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Abstract
The present work is aimed at determining mechanical properties of chopped strand glass fiber reinforced composite 
laminates manufactured based on the design of experiments by resin transfer molding at various injection pressures with 
4, 5 and 6 layers. Response surface methodology was implemented to the experimental data for evaluating the effect 
of number of layers and resin injection pressure on mechanical properties and void content. Teaching learning based 
optimization (TLBO) has been proposed to predict optimal (maximum) mechanical properties of composite by optimiz-
ing the number of layers and injection pressure. Artificial neural network (ANN) with feed forward back propagation 
algorithm was also used to predict the responses and compare with experimental and TLBO results. It was found that 
the predicted values of responses from TLBO and ANN are good in agreement with experimental results.

Keywords  Artificial neural network (ANN) · Teaching learning based optimization (TLBO) · Glass fiber reinforced plastic 
(GFRP) · Resin transfer molding (RTM) · Mechanical properties

1 � Background

Now-a-days, composite materials have been gaining 
demand in aerospace, automobile and marine industries 
due to their high strength, corrosion resistance, rigidity 
and less weight over metallic components. Resin transfer 
molding (RTM) is a potential and feasible manufacturing 
method which can produce composite parts from low to 
moderate sizes due to its reliable experimental set up and 
low tooling cost [1–3]. Additionally, it allows higher fiber 
volume fraction and attracts automotive industry [4] due 
to its low manufacturing cost. These industries demand 
composites with excellent mechanical properties. In 
the field of optimization of fiber reinforced composites, 

response surface methodology (RSM), Taguchi, grey 
relation analysis, teaching learning-based optimization 
(TLBO), genetic algorithm, artificial neural network (ANN) 
are used for optimization and modeling. RSM was used 
reliably and exactly to model surface roughness, thrust 
force and delamination in drilling of carbon/epoxy com-
posites and predict their values [5]. RSM was implemented 
for metals to make a relationship between cutting param-
eters, surface roughness and work piece vibration [6]. 
RSM was used to determine the machining performance 
under the influence of various parameters of machining. 
The expressions emerging out of RSM are useful for opti-
mization in other algorithms such as TLBO [7]. RSM was 
implemented through ellistic teaching learning-based 
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optimization (ETLBO) with cutting speed, feed, depth of 
cut and fiber orientation as the input parameters for deter-
mining surface roughness of glass fiber reinforced plastic 
(GFRP) composite turned on a lathe. The TLBO is a power-
ful and best method for optimizing process parameters of 
machining operations in manufacturing industries [8]. This 
method was employed to optimize spindle speed, depth 
of cut, feed rate and fiber orientation angle for maximum 
metal removal rate, minimum surface roughness and cut-
ting force [9].

Furthermore, a biological motivated paradigm of ANN 
emerged out as an accurate modeling tool for optimum 
design of metallic as well as composite structures and pre-
dicting mechanical properties [10]. A well trained ANN is 
a useful tool for systematic parametric studies and char-
acterization of failure mechanisms of composites. It was 
used by several researchers due to reduction in time and 
cost of required experimental measurements [11–14]. 
ANN can be used to simulate the relationship between 
process parameters and performance of composite mate-
rial by process optimization for its design and prediction 
of mechanical properties before fabrication/testing [15]. 
ANN was employed through resilient back propagation 
to predict the performance of glass fiber composite suf-
fered from cyclic loads with static and cyclic properties as 
one input layer and fatigue life as output layer [16]. ANN 
was used to study mechanical properties of carbon/epoxy 
and glass/epoxy laminates produced in different volume 
fractions. The composites with fiber orientation angle of 
0°/90°/± 45° would give better performance [17].

A multilayer feed forward ANN with back propagation 
was implemented to expect the nonlinear behavior of 
composite laminate subjected to cyclic loads and establish 
accurate relationship between input parameters and the 
number of cycles to failure. This has been the most popular 
and commonly used tool due to its acceptable generating 
capabilities [18]. A back propagation neural network was 
used in ANN architecture for short fiber/polyamide lami-
nates fabricated by injection process. The material com-
positions and mechanical properties were considered as 
inputs for different outputs [11, 19].

To the authors’ knowledge, researchers focused on 
RSM for optimizing the process variables and maximizing 
responses without constraints in the field of composites 
because this tool does not allow constraints. Therefore, 
the efforts must be continued to implement a multi objec-
tive optimization tool allowing constraints for optimizing 
the process variables to produce quality FRP composites. 
TLBO is such a tool for optimizing process parameters to 
maximize the responses. In the present work, TLBO has 
been used considering both the number of layers and 
injection pressure as process variables in the fabrication 
of composites for maximizing their mechanical properties 

(tensile, flexural and impact strengths) keeping Reynolds 
number and void content as constraints. Further, ANN was 
employed to predict the responses for the given input vari-
ables and RSM was used to know the interaction effect of 
input variables on the responses.

