–Hellman algorithm in integration with 
elliptic curve cryptography which makes this cryptosystem 
computationally too slow. Compared to all above cryptosys-
tems, the proposed public key cryptosystem and signature 
scheme do not depend on exponentiation computation that 
makes them simpler, computationally faster and provides a 
higher security level.

This paper introduces a new public key cryptosystem 
that based on a proposed secure key exchange algorithm 
and signature scheme that both rely on the difficulty of 
computing the nth partial sum of an infinite numerical 
series over a finite field. In case the infinite numerical 
series, the first term in this series a and large number of 
terms k are all kept secret i.e. unknown, it believes that 
for an attacker to compute the nth partial sum of an infi-
nite numerical series is computationally intractable. The 
real contribution of this paper is a new algorithm for a 
secure key exchange other than the standard Diffie–Hell-
man algorithm or the enhanced Diffie–Hellman algorithm 
which both rely on exponentiation computation which 
makes them computationally too slow. The proposed key 
exchange algorithm depends on the difficulty of calculat-
ing the nth partial sum of infinite numerical series without 
using exponentiation computation. This makes the pro-
posed algorithm simple, computationally faster, easy to 
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implement and can be used for online ciphering and deci-
phering of messages and online signing documents. The 
proposed signature verification scheme can be used as a 
cryptographic hash function as the hash value significantly 
changes if there is any change in the document.

This paper organized as follows: Sect. 2 explains infinite 
numerical series over a finite field and a way to find the 
nth partial sum. Section 3 shows how to implement the 
proposed key exchange algorithm based on the difficulty 
of computing the nth partial sum of an infinite numerical 
series then shows how the proposed key exchange algo-
rithm used in ciphering and deciphering of messages. 
Section 4 introduces a proof of the secure key exchange 
algorithm. Section 5 introduces a new digital signature 
scheme based on infinite numerical series over a finite 
field. Section 6 introduces a security analysis of the new 
digital signature scheme. Section 7 gives some properties 
of the proposed public key cryptosystem and the signa-
ture scheme. Section 8 dedicated for the implementation 
and experimental results. Section 9 contains conclusion.

2 � Sum of series

Definition 1  Suppose we have an infinite sequence of 
numbers:

The expression

is called a numerical series, the numbers u1, u2, u3,… , un,… 
are called the terms of the series [26].

Definition 2  The sum of a finite number of terms (the first 
n terms) of a series called the nth partial sum of the series 
such that [26]:

If there exists a finite limit:

Then s called the sum the series in Eq. (1) and we say that 
the series converges.

If the lim
n→∞

sn does not exist i.e. sn → ∞ as n → ∞ then the 

series has no sum and we say this series diverges.

u1, u2, u3,… , un,…

(1)u1 + u2 + u3 +⋯ + un +⋯

(2)sn = u1 + u2 + u3 +⋯ + un

(3)s = lim
n→∞

sn

3 � Proposed public key system

Suppose that sender A and receiver B wants to share a 
secret key using two different infinite numerical series t1 
and t2 . Let A use series t1 , B use series t2 and p is a large 
prime number that chosen by A. The two infinite numeri-
cal series t1 and t2 can randomly be chosen from a pool of 
infinite numerical series, the first term a and large num-
ber of terms k for each series are randomly chosen using 
true random number generator so that the last term k in 
each series is much greater than the first term a i.e. k ≫ a . 
Assume that user A randomly chose the first term a and 
large number of terms k in numerical series t1 . In addition, 
user B randomly chose the first term b and large number 
of terms r in numerical series t2 . Assume SA is the kth partial 
sum of k terms in t1 and SB is the rth partial sum of r terms 
in t2 . Both users A and B can securely share a secret key as 
follows:

3.1 � Key exchange algorithm

•	 Select a very large prime number p.

Private keys

•	 SA : computed by user A.
•	 SB : computed by user B.

Public keys

•	 Let A computes yA such that: 

•	 A sends (yA, p) to B.
•	 Let B computes yB as follows: 

•	 B sends yB to A.
•	 A and B compute yAB as follows: 

Shared key

•	 A computes SAB as follows: 

•	 B computes SAB as follows:

(4)yA = SA mod p

(5)yB = SB mod p

(6)yAB = yA ⋅ yB

(7)SAB = ((yAB ⋅ yB) ⋅ SA)mod p

(8)SAB = ((yAB ⋅ yA) ⋅ SB)mod p
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Note that:

For an attacker it is difficult to compute the shared key 
SAB as it is equivalent to computing the kth partial sum and 
rth partial sum of two different infinite numerical series 
t1 and t2 over two different finite fields without knowing 
the first term and the number of terms in each numerical 
series.

3.2 � Ciphering

Suppose user B wants to encipher message m and sends it 
to user A . The ciphering algorithm works as follows:

•	 B computes the ciphered message m′ using the shared 
secret key SAB : 

•	 B sends m′ to A.

