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Abstract
In this paper, the nonlinear transverse vibration arising from axially moving string is investigated analytically. Translat-
ing string eigenfunctions are employed to reduce a partial-differential equation to a set of second degree of freedom 
nonlinear systems. The multi-step differential transform method (MsDTM) is proposed in order to find accurate solutions 
of time-varying length of an axially moving string. To illustrate the applicability and accuracy of MsDTM, the axial motion 
model is treated with two different sets of parameters. The relationship between transverse displacement, angular 
velocity and time is obtained and discussed. The effect of the string’s speed, damping and tension on the transverse 
displacement of the string are also taken into consideration.

Keywords Nonlinear vibration · Axially moving · Multi-step differential transform method

List of symbols
A  Cross-sectional area
c  Constant axial velocity
E  Elastic modulus
l  Free length between supports
P  Initial tension
t  Time
u  Axial displacement with respect to coordinates 

translating at velocity c
v  Transverse displacement with respect to fixed 

coordinates
w  Nondimensional transverse displacement
x  Fixed axial coordinate
�  Nondimensional initial tension
�  Nondimensional axial velocity
�  Strain
�  Nondimensional time
�  Nondimensional axial coordinate
�  Linear density
�  Nondimensional period

1 Introduction

Research into axially continuous material moving at high 
speed is motivated by various technical applications. Many 
mechanical devices such as textile fibres, plastic films, 
power transmission belts, magnetic tapes, elevator cables, 
paper sheets, band saws, aerial cable tramways, crane 
hoist cables etc. interfaces with axial movement [1–4]. 
The main challenge that narrows applications in these 
devices is limiting the transverse vibration. For example, 
the quality of the surface of a band saw decreases signifi-
cantly with vibration of the blade. Another notable case 
concerns an earthquake in Tohoku in 2011 when eleva-
tor ropes oscillated for several minutes due to resonance 
vibration related to the long period ground motion [5]. 
Problems connected with the dynamic behaviour of such 
objects are clear in design and manufacturing and, there-
fore, understanding the transverse vibrations of axially 
moving strings is essential.

Despite the diversity of applications in axially mov-
ing string, their modelling and analysis has a general-
ised approach. They study as one-dimensional con-
tinua undergoing in-plane motion with no resistance 
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to bending. A schematic of the transverse vibration of 
a taut string stretched with uniform initial tension P 
between two fixed ends moving with a constant speed 
c in the longitudinal direction is presented in Fig. 1. Since 
the gravitational force is sufficiently small compared to 
the tension force, the equilibrium configuration is a 
straight line.

The kinetic and potential energies of the string are 
as follows:

where u and v are the axial and transverse displacements, 
respectively. The subscript notations represent partial dif-
ferentiation with respect to the variables X  and T  as spatial 
and temporal variables. Integrating the difference for the 
two energies gives:

For uX ≪ 1 , v2
X
< 1 , and v4

X
< v2

X
 the equation of motion 

is simplified to:

The dimensionless form of Eq. (4) is given by:

where the dimensionless variables and parameters are:
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The boundary conditions fixed on both ends are:

Equation (5), which is a second-order nonlinear partial 
differential equation, represents an axially moving string 
with a constant translation speed and a uniform tension. 
In this model the effect of gravity on the string is ignored, 
string density does not change with lateral displacement, 
and the strain remains constant during movement. The 
closed form solution of w(x, t) is:

By substituting w(x, t) from Eq. (8) into Eq. (5) and inte-
grating at (0, 1) intervals, the following set of ordinary dif-
ferential equations is obtained for temporal coordinates qk:

where

(6)
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L
, x =

X

L
, t =

1
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��
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(7)w(0, t) = w(1, t) = 0.
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qk(t) sin (k�x).
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Fig. 1  Schematic of axially moving string
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By considering second order truncation in Eq. (9) the 
following second degree of freedom nonlinear system is 
found:

where

The axially moving string represents the simplest dis-
tributed gyroscopic system. In many cases the geomet-
ric and physical nonlinearities are important to take into 
consideration and linear analysis leads to a serious inac-
curacy. The linear theory of transverse vibration is only 
appropriate for small amplitude motion. Wickert and 
Mote [6] investigate transverse vibrations of axially moving 
strings with axial tension. Pakdemirli [7] applies Galerkin’s 
method to discretize the equations of motion and accom-
plish stability analysis for each approximation by Floquet 
theory. Ulsoy [8] improves the analytical approximation 
of transverse vibration for variable speeds by using the 
multiple scales method. He compares direct perturbation 
and discretization perturbation in order to calculate the 
boundaries separating stable and unstable regions. Yurd-
das et al. [9] obtain stability domains for nonlinear vibra-
tions of axially moving strings with non-ideal mid-support 
and multi-support conditions. Pellicano [10] detects a wide 
class of nonlinear phenomena in a power transmission belt 
system.

Nonlinearity terms in axial string motion make it a 
mathematically challenging problem to solve. There are 
several methods of solving nonlinear equations [11–15]. 
The differential transform method (DTM) is based on a 
Taylor series expansion and is a useful method for solv-
ing linear and nonlinear equations with known initial and 
boundary condition values [16]. This method has the limi-
tation of convergence. In fact, divergence from the exact 
solution arises when independent variable values are 
far from the centre of the Taylor series. To overcome this 
limitation, the multi-step differential transform method 
(MsDTM) is applied [17–19]. In this method, the intervals 
of the independent variables are divided into subintervals. 
Therefore, the centre of the series changes for each subin-
terval and independent variable values are no longer far 
from the centre of the series. This leads to an increase in 
the accuracy of the results. In fact, one of the main advan-
tages of MsDTM is its ability in providing a continuous rep-
resentation of the approximate solution.
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By applying DTM a series solution is obtained that does 
not exhibit the real behaviours of the problem but gives 
a good approximation to the true solution in a very small 
region. To overcome the shortcoming, in this study an axi-
ally moving elastic string with two end supports is ana-
lysed by the MsDTM. The effect of two case parameters 
on the string’s transverse displacement is investigated 
and the results are compared to those obtained by the 
Runge–Kutta 4th order (RK4) method. The paper is organ-
ized as follows: Sect. 2 describes the fundamental formu-
lations of DTM and MsDTM, followed by the implementa-
tion of the method to solve the governing equations of 
axially moving strings based on gyroscopic mode decou-
pling in Sect. 3. The research ends with final remarks and 
conclusions.

2  DTM and MsDTM concepts

The Taylor series of an analytic function x(t) around point 
t0 is expressed by:

where X
[
k
]
 is the transformed function of x(t) , defined as:

Substituting Eq. (14) into Eq. (13) yields:

A finite number of summations in Eq. (15) provides a 
good approximation of x(t). Therefore, Eq. (15) is expressed 
as:

where N represents the finite number of terms providing 
the approximation of x(t). Table 1 shows some basic trans-
formation functions used in this paper.

In MsDTM, the whole domain is divided into finite subin-
tervals to increase the accuracy, then, for each subinterval, 
the DTM is applied. The nonlinear differential equation is 
considered to be:
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where p is the highest order of derivation and tf and tL are 
the first and last points of the interval, respectively. The 
initial condition is:

where Cq is a real number. According to Eqs. (13) and (16), 
x(t) is revised to:

where X [i] is a transformed function, and N is the num-
ber of terms selected by the convergence test. As 
x(q)

(
tf
)
= X [q] , the initial condition is rewritten as:

By dividing the t variable into T subinterval parts, [tf, tL] is 
distributed into equal parts h, as follows:

Where T is the number of subintervals. By this technique, 
for each subinterval, a distinct function is defined. These 
functions are the solutions of the MsDTM.
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continuing the procedure, the initial value of each subinter-
val is computed.

3  Axially moving elastic string solution

The following equations are rewritings of Eq. (11).