2 � Materials and methodology

The raw materials used in the composite laminates manu-
factured for the present investigations are E-glass chopped 
strand fiber mat of 450 gsm (Code: M6450-104) with fiber 
length 50 mm, diameter 9 µm and polyester resin (vis-
cosity: 450 ± 50 Cp). Cobalt napthanate and methyl ethyl 
ketone peroxide were respectively used as accelerator and 
catalyst in the proportions of 1:1.25. A customized RTM 
was used to prepare three different composites which con-
sisted of 4, 5 and 6 layers (L) [20]. Each of the three different 
composites was manufactured at five different pressures 
(P) of 0.196, 0.245, 0.294, 0.343 and 0.392 MPa by injecting 
polyester resin from the center of mold. The laminates had 
5 mm thickness. The calculated fiber volume fractions of 
the three composites used are 32.13%, 40.94% and 53.2% 
for 4, 5 and 6 layers respectively [21].

The methodology of present work is organized in four 
phases as shown in Fig. 1. In phase-1, injection pressure 
and number of layers were considered as input param-
eters. Reynolds number (Re) and void content (Vc) were 
taken as constraints. Considering these input parameters 
and constraints, 15 experiments were designed accord-
ing to multilevel full factorial [22] to fabricate composites 
using RTM shown in Fig. 2 for determining tensile strength 
(σt) as per ASTM D 638, flexural strength (σf) as per ASTM D 
790 and impact strength (σi) as per ASTM D 256 standards. 
In addition to these, void content (Vc) was also quantified 
as per ASTM D 2734-94 standards in order to study its 
effect on mechanical properties of composites. The cor-
responding Reynolds numbers (Re) were also determined 
based on flow front velocity of resin [23]. The experimen-
tal results of 15 GFRP composite specimens are given in 
Table 1.

In phase-2, interaction effect of input parameters on 
responses was studied using RSM. In phase-3, optimal 
input parameters were determined for optimal mechani-
cal properties of composites using TLBO algorithm. Phase 
4 was described with ANN modeling and prediction of 
responses. The responses obtained from TLBO and ANN 
were compared with experimental results.

2.1 � Response surface methodology

RSM is an empirical modeling tool useful for developing, 
improving and optimizing the response. Response is a 
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variable dependent on a set of independent variables 
and the objective is to optimize the response [24]. In 
this approach, relationship between input and output 
variables is described as follows [25]:

In the above expression, y is the response, f is the response 
function, and x1, x2,…, xn are independent variables. er is 

(1)y = f (x1, x2, x3 … xn) ± er

Fig. 1   Flow diagram
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the fitting error. When the mathematical function (f) is 
unknown, it can be approximated within the bounds of 
experimental data by a polynomial. This methodology 
without constraints was employed by Tzeng et al. [26] for 
deciding optimal parameters by injection molding process 
to produce short glass fiber and polytetra-fluoro ethyl-
ene reinforced polycarbonate composites for enhancing 
mechanical properties. In this work, Minitab 17 software 
has been used for model fitting and graphical analysis. 
ANOVA has also been carried out to identify the signifi-
cant effect of number of layers and injection pressure on 
mechanical properties.

2.2 � Teaching learning based optimization

The problems involving optimization of multiple contra-
dictory objective functions are called as multi-objective 
problems. Implementation of traditional gradient based 

optimization methods leads to determine optimal value 
in the case of a single objective only. However, for multi-
objective optimization, one must deal with a problem 
of determining the best class of solutions among sev-
eral conflicting objectives simultaneously [27]. Hence, a 
non-dominated sorting TLBO algorithm was employed 
for multi objective optimization [28] in the present work 
to maximize mechanical properties of GFRP compos-
ites considering Reynolds number and void content as 
constraints. This was performed in two phases: teacher 
phase and learner phase. In TLBO, aim of the teacher is 
to enhance overall result of the class for subjects taught 
by him. Number of subjects, number of students and 
their previous results were taken into consideration 
to improve mean results of the students. The teacher 
identifies good learners and allows them for transfer-
ring their knowledge to the slow learners for improving 
overall result. The real-life industrial problems are solved 
using TLBO. The procedure adapted to the current work 
is given below in sequential steps.

Step 1 The population, design variables and termina-
tion criteria (Z′) are initialized. The best solution was 
selected based on non-dominance rank, crowding dis-
tance assignment (X j, k best, i) and mean of each design 
variable was calculated.
Step 2 Modified values of variables were obtained 
based on the best solution.

Step 3 Modified solutions were combined with the ini-
tial solutions.

Difference _Meanj, k, i = ri
(

Xj, k best, I − TFMj, i

)

X
�

j, k, i
= Xj, k, i + Difference _Meanj, k, i

Fig. 2   Customized resin transfer molding

Table 1   Experimental results of 
15 GFRP composite specimens

L P (MPa) Re Vc (%) σt (MPa) σf (MPa) σi (kJ/m2)

4 0.196 82.73 1.83 71.9 75.81 331.4
4 0.245 186.14 1.75 104.16 87.36 351.58
4 0.294 330.93 1.85 103.95 76.18 312.59
4 0.343 517.08 1.87 83.5 69.72 258.38
4 0.392 744.59 2.05 81.41 64.73 251.98
5 0.196 37.36 1.63 86.62 84.77 400.6
5 0.245 103.78 1.6 112.48 95.86 433.54
5 0.294 149.44 1.54 126.81 114.23 435.94
5 0.343 330.24 1.68 119.5 118.73 392.5
5 0.392 415.12 1.71 113.3 74.26 345.75
6 0.196 14.2 1.5 136.84 111 430.05
6 0.245 56.81 1.52 143.58 120.73 447.58
6 0.294 127.83 1.56 144.07 126.41 467.16
6 0.343 227.2 1.46 153.06 151.23 468.19
6 0.392 355.1 1.58 136.7 88.9 387.09
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Step 4 Ranking was given based on non-dominated 
sorting. Crowding distance was calculated after nor-
malizing objective function to accomplish the teacher 
phase.
Step 5 The two solutions X′total − P, i and X′total − Q,j were 
selected randomly.