Note that new SA , SB and SAB are generated for every 
message to improve security. So SA , SB and SAB are called 
ephemeral keys.

3.3 � Deciphering

The deciphering algorithm works as follows:

•	 A receives m′.
•	 A uses the shared secret key SAB.
•	 A recovers m by dividing m′ by SAB : 

4 � Proof of secure key exchange algorithm

The proposed key exchange algorithm is based on the 
difficulty of calculating the nth partial sum of an infinite 
numerical series problem. Calculating the nth partial sum 
is based on the subset sum problem that is NP-complete 
[27]. The subset sum problem is the following: given a set 
of n positive integers 

{
a1, a2,… , an

}
  and a positive integer 

S , determine whether there is a subset of ai that sum to 
S . The subset sum problem is a decision problem in the 
complexity theory that states that NP-complete problems 
are the hardest problems in NP in the sense that they are 
at least as difficult as every other problem in NP [27]. The 

(9)((yAB ⋅ yB) ⋅ SA)mod p = ((yAB ⋅ yA) ⋅ SB)mod p

(10)m� = m ⋅ SAB

(11)m =
m�

SAB
=

m ⋅ SAB

SAB

problem of calculating the subset sum problem can be 
reduced to the nth partial sum of an infinite numerical 
series problem in polynomial time i.e. the subset sum prob-
lem ≤P nth partial sum problem. The following algorithm 
reduces the subset sum problem to nth partial sum prob-
lem in polynomial time as follows:

•	 Step 1 Let m be the number of terms in numerical series 
t  such that m < n , where n is the number of positive 
integers in the subset sum problem.

•	 Step 2 Select z terms from the set of positive integers {
a1, a2,… , an

}
  of the subset sum problem such that 

z ≫ m.
•	 Step 3 Sort all the z terms in an ascending order.
•	 Step 4 Repeat for each ( zi , zi+1 ) in the sorted list of z 

terms: 

•	 Step 5 Choose the first m terms form the list obtained 
from step 4 as the terms of the numerical sequence t .

The time complexity of step 1 is O(1) , the time complexity 
of step 2 is O(z) , the time complexity of sorting in step 3 is 
O
(
z2
)
, the time complexity of step 4 is O(z) while the time 

complexity of step 5 is O(m) . Therefore, the time complex-
ity of the reduction algorithm is:

Since m ≪ z therefore O(m) ≪ O(z) and since O(z2) is the 
highest order in Eq. (12), therefore O(z2) is dominating the 
time complexity of the reduction algorithm. This means 
that the reduction algorithm required to reduce the subset 
sum problem to the nth partial sum problem is a poly-
nomial time algorithm. Since the subset sum problem is 
NP-complete therefore calculating the nth partial sum of 
an infinite numerical series t  is also NP-complete problem.

For an attacker to compute the private key SA for user 
A or the private key SB for user B who are involved in a 
conversation is equivalent to the problem of calculating 
the nth partial sum of an infinite numerical series without 
knowing what numerical series is used by each user, the 
first term and number of terms in each numerical series 
which is proved to be NP-complete. This proves the secu-
rity of the proposed key exchange algorithm, proves the 
security of the proposed cryptosystem and proves the 
security of the proposed signature scheme.

Lemma  Let S be the nth partial sum of an infinite numerical 
series t  . Since the problem of computing S is NP-complete 
then multiplying S by a constant C is also NP-complete.

If (zi = zi+1) remove zi+1 from the list.

(12)
O(1) + O(z) + O(z2) + O(z) + O(m)

= O(z2) + 2O(z) + O(1) + O(m)
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Proof  Let t = a1 + a2 +⋯ + an +⋯ is an infinite numeri-
cal series over a finite field. Let S be the nth partial sum of 
t  as follows:

Multiply S by a constant C to get SC:

Therefore:

Substitute di = Cai , ∀i = 1,… , n

Therefore:

which still nth partial sum of the infinite numerical series 
t  that is NP-complete. Therefore SC is also NP-complete 
problem.

5 � Proposed digital signature scheme

A new signature scheme is described where the private 
key yr depends on the sequence (t1, a, r) such that t1 is an 
infinite numerical series over a finite field, a is the first term 
in t1 and r is a large number of terms. The public key yk 
depends on a different sequence (t2, b, k) such that t2 is 
a different infinite numerical series over a different finite 
field, b is the first term in t2 and k is a large number of terms. 
Assume m is a document to be signed by user A such that:

•	 A generates the private key yr as follows: 

 where Sr is the rth partial sum of numerical series t1.
•	 A generates the public key yk as follows: 

 where Sk is the kth partial sum of numerical series t2.