According to Table 1 and Eq. (22), the differential trans-
formation of Eq. (23) for each subinterval is:
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Table 1  Differential transform 
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Original function Transformed function
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t ∈
[
tf tl

]
 is divided into T  subintervals of equal size h , 

where h =
tf−tl

T
 . According to Eq.  (15), by assigning 

h = 0.1(tj+1 = tj + h ), 
(
Q1

)
j
[i] and 

(
Q2

)
j
[i] is calculated 

where i = 0, 1, 2,… ,N and j = 1, 2, 3,… , T .
In this research, two sets of parameters are considered. 

The working parameters of the first case study are � = 0.3 
and � = 0.1 . A non-moving string is selected as a second 
case study with working parameters � = 0 and � = 0.1. Fig-
ure 2 shows the vibration amplitude of the first general-
ized coordinate ( q1 ) against time obtained by DTM, MsDTM 
and RK4. The numerical solutions (RK4) are captured for 
comparison. Figure 2 reveals that the DTM solution has 
the limitation of convergence for t > 0.5 compared to 
MsDTM. The solid blue line represents DTM and the black 
line with triangular denotes the MsDTM. The approximate 

(26)

(
Qr

)
j
[0] = q1,j−1(t) at t = tj , j = 1, 2,… , L and r = 1, 2

(27)

(
Qr

)
j
[1] =

dq1,j−1(t)

dt
at t = tj , j = 1, 2,… , L and r = 1, 2

computational time with a Core i7-3770 computer is 
around 1  min. The number of arithmetic operations 
increases exponentially with an increasing the number of 
subintervals and terms.

Since DTM works based on the Taylor series, conver-
gence only happens around the points of the series. This 
means that by getting away from the points of the series, 
the results obtained diverge from accurate ones. The DTM 
is an iterative procedure for obtaining analytic Taylor series 
solutions of differential equations which taken computa-
tionally long time for large orders. In the MsDTM the whole 
domain is divided into finite subintervals. The Taylor series 
is applied to each subinterval, which leads to increased 
precision.

Table 2 shows the values of 
(
Q1

)
j
[i] and 

(
Q2

)
j
[i] of the 

MsDTM for each subinterval of case study 1 that has 
� = 0.3 and � = 0.1.

According to Eq. (22),
(
q1
)
1
(t) and 

(
q2
)
1
(t) for t ∈ [00.1] 

are given by:

(25)

(
q1
)
1
(t) = 0.1 − 0.4642t2 − 0.9814t3 + 0.5485t4

+ 2.44535t5 − 0.9545t6 − 3.1628t7

+ 2.8823t8 + 6.1590t9 − 8.4593t10

− 18.9226t11 + 21.7125t12 + 51.5784t13

− 52.4407t14 − 121.9363t15

(26)

(
q2
)
1
= 0.1 − 1.8401t2 − 0.2475t3 + 6.2377t4 + 0.6168t5

− 10.7241t6 − 0.8235t7 + 7 + 22.2011t8

− 2.6448t9 − 67.3669t10 − 12.0790t11

+ 192.4250t12 + 39.6011t13 − 488.6234t14

− 106.9306t15.
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Fig. 2  Vibration amplitude of the first generalized coordinate

Table 2  The values 
(
Q
1

)
j
[i] and 

(
Q
2

)
j
[i] for each subinterval based on MsDTM for case study 1

(
Q1

)
j
[i] i = 0 i = 1 i = 2 i = 3 … i = 15 t ∈

[
tj tj+1

]

j = 1 0.1 0 −0.464178 −0.981387 … −121.936308 t ∈ [00.1]

j = 2 0.106348 −0.118937 −0.703227 −0.545598 … 109.539458 t ∈ �[0.10.2]

j = 3 0.128988 −0.269192 −0.763201 0.770163 … −11.825739 t ∈ [0.20.3]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

j = L = 70 0.888468 −0.132275 0.033530 −0.762155 … −65.418899 t ∈ [9.910]
(
Q2

)
j
[i] i = 0 i = 1 i = 2 i = 3 … i = 15 t ∈

[
tj tj+1

]

j = 1 0.1 0 −1.840102 0.247561 … 106.9306622 t ∈ [00.1]

j = 2 0.116110 −0.336572 −1.413069 2.480815 … 290.948433 t ∈ [0.010.02]

j = 3 0.143525 −0.529961 −0.463482 3.624009 … −262.360976 t ∈ [0.020.03]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

j = L = 70 1.335080 −0.175840 −1.801048 1.0869339 … 699.129493 t ∈ [9.9910]
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This procedure is continued for all subintervals to 
compute 