Step 6 The new solutions of step 5 were combined with 
the solutions obtained after teacher phase (Step 4). The 
ranking was given based on non-dominated sorting 
and then crowding distance was calculated.
Step 7 When the termination criterion is satisfied, the 
non-dominated set of solutions is reported.

2.3 � Artificial neural networks

Hosseini and Barker [29] reviewed several optimization 
techniques and concluded that ANN is one of the effective 
tools of optimization. ANN model for responses in terms 
of independent variables is described in Eq. (2). Vectors 
(x) and (w) are used to represent inputs and synapses effi-
ciencies respectively. Therefore, the magnitude of neuron 
output is calculated with the Eq. (2) [30]:

A feed forward multilayer perceptron architecture (2-8-
3) was used in this work for modeling of mechanical prop-
erties. This architecture consisted of two neurons in input, 
three neurons in output and eight neurons in hidden 

X ��

j, P, i
= X �

j, P, i
+ ri

(

X �

j, P, i
− X �

j,Q, i

)

if X �

total − P, I
is better than X �

total −Q, i
otherwise

X ��

j, P, i
= X �

j, P, i
+ ri

(

X
�

j,Q, i
− X �

j, P, i

)

.

(2)Y = f (y) = f

(

∑

i

wi .xi

)

= f (w.x) = f
(

wT .x
)

layers. The network was trained by adapting weights to 
the connections between neurons in each layer.

In the present work, RSM was used to analyze the exper-
imental results for identifying the significance of process 
parameters on responses. TLBO method was adopted 
to optimize the process parameters for maximization of 
responses. In addition to these, ANN was employed to vali-
date the results of TLBO.

3 � Results and discussion

3.1 � Analysis of variance

In the present study, analysis of variance (ANOVA) was car-
ried out at 95% of confidence level to analyze the experi-
mental data of Reynolds number, void content, tensile, 
flexural and impact strengths. The sources having P values 
less than 0.05 and F values greater than 4 are identified 
as significant parameters [6]. Table 2 represents ANOVA 
for Reynolds number, void content, tensile, flexural and 
impact strengths with linear, square and two factor inter-
action models. Linear, square and two factor interaction 
models were observed to be significant for Reynolds num-
ber. Number of layers, its square and its interaction with 
pressure had significance on Reynolds number. Models of 
linear, number of layers and pressure were noted to be sig-
nificant on void content. Linear and square models were 
observed as significant sources for tensile and flexural 
strengths. Number of layers and square of pressure were 
noticed as significant models for tensile strength. Number 
of layers and square of pressure were identified as signifi-
cant parameters for flexural strength. Linear, square and 
two factor interaction models were also found to be sig-
nificant for impact strength. Number of layers, pressure, 
their squares and their interaction had significance on 
impact strength.

Table 2   Analysis of variance 
for five responses (Reynolds 
number, void content, tensile, 
flexural and impact strengths)

Source df ANOVA for Re ANOVA for Vc ANOVA for σt ANOVA for σf ANOVA for σi

F value p value F value p value F value p value F value p value F value p value

Model 5 12.95 0.001 20.04 0.000 21.94 0.000 6.12 0.010 40.00 0.000
Linear 2 22.79 0.000 47.25 0.000 47.54 0.000 10.81 0.004 83.88 0.000
P 1 4.75 0.057 84.35 0.011 1.97 0.194 0.30 0.594 22.08 0.001
L 1 40.83 0.000 10.16 0.000 93.10 0.000 21.32 0.001 145.6 0.000
Square 2 6.42 0.019 2.42 0.144 7.27 0.013 4.37 0.047 13.48 0.002
P * P 1 0.57 0.469 2.54 0.145 13.79 0.005 8.67 0.016 17.24 0.002
L * L 1 12.26 0.007 2.31 0.163 0.75 0.410 0.08 0.784 9.73 0.012
2FI 1 6.35 0.033 0.85 0.380 0.08 0.790 0.24 0.637 5.27 0.047
P * L 1 6.35 0.033 0.85 0.380 0.08 0.790 0.24 0.637 5.27 0.047
Error 9
Total 14
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In the present study, statistical significance of the 
obtained models was developed using ANOVA to gener-
ate response plots (Fig. 3) for experimental data of Reyn-
olds number, void content, tensile, flexural and impact 
strengths. Response surfaces of Fig. 3a, b indicate the 
effect of both number of layers and resin injection pres-
sure on Reynolds number and void content respectively. 
Reynolds number increased with increase of resin injection 
pressure and decrease of number of layers. This was hap-
pened due to transformation of flow pattern in resin from 
transition to turbulent as reported by Jean et al. [31]. Fig-
ure 3b represents decrease in void content with increase 
in number of layers and decrease in injection pressure. The 
percent of voids in the composite decreased with increas-
ing number of layers at same injection pressure due to 
formation of uniform flow front through small pore spaces 
of the fiber. Further, the void content decreased with 
decrease of injection pressure due to Reynolds number 
of resin flow less than or equal to 300. The similar trend 
of void formation was also reported by Chang et al. [32].