(13)S =

an∑

i=a1

ai

(14)SC = C ⋅ S

(15)

SC =C ⋅

an∑

i=a1

ai

=

an∑

i=a1

Cai

(16)SC =

an∑

i=a1

di

0 ≤ m ≤ p − 1where p is a very large prime number.

(17)yr = Sr mod p

(18)yk = Sk mod p

5.1 � The signing procedure

•	 A signs document m with the private key yr : 

•	 A signs document m with the public key yk : 

•	 A calculates mrk as follows: 

•	 The signature for document m is ( mrk ,mr).
•	 A publishes the signature of document m and his public 

key yk for any user to verify the signature.

5.2 � The verification procedure

Assume user B wants to verify the signature of user A on 
document m by using the published sequence (mrk ,mr , yk) 
as follows:

•	 B computes m
′

k
 as follows: 

•	 B computes m
′

rk
 as follows: 

•	 If mrk = m
�

rk
 then the signature of user A is verified oth-

erwise the signature is unverified or the original docu-
ment m may be changed.

6 � Security analysis

The security of the proposed digital signature scheme 
based on the assumption that given two infinite numerical 
series tr and tk it is computationally intractable to compute 
mr from its partial sums Sr and compute mk from its partial 
sum Sk given the following unknowns:

•	 The numerical series used.
•	 The first term a of series tr.
•	 Large number of terms r of series tr which are randomly 

chosen from [1, nr] where nr is the total number of terms 
in the infinite numerical series tr.

•	 The first term b of series tk.
•	 Large number of terms k of series tk which are randomly 

chosen from [1, nk] where nk is the total number of 
terms in the infinite numerical series tk.

•	 A very large prime number p.

(19)mr = m ⋅ yr

(20)mk = m ⋅ yk

(21)mrk = mr ⋅mk

(22)m�
k
= m ⋅ yk

(23)m�
rk
= m�

k
⋅mr
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In this section, we analyse the possible attacks on the 
signature scheme which are equivalent to computing the 
nth partial sum of an infinite numerical series over a finite 
field. Some of these attacks are focused on recovering 
the secret key yr and other attacks focus on forging the 
signature ( mrk ,mr ). The attacks to recover private key yr is 
difficult because it requires recovering Sr from its yr . Since 
yr depends on Sr which is not used twice to sign a new 
document, and by using very large prime number p it is 
difficult for an intruder to recover Sr from yr.

For attacks focus on forging the signature ( mrk ,mr ) 
of user A a forger may try to find the sequences (tr , a, r) 
and (tk , b, k) . The forger tries different infinite numerical 
series with different random values for a, r to compute Sr 
and different random values for b, k to compute Sk which 
are equivalent to compute the rth partial sum of infinite 
numerical series tr and the kth partial sum of infinite 
numerical series tk with unknown parameters a , r and b, k 
respectively. Suppose there is a pool of l  different infi-
nite numerical series with different finite fields to choose 
from, therefore the probability for choosing the correct 
infinite numerical series tr is 1

l
 . The probability to recover 

mr is equivalent to the joint probability p
(
tr , nr

)
 of choos-

ing the correct numerical series tr and the correct number 
of terms nr . As choosing tr is independent of choosing nr 
therefore the joint probability p

(
tr , nr

)
 is the product of the 

probabilities p
(
tr
)
 and p

(
nr
)
 where p

(
nr
)
 is the probabil-

ity of choosing the correct infinite numerical series tr and 
p
(
nr
)
 is the probability of choosing the correct nr terms to 

calculate the partial sum Sr , therefore:

where N is the size of the numerical set an attacker can 
choose the nr terms from it.

In order for the attacker to increase the possibilities 
to pick up the correct nr terms, the size of the set of the 
numerical set N must increase.

Therefore:

Also, the probability to recover mk is equivalent to the 
joint probability p

(
tk , nk

)
 of choosing the correct numeri-

cal series tk and the correct number of terms nk . Since 
choosing tk is independent of choosing nk therefore the 
joint probability p

(
tk , nk

)
 is the product of the probabilities 

p
(
tk
)
 and p

(
nk
)
 where p

(
nk
)
 is the probability of choos-

ing the correct infinite numerical series tk and p
(
nk
)
 is the 

probability of choosing the correct nk terms to calculate 
the partial sum Sk , therefore:

(24)
p(tr , nr) = p(tr) × p(nr)

=
1

l
×
nr

N
=

nr

l × N

(25)lim
N → ∞

nr

l × N
= 0

where N is the size of the numerical set an attacker can 
choose nk terms from it.

For the attacker to increase the possibilities to pick up 
the correct nk terms, the size of the set of elements N must 
increase.

Therefore:

Since choosing the infinite numerical series tr , tk is inde-
pendent of each other therefore the probability to recover 
mrk from its components mr and mk is the product of the 
probabilities to recover mr and mk such that:

Therefore:

where N is the size of the numerical set an attacker can 
choose nr , nk terms from it.