(
q1
)
2
(t) ,  

(
q1
)
3
(t),… ,

(
q1
)
T
(t) and 

(
q2
)
2
(t) , (

q2
)
3
(t),… ,

(
q2
)
T
(t) . These terms lead to approximate 

solutions for q1(t) and q2(t) . Figure 3 shows the ampli-
tude–time response curve of q1(t) and q2(t) obtained by 
MsDTM over long periods of time. The red squares denotes 
the MsDTM, and the RK4 method is plotted with a blue line 
to compare the accuracy. It can be seen that the results 
obtained by the MsDTM are in high agreement with the 
RK4 method.

Table  3 shows the excellent agreement between 
MsDTM and RK4 for case study 1 with subintervals h = 0.01.

Figure 4 shows the amplitude–time response curve of 
q1(t) and q2(t) for case study 2 ( � = 0, � = 0.1). The results 
of the MsDTM have very good agreement with the RK4 
method over long periods of time.

The transverse deflection of the axially moving string 
w(x, t) is derived based on Eq. (8). For N = 2 this is equal to:

Figure 5 shows the MsDTM responses for travelling-
wave speeds � = 0.3 , � = 1 and � = 1.2 . The results show 
that by increasing the axial velocity, the amplitude of the 
string is increased and moves away from stability.

(27)w(x, t) = q1(t) sin (�x) + q2(t) sin (2�x).

(b)(a)
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Fig. 3  Amplitude–time response curve of a q1(t) and b q2(t) for case study 1, ( � = 0.3, � = 0.1)

Table 3  Comparison of the methods for q
1
 and q

2

t q1 q2

|MsDTM − RK4| |MsDTM − RK4|
0.00 0 0
0.10 1.11583807701904e−05 2.53079750020535e−06
0.20 4.08349480843923e−05 2.14644866159547e−06
0.30 8.48195252197981e−05 7.43845939209925e−06
0.40 0.000123548871907800 1.56649642552020e−05
0.50 0.000145756954122098 2.76135628617946e−05
0.60 0.000150024517666505 3.66180750632009e−05
0.70 0.000110086646337021 0.000123000000005020
0.80 1.02560438609844e−05 0.000211453750339999
0.90 0.000170111030664999 0.00224483536052550
1.00 0.000371698259129999 0.00119862742153400
2.00 0.000116123768158991 0.000140498934930650
3.00 0.000127973890470992 0.000188032481573203
4.00 0.000828524293291999 5.00226342399907e−05
5.00 0.00154661854700340 4.48169712914948e−05
6.00 0.00261909791067511 0.000953803536372005
7.00 0.00332055424093269 0.0935046159621130
8.00 0.00455405957375270 0.000673000000004490
9.00 0.00350554699173430 0.00112361743233599
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Figure 6 shows the results obtained for the MsDTM for 
w(x, t) , setting N = 2.

4  Conclusion

In this study, the MsDTM method is applied to nonlin-
ear ordinary differential equations for an axially mov-
ing string. The two case studies presented in this paper, 
constant speed and a non-moving string. Both scenar-
ios show excellent comparison with the RK4 numerical 
approach. It is found that MsDTM improves the conver-
gence of the series solution compare to DTM. The pre-
sent method can solve differential equations directly 
with minimum size computation and wide interval of 
convergence for the series solution. Hence, it is very 
effective, convenient and accurate for an axially mov-
ing string and can be a good alternative idea to treat 
nonlinear systems.
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Fig. 4  Amplitude–time response curve of a q1(t) and b q2(t) for case study 2 ( � = 0, � = 0.1)

Fig. 5  MsDTM response of a 
moving string for travelling-
wave speeds � = 0.3 , � = 1 and 
� = 1.2
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Fig. 6  Transverse deflection of axially moving string ( w(x, t) ) by 
MsDTM for case 1 � = 0, � = 0.1)
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