From the experimental results, void volume fractions 
of 1.75%, 1.54%, and 1.46% were noticed to be minimum 
at pressures 0.245, 0.294, 0.343 MPa for 4, 5 and 6 layered 
composites respectively. These pressures were considered 
as optimal injection pressures in the present study as the 
composites exhibited better mechanical properties due 

to better impregnation of fiber with resin caused by low 
percent of void content.

The response surfaces in Fig. 3c–e describe the varia-
tions in tensile, flexural and impact strengths respectively 
with respect to both resin injection pressure and number 
of layers. They also represent maximum strengths gained 
by the composites. For 4, 5 and 6 layered composites, the 
maximum tensile strengths were noticed as 104.16, 126.81 
and 153.06 MPa at the respective injection pressures of 
0.245, 0.294 and 0.343 MPa respectively. Increase in injec-
tion pressure beyond the optimal value led to reduction 
in tensile strength of the composite as reported by Patel 
et al. [33] for glass fiber/polyester composite. At the same 
injection pressures, the respective composites had maxi-
mum flexural strengths of 87.36, 120.73 and 151.23 MPa. 
Flexural strength also decreased beyond the optimal pres-
sure due to increase of void content present in the com-
posite as noticed by Karbhari et al. [34]. The composites 
also had maximum impact strengths of 351.58, 435.94 and 
468.19 kJ/m2. Although all the three types of composites 
exhibited maximum mechanical properties, of them 6 
layered composites manufactured at injection pressure 
0.343 MPa gave maximum tensile, flexural and impact 
strengths due to less content of voids present in it.

The quadratic polynomial equation representing 
response source (y) developed by RSM for mechanical 

Fig. 3   Response surfaces for the effect of L and P on a Re, b Vc, c σt, d σf and e σi
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properties of composites in terms of input parameters [35] 
is given hereunder.

In order to determine the regression coefficients, sev-
eral experimental design techniques are available. The 
estimated regression coefficients, t values and p values 
are given in Table 3. The significance of each model term 
has been verified using p value. A p value less than 0.05 
indicates a significant model term. From Table 3, the two 
independent variables, second order of those variables 
and interaction effect of layers and pressures represent 
significant model terms on responses.

3.2 � Teaching learning based optimization

TLBO technique has been employed to optimize number 
of layers and pressure for the manufacturing of composite 
to gain required mechanical properties. A non-dominated 
sorting teaching learning-based optimization (NSTLBO) 
algorithm has been used for assessing the influence of 
number of layers and injection pressure on the quality of 
GFRP laminate with two objective functions for minimiza-
tion of Reynolds number, void content and maximization 
of tensile, flexural and impact strengths of composites. 
Mathematical models for Reynolds number, void content, 
tensile, flexural and impact strengths were developed with 
experimental data using regression analysis.

Objective functions Minimize Re = 88 − 108L + 2373P and 
Vc = 2.364 − 0.1830L + 0.748P.

(3)y = C0 + C1.L + C2.P + C11.L.L + C22.P.P + C12.L.P

Maximize σt = − 33.7 + 26.93L + 46.2P,  σf = − 4.6 
+ 22.45 L − 35.1P and σi = 120.0 + 69.4 L − 293P.
Constraints Reynolds number 1 ≤ Re ≤ 300 and void con-
tent 0 ≤ Vc ≤ 1.46.
Parameter bounds 4 ≤ L ≤ 6 and 0.196 ≤ P ≤ 0.392 MPa.

Table 4 indicates initial population as per design of 
experiments and average values of input parameters. 
Constraints ZRe , ZVc and overall constraint violation Z′ 
mentioned in the same table were calculated using 
Eqs. (4)–(6).

(

zRe

)

max
 = 444.59 and 

(

ZVc

)

max
= 0.59 were taken from 

Table 4 to calculate Z′ value. The difference_mean for the 
layers and pressure were calculated using input variables 
in the 1st rank. Random numbers for L and P were selected 
as 0.91 and 0.67 respectively. Tf was taken as 1 to calculate 
difference_mean for the input parameters as follows [28].

New input parameters, their corresponding layers and 
pressure were calculated as follows.