We believe it is not feasible to calculate yr by solving the 
following equation using Sr:

Also, we believe it is not feasible to calculate yk by solving 
the following equation using Sk:

The proposed cryptosystem provides forward secrecy. 
Forward secrecy protects past encrypted messages from 
future compromises of shared secret keys. By generat-
ing a unique shared secret key for each message to be 
ciphered then the compromise of a single shared secret 
key will not affect any message other than that ciphered 
using that particular shared secret key. Since the proposed 
cryptosystem relies on the difficulty of computing the nth 
partial sum of an infinite numerical series this allows for an 
infinite numerical space to choose different values for the 
first term and the number of terms in the numerical series 
each time a new message is encrypted.

A semantic security ciphering scheme must fulfill the 
following requirement which is: “It is infeasible to learn 
anything about the plaintext from the cipher text”. In other 
words: “Whatever an eavesdropper can compute about the 

(26)
p(tk , nk) = p(tk) × p(nk)

=
1

l
×
nk

N
=

nk

l × N

(27)lim
N → ∞

nk

l × N
= 0

(28)p(tr , tk , nr , nk) = p(tr , nr) × p(tk , nk)

(29)p(tr , tk , nr , nk) =
nr

l × N
×

nk

l × N
=

nr × nk

i2 × N2

(30)lim
N→∞

nr × nk

i2 × N2
= 0

(31)yr = Sr mod p

(32)yk = Sk mod p
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plain text given the cipher text, he can also compute with-
out the cipher text” [28]. Semantic security is commonly 
defined by the following game:

Let M be the set of all possible messages and T  be the 
set of all possible numerical series.

•	 Initialize The challenger A gives the public key keyA to 
adversary B and keeps the shared key SAB with himself.

•	 Phase 1 The adversary asks different ciphering queries 
to encrypt message mi ∈ M, i = 1…N . Each query uses 
different infinite numerical series ti ∈ T , i = 1…N with 
different first term ai and different number of terms ki 
such that: 

•	 Challenge When the adversary decides that phase 1 is 
over he chooses two equal length plaintext messages 
( mi ,mj ) such that i ≠ j on which he wishes to be chal-
lenged. The challenger picks message mi and sends the 
adversary m

�

i
= E

(
mi , SAB

)
 as a challenge to the adver-

sary.
•	 Phase 2 The adversary issues more ciphering queries as 

in Phase 1.
•	 Guess The adversary outputs a guess m′′

i
 and wins the 

game if m��
i
= m�

i
.

7 � Proposed scheme properties

A.	 The proposed ciphering scheme has an additive 
homomorphic property: by the distribution property, 
it is clear that ciphering the sum of m1 and m2 produces 
a ciphertext equivalent to the sum of E

(
m1

)
 and E

(
m2

)
 

so that: 

Proof  Given two different messages m1 and m2:

Unfortunately, the proposed ciphering scheme has no 
multiplicative homomorphic property.

B.	 For the secure key exchange, ciphering and decipher-
ing of messages no exponentiation computations 
are required which make the proposed scheme sig-
nificantly faster and more practical than the state-of-
the-art key exchange algorithms and cryptosystems 
that are based on the difficulty of discrete logarithmic 

m�
i
= E(mi , y)where E is the ciphering algorithm.

(33)E(m1 +m2) = E(m1) + E(m2)

(34)

E(m1 +m2) =(m1 +m2) ⋅ SAB

=m1 ⋅ SAB +m2 ⋅ SAB

=E(m1) + E(m2)

problem or factoring large prime numbers while pro-
ducing a higher security level.

C.	 For signing the documents no exponentiation com-
putations are required and the same for signatures 
verification.

D.	 The signature scheme can be used as cryptographic 
hash function to verify that a document is not tam-
pered with as the hash value of a document is changed 
significantly if there is any change in the document. 
For example, if an upper case letter is changed to lower 
case letter or vice versa the hash value of the docu-
ment is changed significantly.

See “Appendix 2”.

8 � Implementation

The proposed key exchange cryptosystem is implemented 
on Intel Core i3 using MatLab R2017a. In this implementa-
tion a random number generator is used to choose the first 
term and a large number of terms in two different numeri-
cal series. The last term generated by the random number 
generator must be much greater than the first term in each 
numerical series.

User A enters a very large prime number p to be used in 
the ciphering and deciphering processes. Assume A chose 
an infinite numerical series n2 as follows:

The partial sum of its k terms starting from the ath term 
to the kth is:

where a the first term and k is the last term in the numeri-
cal series.

Assume B chose another infinite numerical series 2n + 1 
which is:

The partial sum of its r terms starting from the bth term 
is:

where b is the first term and r is the last term in this numer-
ical series.

Note that a , b , r and k are all chosen using a true random 
number generator such that k ≫ a and r ≫ b.

12, 22,… , i2,…

(35)
k∑

i=a

i2

3, 5, 7, 9,… , 2i + 1,…

(36)
r∑

i=b

(2i + 1)
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User A calculates the kth partial sum SA using his numer-
ical series and calculates yA using the chosen large prime 
number p . In this implementation, the length of p is 78 
digits for a key of size 128 bits, 92 digits for keys of sizes 
256 bits and 512 bits, 184 digits for keys of sizes 1024 bits 
and 693 digits for 2048 bits.

User A sends ( yA, p ) to user B who calculates the rth par-
tial sum SB using his numerical series then calculates yB 
using the large prime number p sent by user A . The func-
tion share_key_generation() implements the secure key 
exchange algorithm between the two parties in conver-
sation so that each party will have a shared secret key. The 
function has no input but its outputs are the public key for 
user A which is yA , the private key for user A which is SA , the 
public key for user B which is yB and the private key for user 
B which is SB and the shared secret key SAB between users 
A and B . The function cipher() implements the ciphering 
of message m by user B using the shared secret key with 
user A . This function has no inputs but the output is the 
ciphered message mciph . The function decipher (mciph) is 
implemented by the receiver user A, its input the ciphered 
message mciph and its output the deciphered message m . 
See “Appendix 1” for a practical example.

To significantly minimize the generation time for the 
kth partial sum SA and rth partial sum SB for these keys are 
evaluated using the number of terms used to generate 
keys of sizes < 512-bits. Finally, the final values for SA and 
SB are obtained by multiplying SA with a large constant 
CA and multiplying SB with a large constant CB to obtain 
the required key size. These large constants are selected 
empirically and must be changed for every new message 
to improve the security level.

Table 1 shows a comparison of key generation time, 
ciphering time, deciphering time and total execution time 
in milliseconds between the proposed cryptosystem, mod-
ified subset sum cryptosystem and standard RSA. Figure 1 
shows a comparison in seconds between key generation 
time of 128-bit single key pair RSA, DH, P256, Curve25519, 
FourQ and 128-bits key of the proposed key exchange 
algorithm.

The proposed signature scheme is implemented 
using the functions: keys_generation() to generate the 
public key yk and private key yr , sign_document() and 
verify_signature().
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Table 1   Comparison between 
the proposed cryptosystem, 
RSA algorithm using modified 
subset sum (MSSRSA) 
cryptosystem and the RSA 
cryptosystem

Ciphering/deci-
phering scheme

Key size Number of 
elements

Key genera-
tion time (ms)

Ciphering 
time (ms)

Deciphering 
time (ms)

Total execu-
tion time 
(ms)

MSSRSA 128 32 16 235 78 329
RSA 128 32 16 94 62 172
Proposed scheme 128 32 0.216 4 0.245 5
MSSRSA 128 64 15 94 47 156
RSA 128 64 16 16 47 63
Proposed scheme 128 64 0.228 7 0.839 8
MSSRSA 256 32 – – – –
RSA 256 32 – – – –
Proposed scheme 256 32 0.267 3 0.241 4
MSSRSA 256 64 – – – –
RSA 256 64 – – – –
Proposed scheme 256 64 0.225 7 0.524 8
MSSRSA 512 32 125 1203 1766 3049
RSA 512 32 109 563 1719 2391
Proposed scheme 512 32 2.645 4 0.622 7
MSSRSA 512 64 63 344 875 1282
RSA 512 64 63 141 859 1063
Proposed scheme 512 64 1.724 8 1 11
MSSRSA 512 128 78 172 453 703
RSA 512 128 47 78 422 547
Proposed scheme 512 128 1.907 16 3 2
MSSRSA 1024 32 688 5407 11,328 17,423
RSA 1024 32 688 1719 12,172 14,579
Proposed scheme 1024 32 16 4 0.247 20
MSSRSA 1024 64 453 6593 5735 12,781
RSA 1024 64 453 2968 5688 9109
Proposed scheme 1024 64 14 8 0.803 23
MSSRSA 1024 128 562 516 2859 3937
RSA 1024 128 515 219 3344 4078
Proposed scheme 1024 128 16 14 2 32
MSSRSA 1024 512 12,812 187 781 13,780
RSA 1024 512 281 47 735 1063
Proposed scheme 1024 512 8 76 3 87
MSSRSA 2048 32 3735 9563 85,140 98,438
RSA 2048 32 3719 3688 85,672 93,079
Proposed scheme 2048 32 5 8 0.408 13
MSSRSA 2048 64 1563 3625 42,437 47,625
RSA 2048 64 1563 1688 43,234 46,485
Proposed scheme 2048 64 5 10 1 16
MSSRSA 2048 128 7125 6266 20,734 34,125
RSA 2048 128 7078 3829 21,406 32,313
Proposed scheme 2048 128 6 13 1 20
MSSRSA 2048 512 17,797 797 5281 23,875
RSA 2048 512 7703 375 6172 14,250
Proposed scheme 2048 512 7 53 8 68
MSSRSA 2048 1024 29,704 422 2797 32,923
RSA 2048 1024 2891 203 3406 6500
Proposed scheme 2048 1024 12 107 13 132
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See “Appendix 2” for a practical example.