(4)ZRe = Re − 300

(5)ZVc = Vc − 1.46

(6)Z � =
zRe

(

ZRe

)

max

+
ZVc

(

ZVc

)

max

Difference_mean for L = 0.91(6 − 5) = 0.91

Difference_mean for P = 0.67(0.343 − 0.294) = 0.0328

Table 3   Estimated regression coefficients, t values and p values

Vc σt

Term Coef t value p value Coef t value p value

C0 1.342 1.98 0.079 121.86 25.41 0
C1 − 2.518 − 6.39 0 26.93 9.65 0
C2 0.992 2.18 0.057 4.53 1.41 0.194
C11 2.39 3.5 0.007 4.18 0.86 0.41
C22 0.581 0.76 0.469 − 20.23 − 3.71 0.005
C12 − 1.404 − 2.52 0.033 1.08 0.27 0.79

σf σi

Term Coef t value p value Coef t value p value

C0 110.82 14.34 0 424.97 43 0
C1 22.45 4.99 0.001 69.41 12.07 0
C2 − 3.44 − 0.66 0.524 − 31.21 − 4.7 0.001
C11 − 0.36 − 0.05 0.964 − 31.07 − 3.12 0.012
C22 − 26.51 − 3.02 0.014 − 46.6 − 4.15 0.002
C12 2.61 0.41 0.691 18.67 2.3 0.047
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Similarly, remaining values were also calculated and val-
ues of ZRe , ZVc and Z′ are given in Table 5. The initial solu-
tion of Table 4 was combined with updated variables and 

L1 = 4 + (0.91) = 5

P1 = 0.196 + (0.0328) = 0.228 = 0.245MPa

Re = 88 − 108 (5) + 2373 (0.245) = 129.385

Vc = 2.364 − 0.1830(5) + 0.748(0.245) = 1.63226

�t = − 33.7 + 26.93(5) + 46.2(0.245) = 112.269MPa

�f = − 4.6 + 22.45(5) − 35.1(0.245) = 99.0505MPa

�i = 120.0 + 69.4(5) − 293(0.245) = 395.215 kJ/m
2

responses given in the Table 5. The combined population 
and their ranks given based on Z′ value are given in Table 6.

From Table 6, fifteen experiments were chosen based 
on the non-dominance rank and presented in the Table 7. 
In this section, the interaction was done between 1 and 
15, 2 and 14, 3 and 13, 4 and 12, 5 and 11 and so on. New 
input parameters and objective values after interaction are 
shown in the Table 8.

As it is the maximization function, knowledge was 
transferred from the students of 1st rank to 15th rank. The 
values 0.81 and 0.79 were selected as random numbers 
and new input parameters for L and P after interaction 
between 1 and 15 are as given below.

Table 4   Initial population S. no. L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z’ Rank

1 4 0.196 82.73 1.83 71.9 75.81 312.59 0 0.37 0.6271186 10
2 4 0.245 186.14 1.75 104.16 87.36 351.58 0 0.29 0.4915254 9
3 4 0.294 330.93 1.85 103.95 76.18 331.4 30.93 0.39 0.7305867 12
4 4 0.343 517.08 1.87 83.5 69.72 258.38 217.08 0.41 1.1831853 13
5 4 0.392 744.59 2.05 81.41 64.73 251.98 444.59 0.59 2 14
6 5 0.196 37.36 1.63 86.62 84.77 400.6 0 0.17 0.2881356 6
7 5 0.245 103.78 1.6 112.48 95.86 433.54 0 0.14 0.23728814 5
8 5 0.294 149.44 1.54 126.81 114.23 435.94 0 0.08 0.13559322 3
9 5 0.343 330.24 1.68 119.5 118.73 392.5 30.24 0.22 0.4408991 8
10 5 0.392 415.12 1.71 113.3 74.26 345.75 115.12 0.25 0.682664 11
11 6 0.196 14.2 1.4 136.84 111 430.05 0 0 0 1
12 6 0.245 56.81 1.52 143.58 120.73 447.58 0 0.06 0.10169492 2
13 6 0.294 127.83 1.56 144.07 126.41 467.16 0 0.1 0.16949153 4
14 6 0.343 227.2 1.46 153.06 151.23 468.19 0 0 0 1
15 6 0.392 355.1 1.58 136.7 88.9 387.09 55.1 0.12 0.3273242 7
Mean 5 0.294

Table 5   Updated input 
parameters, responses, 
constraints and violations 
(teacher phase)

a The value has crossed the limit, hence the bound value was taken

L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′

5 0.245 129.385 1.63226 112.269 99.0505 395.215 0 0.17226 0.610384
5 0.294 245.662 1.668912 114.5328 97.3306 380.858 0 0.208912 0.740256
5 0.343 361.939 1.705564 116.7966 95.6107 366.501 61.939 0.245564 1.21769
5 0.392 478.216 1.742216 119.0604 93.8908 352.144 178.216 0.282216 2.000034
5 0.392a 478.21 1.742216 119.06 93.89 352.144 178.21 0.282216 2
6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0
6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816
6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688
6 0.392 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745568
6 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745568
6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0
6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816
6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688
6a 0.392 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745568
6a 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745568
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Similarly, knowledge was transferred from one stu-
dent to another student in the remaining interactions 
and the new values are presented in Table 8. Now the 
input parameters and objective values obtained in 
teacher phase (Table 7) and leaner phase (Table 8) were 
again combined and presented in the Table 9 along with 
ranking based on Z′ value. Based on the overall constant 
violation Z1, ranks were given to population as in Table 9. 
The population was reproduced for best rank patterns. 
The total crowding distances were calculated for all the 
reproduced solutions of three different responses (ten-
sile, flexural and impact strengths). The solutions corre-
sponding to the maximum total crowding distances rep-
resent the optimal solutions of responses. This indicates 

New L = 6 + 0.81(6 − 5) = 6.81 = 6a

New P = 0.196 + 0.79(0.196−0.343) = 0.0798 = 0.196a MPa

that the solutions of responses satisfied the termination 
criteria [36]. The detailed procedure to calculate crowd-
ing distances and select best solutions is given below.