``

function share_key_generation()
/*User calculates

key_size=input('Enter key size:');
= input('Enter the value of a very 

large prime number :');
= ( );

= ( );

if (key_size<512) _ = 1;

else
_ =input('Enter value of _ :');

end
_ = 0;

for = ∶

_ = _ + ∗ ;
end
S_A = C_A ∗ S_A;

y_A = mod(S_A , p);

/* User sends ( _ , , ) to user 
/* User calculates 

= ();

= ();

if (key_size < 512)  _ = 1;

else
_ = input('Enter value of _ :');

end
_ = 0;

for = ∶

_ = _ + 2 ∗ + 1;
end
S_B = C_B ∗ S_B;

y_B = mod(S_B, );

/*Users & calculate y_AB

y_AB = y_A * y_B;

/*User calculates shared secret 
key _ ∗/
S_AB = mod((y_AB ∗ y_B) ∗ S_A, p);

/*User calculates shared secret 
key S_AB */
S_AB = mod((y_AB ∗ y_A) ∗ S_B, p);

function cipher( )
/*User B (sender) uses this function 
to cipher message ∗/

= (‘Enter message:’,’s');
= ℎ( ); = 0;

for = 1 ∶

for =0:122
if ( ( ), ℎ ( ))
( ) = ;

end
end
/*User B (sender) cipher the message 

using the shared secret key _ ∗/

for = 1 ∶

ℎ ( ) = ( ) ∗ _ /*ciphered 
message*/
end

function decipher( ℎ)
/*User (receiver) uses this 
function to decipher message ℎ ∗/

= ℎ( ℎ);

/*User A (receiver) decipher ℎ

using the shared secret key _ ∗/

for = 1 ∶

( ) = ℎ( )/ _ ;/*deciphered 
message*/
end

function keys_generation( )
/*User calculates private ∗/

= input('Enter the value of :');
= ();

= ();

_ = 0;

for = ∶

_ = _ + ∗ ;
end
_ = ( _ , );

/* User calculates public key 
= (); = ();

_ = 0;

for = ∶

_ = _ + 2 ∗ + 1;
end
_ = ( _ , );
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function sign_document( , ) 
/*User signs document */ 

‘Enter document to be 
signed:’, ’s'); 

ℎ

for = ∶

for =0:122
if ℎ )

; 
end 

end 

; 
for =1 ∶ 

∗ ; 
* ; 

end 
* ; 

Publish 

function verify_sign( , _ , _ , _ )
/*User vrifies signature of on 
document */     

= 0;

for = 1 ∶

for =0:122
if ( ( ), ℎ ( ))

( ) = ; 
end

end
_ _1 = 0;

_ _1 = 0;

for = 1 ∶

_ _1 = _ _1 + ( ) * _ ;

end
_ _1 = _ * _ _1;

if ( _ == _ _1) 
print(‘Verified’);

else
print (‘Not a verified signature or 

document may be changed’)

From Table 1, it is clear that the average time for gen-
erating 128-bits key in RSA and MSSRSA is 16 ms while 
the average time for generating the same key size using 
the proposed key exchange algorithm is 0.222 ms which 
means that it is 98.61% faster than RSA and MSSRSA. The 
average time to cipher messages of sizes 32 and 64 ele-
ments using MSSRSA is 165 ms and using RSA is 55 ms 
while it takes 6 ms using the proposed cryptosystem. This 
means that the proposed cryptosystem is 96.36% faster 
than MSSRSA to cipher a message of 32 elements and 
89.09% faster than RSA to cipher the same message. The 
average time to decipher messages of size 32 elements 
and 64 elements using the MSSRSA takes 63 ms and using 
the RSA it takes 55 ms while using the proposed cryptosys-
tem it takes 0.542 ms. This means that the proposed cryp-
tosystem is 99.14% faster than MSSRSA and 99.01% faster 
than RSA. The total average execution time for MSSRSA is 
243 ms, 118 ms for RSA and 7 ms for the proposed cryp-
tosystem. This means that the proposed cryptosystem is 
faster 97.12% than MSSRSA and 94.07% faster than RSA.

The average time for generating a key of size 512-bits 
using MSSRSA is 89 ms and by using RSA is 73ms while the 
average key generation time for the same key size using 
the proposed key exchange algorithm is 2ms which is 
97.75% faster than MSSRSA and 97.26% faster than RSA. 

The average time for ciphering messages of size 32, 64 
and 128 elements with 512-bits key size using MSSRSA is 
573ms , 261ms for RSA and 9 ms for the proposed cryp-
tosystem. This means that the proposed cryptosystem is 
98.42% faster than MSSRSA and 96.55% faster than RSA. 
The average time for deciphering messages of size 32, 
64 and 128 elements for MSSRSA is 1031 ms , for RSA is 
1000 ms while for the proposed cryptosystem is 2 ms . 
This means that the proposed cryptosystem is faster than 
the MSSRSA by 99.81% and faster than RSA by 99.80%. 
The average total execution time for MSSRSA is 1678 ms , 
1334 ms for RSA and 65 ms for the proposed cryptosys-
tem. This means that the proposed cryptosystem is 96.12% , 
faster than MSSRSA and 95.13% faster than RSA.

The average time for generating a key of size 1024-bits 
using MSSRSA is 3629 ms and using RSA is 484 ms however 
by using the proposed key exchange algorithm is 14 ms

,which means that the proposed key exchange algorithm 
is 99.61% faster than MSSRSA and 97.11% faster than RSA. 
The average ciphering time for messages of size 32, 64, 
128 and 512 elements using 1024-bits key size and using 
MSSRSA is 3176 ms , using RSA is 1238 ms while using the 
proposed cryptosystem it is 26 ms . This means that the 
proposed cryptosystem is 99.18% faster than MSSRSA and 
97.89% faster than RSA. The average deciphering time 
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for messages of size 32, 64, 128 and 512 elements using 
MSSRSA is 5176 ms , RSA is 5485 ms while using the pro-
posed cryptosystem is 2 ms . It is clear that the proposed 
cryptosystem is 99.96% faster than MSSRSA and 99.96% 
faster than RSA for deciphering messages. The average 
total execution time for MSSRSA is 11,980 ms, 7207 ms for 
RSA and finally the average execution time for the pro-
posed cryptosystem is 41 ms . The proposed scheme is 
faster 96.66% than MSSRSA and faster than RSA by 99.43%.

The key generation time for the key of size 2048-bits 
using MSSRSA is 11,985 ms and using RSA is 4591 ms while 
using the proposed key exchange algorithm is 7 ms which 
means that the proposed key exchange algorithm 99.94% 
faster than MSSRSA and 99.85% faster than RSA. The 
ciphering time for messages of size 32, 64, 128, 512 and 
1024 elements for the MSSRSA is 4135 ms , 1957 ms for RSA 
and 38 ms for the proposed cryptosystem that means that 
the proposed cryptosystem is 99.08% faster than MSSRSA 
and 98.05% faster than RSA. The average deciphering 
time for messages of size 32, 64, 128, 512 and 1024 ele-
ments for MSSRSA is 31,278 ms, 31,978 ms for RSA and 
5 ms for the proposed cryptosystem. This means that the 
proposed cryptosystem is 99.98% faster than MSSRSA 
and 99.98% faster than RSA. The average total execution 
time for MSSRSA is 47,397 ms, 38,525 ms for RSA while it 
is 50 ms for the proposed cryptosystem. This means that 
the proposed cryptosystem is 99.89% faster than MSSRSA 
and 99.87% faster than RSA.

Therefore, the general average time of key generation 
for MSSRSA is 3930 ms , and for RSA is 1291 ms while for 
the proposed key exchange algorithm is 6 ms . The general 
average time of message ciphering for MSSRSA is 3975 ms 
and for RSA is 878 ms while for the proposed cryptosystem 

is 4 ms . The general average time of message deciphering 
for MSSRSA is 9387 ms , and for RSA is 9630 ms while for 
the proposed cryptosystem is 2 ms.

Figure 1 shows a comparison of the key generation 
time between the proposed key exchange algorithm and 
state-of-the-art Curve25519, DH, P256 and FourQ crypto-
systems. The average key generation time using the pro-
posed key exchange algorithm is 0.00012 s which is less 
than the state-of-the-art cryptosystems. Table 1 shows the 
superiority of the proposed cryptosystem over the state-
of-the art cryptosystems.

It is clear from the above analysis that the proposed 
cryptosystem and key exchange algorithm are significantly 
faster than the state-of-the-art key exchange algorithms 
and cryptosystems; this makes the proposed cryptosystem 
and signature scheme more practical to be used in prac-
tice and especially in online transactions.