As listed in Table 9, there are 8 combinations given 
first rank based on Z′ value and their crowding distances 
were calculated to select best solution with the proce-
dure given below.

Crowding distance (CD) for objective function
Step 1 All rank 1 solutions were collected.
Step 2 The first objective function of tensile strength 
was considered and arranged in the ascending order 
irrespective of the remaining objective functions.
Step 3 The maximum and minimum values of the 
objective function from the entire population were 
observed.

Table 6   Combined population (teacher phase)

a The value has crossed the limit, hence the bound value was taken

L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′ Rank

4 0.196 82.73 1.83 71.9 75.81 312.59 0 0.37 0.627119 12
4 0.245 186.14 1.75 104.16 87.36 351.58 0 0.29 0.491525 10
4 0.294 330.93 1.85 103.95 76.18 331.4 30.93 0.39 0.730587 14
4 0.343 517.08 1.87 83.5 69.72 258.38 217.08 0.41 1.183185 17
4 0.392 744.59 2.05 81.41 64.73 251.98 444.59 0.59 2 19
5 0.196 37.36 1.63 86.62 84.77 400.6 0 0.17 0.288136 7
5 0.245 103.78 1.6 112.48 95.86 433.54 0 0.14 0.2372881 6
5 0.294 149.44 1.54 126.81 114.23 435.94 0 0.08 0.1355932 3
5 0.343 330.24 1.68 119.5 118.73 392.5 30.24 0.22 0.440899 9
5 0.392 415.12 1.71 113.3 74.26 345.75 115.12 0.25 0.682664 13
6 0.196 14.2 1.4 136.84 111 430.05 0 0 0 1
6 0.245 56.81 1.52 143.58 120.73 447.58 0 0.06 0.1016949 2
6 0.294 127.83 1.56 144.07 126.41 467.16 0 0.1 0.1694915 4
6 0.343 227.2 1.46 153.06 151.23 468.19 0 0 0 1
6 0.392 355.1 1.58 136.7 88.9 387.09 55.1 0.12 0.327324 8
5 0.245 129.385 1.63226 112.269 99.0505 395.215 0 0.17226 0.610384 11
5 0.294 245.662 1.668912 114.5328 97.3306 380.858 0 0.208912 0.740256 15
5 0.343 361.939 1.705564 116.7966 95.6107 366.501 61.939 0.245564 1.217678 18
5 0.392 478.216 1.742216 119.0604 93.8908 352.144 178.216 0.282216 2 19
5 0.392a 478.216 1.742216 119.06 93.89 352.144 178.216 0.282216 2 19
6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 5
6 0.392 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 16
6 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 16
6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 5
6a 0.392 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 16
6a 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 16
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Step 4 For the best and worst solutions of objective 
function, crowding distance was assigned to be infin-
ity (∞). The crowding distance CD1

22
 was calculated 

with the following expression.

CD1

22
= 0 +

(

�t

)

3
−
(

�t

)

1
(

�t

)

max
−
(

�t

)

min

CD1

22
= 0 +

139.19 − 136.84

153.06 − 136.84
= 0.145436

CD1
22

 represents crowding distance for the first objective 
function of 22nd sample. Where 

(

�t

)

1
 and 

(

�t

)

3
 repre-

sent tensile strengths of 1st and 3rd samples respec-
tively. 

(

�t

)

max
 and 

(

�t

)

min
 represent maximum and mini-

mum tensile strengths respectively.
Step 5 For the second objective function, steps 4 and 
5 were followed and CD2

22
 was determined as follows.

Table 7   Candidate solution based on the non-dominance rank (teacher phase)

a The value has crossed the limit, hence the bound value was taken

S. no. L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′ Rank

1 6 0.196 14.2 1.4 136.84 111 430.05 0 0 0 1
2 6 0.343 227.2 1.46 153.06 151.23 468.19 0 0 0 1
3 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
4 6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
5 6 0.245 56.81 1.52 143.58 120.73 447.58 0 0.06 0.1016949 2
6 6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
7 6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
8 5 0.294 149.44 1.54 126.81 114.23 435.94 0 0.08 0.1355932 3
9 6 0.294 127.83 1.56 144.07 126.41 467.16 0 0.1 0.1694915 4
10 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 5
11 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 5
12 5 0.245 103.78 1.6 112.48 95.86 433.54 0 0.14 0.2372881 6
13 5 0.196 37.36 1.63 86.62 84.77 400.6 0 0.17 0.288136 7
14 6 0.392 355.1 1.58 136.7 88.9 387.09 55.1 0.12 0.327324 8
15 5 0.343 330.24 1.68 119.5 118.73 392.5 30.24 0.22 0.440899 9

Table 8   New values of L, P, σt, σf, σi, Re, Vc and violations (learner phase)

a The value has crossed the limit, hence the bound value was taken

S. no. L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′ Interaction

1 6a 0.196a 14.2 1.4 136.84 111 430.05 0 0 0 1 and 15
2 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 2 and 14
3 6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 3 and 13
4 6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 4 and 12
5 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 5 and 11
6 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6 and 10
7 6a 0.294 − 94.892 1.412608 136.9352 123.2204 478.972 0 0 0 7 and 9
8 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 8 and 1
9 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 9 and 2
10 6 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 10 and 3
11 6a 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 11 and 4
12 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 12 and 5
13 6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 13 and 6
14 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 14 and 7
15 5 0.343 478.216 1.742216 119.0604 93.8908 421.544 178.216 0.282216 2 15 and 8
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CD2
22

 represents crowding distance for the second objec-
tive function of 22nd sample. Where 

(

�f

)

1
 and 

(

�f

)

3
 rep-

resent flexural strength of samples 1 and 3 respectively. 
(

�f

)

max
 and 

(

�f

)

min
 represent maximum and minimum 

flexural strengths respectively.
Step 6 The procedure was repeated for remaining 
objective functions.

The objective values were normalized and the crowding 
distances for tensile strengths were calculated and pre-
sented in Table 10. Similarly, the crowding distances for 

CD2

22
= CD1

22
+

(

�f

)

3
−
(

�f

)

1
(

�f

)

max
−
(

�f

)

min

CD2

22
= 0.145436 +

121.50 − 111

151.23 − 111
= 0.884426

flexural and impact strengths were calculated. The total 
crowding distances were calculated and presented in 
Table 11. Of all the responses of GFR composites obtained 

Table 9   Combined population (learner phase)

a The value has crossed the limit, hence the bound value was taken

S. no. L P Re Vc σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′ Rank

1 6 0.196 14.2 1.4 136.84 111 430.05 0 0 0 1
2 6 0.343 227.2 1.46 153.06 151.23 468.19 0 0 0 1
3 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
4 6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
19 6a 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
22 6a 0.294 − 94.892 1.412608 139.9352 123.2204 478.972 0 0 0 1
23 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
27 6 0.245 21.385 1.44926 139.199 121.5005 464.615 0 0 0 1
6 6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
7 6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
18 6a 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
28 6 0.294 137.662 1.485912 141.4628 119.7806 450.258 0 0.025912 0.091816 2
5 6 0.245 56.81 1.52 143.58 120.73 447.58 0 0.06 0.101695 3
8 5 0.294 149.44 1.54 126.81 114.23 435.94 0 0.08 0.135593 4
9 6 0.294 127.83 1.56 144.07 126.41 467.16 0 0.1 0.169492 5
10 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
11 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
16 6a 0.196a 94.892 1.412608 136.9352 123.2204 478.972 0 0.062564 0.221688 6
17 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
20 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
21 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
24 6 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
29 6a 0.343 253.939 1.522564 143.7266 118.0607 435.901 0 0.062564 0.221688 6
12 5 0.245 103.78 1.6 112.48 95.86 433.54 0 0.14 0.237288 7
13 5 0.196 37.36 1.63 86.62 84.77 400.6 0 0.17 0.288136 8
14 6 0.392 355.1 1.58 136.7 88.9 387.09 55.1 0.12 0.327324 9
15 5 0.343 330.24 1.68 119.5 118.73 392.5 30.24 0.22 0.440899 10
25 6 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 11
26 6a 0.392a 370.216 1.559216 145.9904 116.3408 421.544 70.216 0.099216 0.745554 11
30 5 0.343 478.216 1.742216 119.0604 93.8908 421.544 178.216 0.282216 2 12

Table 10   Crowding distance for tensile strength

a The value has crossed the limit, hence the bound value was taken

S. no. L P σt (MPa) CD − σt

1 6 0.196 136.84 ∞
22 6a 0.294 136.9352 0.145438
3 6 0.245 139.199 0.139568
4 6a 0.245 139.199 0
19 6a 0.245 139.199 0
23 6 0.245 139.199 0
27 6 0.245 139.199 0.854562
2 6 0.343 153.06 ∞
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from TLBO, whose Reynolds number and void content are 
within the range of constrained values (1 ≤ Re ≤ 300 and 
0 ≤ Vc ≤ 1.46) and termination criteria are satisfied, their 
responses represent the optimal responses.

Based on the crowding distances, four optimal solu-
tions were obtained as given in Table 12 (at S. No. 2, 22, 27 
and 1). The lowest value of crowding distance (at S. No. 1) 
was eliminated due to the crowding distance (∞) assigned 
to the highest and lowest values of the responses as in 
Table 10, which indicates low values of responses for the 
composite fabricated with 6 layers at 0.196 MPa. The input 
variables in Table 12 are identified as optimal solutions for 
maximization of objectives for 6 layered composites at 
injection pressures 0.343, 0.294, 0.245 MPa. Based on this 
data, it has been noted that the 6 layered composites man-
ufactured at pressure 0.343 MPa had maximum tensile, 
flexural and impact strengths of 153.06 MPa, 151.23 MPa 
and 468.19 kJ/m2 respectively.