9 � Conclusion

This paper described a public key cryptosystem and a 
signature scheme which employ a proposed secure key 
exchange algorithm that is based on the difficulty of com-
puting the nth partial sum of infinite numerical series over 
finite fields. Without using exponentiation for ciphering 
and deciphering of messages or signing documents and 
signature verifications the experimental results show that 
the proposed public key cryptosystem is easier to imple-
ment, computationally faster and more practical than 
state-of-the-art cryptosystems which are based on dis-
crete logarithms, elliptic curves or factoring large prime 
numbers. Also, the proposed cryptosystem provides a 

Fig. 1   Key generation time of 128-bit keys between the proposed cryptosystem, DH, P256, Curve25529 and Four Q. As adapted from [24]
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higher level of security as the size of the shared secret key 
can be enlarged significantly with a very short time for 
key generation, ciphering and deciphering of messages. 
It supports forward secrecy because the first term and 
total number of terms in each numerical series involved 
in the key exchange algorithm are changed each time a 
message is ciphered. By generating a unique shared secret 
key each time a message is ciphered, the compromise of 
single shared secret key will not affect any ciphered mes-
sage other than that specific message that is ciphered by 
that key. Finally, the signature scheme can be also used as 
a cryptographic hash function as the hash value changes 
significantly with any change in the document.
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Appendix 1

For simplicity assume that user A chose a small prime num-
ber p = 179, which is not used in practice and was not in 
the experiments, the first term a of the numerical series 
n2 is 1 and the number of terms is 7. User A calculates the 
partial sum SA = 20784 and generates the key yA = 20 . 
User A sends his public key ( yA , p ) to user B. User B uses 
the numerical series 2n + 1 , the first term b is 1 and the 
number of terms is 10. User B calculates the partial sum 
SB = 9960 and generates the key yB = 115 . User A calcu-
lates yAB = 2300 and user B calculates yAB = 2300.

User A calculates his key as follows:

User B calculates his key as follows:

Assume user B wants to send an encrypted message to 
user A. Assume the message is “ Hello”.

User B finds the ASCII code of message m:

User A encodes this message by multiplying each ASCII 
code with the shared secret key SAB = 13.

The ciphered message is:

To decode the ciphered message user A divides each 
ciphered ASCI code by the shared secret key SAB = 13

(yAB ⋅ yB ⋅ SA) mod p = (2300 ∗ 115 ∗ 20784) mod 179 = 13.

(yAB ⋅ yA ⋅ SB) mod p = (2300 ∗ 20 ∗ 9960) mod 179 = 13.

72 101 108 108 111 119

936 1313 1404 1404 1443 1547

The ASCII Code of the deciphered message is:

Appendix 2

Assume that user A will sign document m = “Hello” using 
the sign document scheme based on infinite numerical 
series. For simplicity assume that user A chose prime num-
ber p = 179 and the numerical series n2 to generate his 
private key yr in order to sign document m , the first term 
a and the number of terms r of the numerical series are 
randomly chosen assume the first term a = 17 and last 
term r = 40 . Assume that user A chose a different numeri-
cal series 2n + 1 to generate his public key yk to be used 
by any other user to verify his signature, the first term b of 
the series and the number of terms k are also randomly 
selected assume b = 19, k = 100.

User A calculates the partial sum Sr = 20644 and gener-
ates his private key yr = 59 . Also, user A calculates the par-
tial sum Sk = 9840 and generates his public key yk = 174.

User A calculates mr = 36521 ,  mk = 107706 and 
mrk = 3933530826.

User A publishes the signature ( 3933530826 , 36521 ) and 
publishes his public key yk = 174.

Now assume user B wants to verify that user A signed 
document m suppose document m is not changed i.e. 
m = “Hello”.

User B calculates:mk1
= 107706.

Since mrk1
= mrk then the signature of user A is verified and 

the document is not changed.
Now, assume the signature of user A is changed i.e. 

either mrk or mr is changed. Assume mr is changed to be 
mr1

= 13666 , so user B calculates:

s ince  mrk = 3933530826  ,  mrk1
= 1471910196  then 

||
|
mrk −mrk1

||
|
 = 2461620630 which means that: mrk ≠ mrk1

 . 

Therefore, the signature is not verified.
Now, assume that a hacker changed document m to 

m1 = “Hell” with letter “o” removed. User B calculates 
mk1

= 87000  a n d  mrk1
= 3177327000  ,  s i n c e 

mrk = 3933530826 then||
|
mrk −mrk1

||
|
= 756203826 which 

means the signature is not verified or the document 
changed. Assume that the hacker changed document m 
to m2 = “hello” with capital letter “H” is replaced by small 

72 101 108 108 111 119

mrk1
= mk1

∗ mr = 3933530826

mk1
= 107706, mrk1

= mk1
∗ mr1

= 1471910196
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letter “h” then user B calculates:mk1
= 108924 and 

mrk1
= 3978013404 so ||

|
mrk −mrk1

|
|
|
= 44482578 which 

means that the signature is not verified or the document 
may be changed. It is clear from the previous two cases 
that the proposed signature scheme is too sensitive to any 
change in the document even if a letter is changed from 
uppercase to lowercase and vice versa. Hence, the pro-
posed signature scheme can be used as a cryptographic 
hash function.
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