3.3 � Prediction of responses using ANN

In the present study, an ANN technique was employed to 
develop prediction model for the responses to validate 
the results of TLBO. A 2-8-3 neural network represents 
two nodes in input layer, three nodes in output layer 
and eight nodes in hidden layer as shown in Fig. 4. In 
the network, 2 represents number of inputs (number of 
layers and injection pressure), 3 represents number of 
responses (tensile, flexural and impact strengths) and 
8 represents number of nodes in hidden layer. Number 
of hidden layers and number of nodes in hidden layer 

are estimated by trial and error method to get error less 
than target error (0.01). A feed forward back propaga-
tion algorithm was used to train the neural network [36]. 
The proposed network was trained with 12 samples at 
learning rate of 0.7 and a momentum rate of 0.8 and 
validated with 3 samples. The process of learning was 
stopped after 51,500 cycles when the average training 
error was found to be less than the target error 0.01. The 
average training was 0.00006967 which is less than the 
target error 0.01. The learning graph in Fig. 5 was con-
structed taking learning cycles on x-axis and target error 
on y-axis. All the errors were found to be less than 0.01 
as shown in Fig. 5. The red, blue, green and orange lines 
represent maximum, minimum, average example and 
average validating errors respectively. During the train-
ing process, 16 was taken as weight for the connections 
between the input layer and hidden layer and, 24 was 
taken as weight for the connections between the hid-
den layer and output layer. After training the network, 
the responses were predicted for the three optimal solu-
tions. The TLBO and ANN results were compared with the 
experimental results given in Table 13. It was observed 
that the results of three methods were found to be in 
good agreement. From these optimal solutions, it has 
been observed that the 6 layered composites manufac-
tured at pressure 0.343 MPa had maximum tensile, flex-
ural and impact strengths of 152.65 MPa, 150.93 MPa and 
466.28 kJ/m2 respectively.

Table 11   Total crowding distances for three responses

S. no. CD − σt CD − σf CD − σi CD − Total

1 ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞
22 0.145438 0.884426 ∞ ∞
27 0.854562 0.897314 0.970392 2.722268
3 0.139568 0.40058 1.107142 1.64729
4 0 0 0 0
19 0 0 0 0
23 0 0 0 0

Table 12   Final solutions based 
on the ranks and crowding 
distances

a The value has crossed the limit, hence the bound value was taken

S. no. L P σt (MPa) σf (MPa) σi (kJ/m2) Z
Re

Z
Vc

Z′ Rank

2 6 0.343 153.06 151.23 468.19 0 0 0 1
22 6a 0.294 139.9352 123.2204 478.972 0 0 0 1
27 6 0.245 139.199 121.5005 464.615 0 0 0 1
1 6 0.196 136.84 111 430.05 0 0 0 1

Fig. 4   ANN 2-8-3 architecture
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4 � Conclusion

The experiments were performed on GFRP laminates 
with 4, 5 and 6 layers manufactured by RTM process to 
obtain optimal mechanical properties at different injec-
tion pressures 0.196, 0.245, 0.294, 0.343 and 0.392 MPa. 
ANOVA was implemented to the experimental data for 
predicting effect of number of layers and injection pres-
sure on mechanical properties. Statistical models RSM, 
TLBO and ANN were also developed to optimize the 
number of layers and injection pressure for predicting 
optimal mechanical properties. The following conclu-
sions are drawn from the present work.

•	 The experiments reveal that mechanical properties 
of the composite are affected by resin injection pres-
sure, number of layers and void content. However, 
the maximum tensile, flexural and impact strengths 

were obtained at optimal injection pressures of 0.245, 
0.294, 0.343 MPa for 4, 5 and 6 layered composites 
respectively with minimum void content and Reyn-
olds number less than 300.

•	 Based on ANOVA, number of layers and resin injection 
pressure during the fabrication of composite were 
proved to be significant on Reynolds number, void 
content, tensile, flexural and impact strengths.

•	 TLBO and ANN models were developed for manufac-
turing GFRP composites by RTM with number of lay-
ers and injection pressure as variables. Both models 
have given maximum mechanical properties for 4, 5 
and 6 layered composites at their respective optimal 
injection pressures.

•	 However, the maximum mechanical properties from 
TLBO and ANN models were obtained for 6 layered 
composites at an optimal injection pressure of 
0.343 MPa with minimum void content and Reynolds 

Fig. 5   Learning progress graph with maximum, average and minimum training errors

Table 13   Validation of 
optimization results with 
experiments

S.No L P σt (MPa) σf (MPa) σi (kJ/m2)

TLBO EXP ANN TLBO EXP ANN TLBO EXP ANN

2 6 0.343 153.06 153.06 152.65 151.23 151.23 150.93 468.19 468.19 466.28
22 6 0.294 139.93 144.07 151.71 123.22 126.41 148.94 478.97 467.16 464.19
27 6 0.245 139.19 143.58 136.84 121.50 120.73 111.04 464.61 447.58 431.67
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number of resin flow less than 300 as observed from 
experiments.

•	 Finally, mechanical properties obtained from the 
models of TLBO and ANN are good in agreement with 
experimental results.
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