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Abstract
It is known that in the construction of the numerical methods for solving of the initial-value problem of ODE in basically 
used the methods which have applied to the calculation of the definite integrals. Here for the computing of definite 
integrals propose to use the methods which have used in solving of the initial-value problem for the ODEs. The definite 
integrals express by the indefinite integrals which are the solutions of the above-mentioned problems. For the construc-
tion of more exact methods for calculation of the definite integrals here propose to use forward-jumping (advanced) 
methods and the hybrid methods. Here establishes some connection between the Gauss and hybrid methods. And also 
have determined some necessary conditions for which the coefficients of the proposed methods have to satisfy. Con-
structed stable methods with the degree p ≤ 8. Shown that, how received here results can be applied to the computing 
of the double integrals. For this aim, determines some connection between double integrals and single definite integrals. 
By using this relation have constructed methods which are applied to calculate the double integrals. Advantages of this 
method illustrated by calculation of model double integral by the constructed here methods.

Keywords  Definite integrals · Indefinite integrals · Multistep hybrid methods · Forward-jumping methods · Initial-value 
problem for ODE

1  Introduction

As is known by using the definite integrals the scientists 
have investigated many practical problems as the com-
putation of the area bounded by some functions or by 
the direct lines, the volume of some different figures, the 
volumes of rotation bodies, distances between objects, 
energy of signals, earthquakes and others (see for exam-
ple [1, pp. 169–222, 2, 3]). The investigation of the defi-
nite integrals is narrowly connected with the determined 
of the solution of the initial-value problem for the ODEs. 
Therefore to construct the methods for the computation 
of the definite integrals were engaged many known scien-
tists as the Newton, Kottes, Gauss, Chebyshev, Simpson, 
Adams and etc. (see for example [4, 5]). The scientists are 

constructed different formulas for the computation of defi-
nite integrals having the various exactness.

And also is known that for the receiving more exact 
results in computing of definite integrals there used mak-
ing smaller of the step size which reduces to increasing of 
the volume of calculation works. And is known that the first 
direct method for solving of the initial-value problem for 
ODE has been constructed by Euler using the simplest form 
of quadrature formula. By taking into account that the order 
of accuracy for Euler method equal to 1 (one) therefore for 
the construction of more accurate methods than Euler’s, the 
specialists have proposed to use interpolation polynomials 
with the high exactness in the construction of the methods 
to compute the definite integrals (see for example [6, 7]). 
But here for the construction of more exact methods have 
proposed to use the method of unknown coefficients. And 

 *  Galina Mehdiyeva, imn_bsu@mail.ru; Vagif Ibrahimov, ibvag47@mail.ru; Mehriban Imanova, imn_bsu@yahoo.com | 1Department 
of Computational Mathematics, Baku State University, Z.Khalilov 23, 1148 Baku, Azerbaijan.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1519-8&domain=pdf


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1489 | https://doi.org/10.1007/s42452-019-1519-8

for investigation of definite integrals using the subinterval 
method by using that compared the results received here 
with the known.

Now let us to calculation of definite integrals written as:

here sufficiently smooth function f(x) is defined in the 
interval [x0, b] . For the construction of the methods to 
calculation of definite integral (1) let us denote by fi the 
values of the function of f(x) at the node points xi = x0 + ih 
(i = 0, 1,… ,N) . Here 0 < h-step size by the help of which 
the interval [x0, b] to divided to N equal parts.

For the calculation of the integral (1) let us consider the 
following function:

From here receive that I = y(b).
It is evident that y�(x) = f (x),y(x0) = 0 , which calls as 

the initial-value problem for the ODE of the first order. This 
problem in the subinterval [xi , xi+1] can be written as:

Let the problem to be presented as the following:

By using this equality scientists have constructed the 
methods to solve the problem (3) with the different orders 
of accuracy. Here we proposed to use finite-difference 
methods and applied them to solve the problems (3) and 
(4) and have constructed the methods of forward-jumping 
(advanced) and hybrid types to calculate the definite inte-
gral (1).

2 � Construction of finite‑difference methods

As is known one of the popular methods for solving of the 
problem (3) is the finite difference or multistep method 
which can be presented as the following:

(1)I =

b

∫
x0

f (x)dx,

(2)y(x) =

b

�
x0

f (s)ds, x0 ≤ x ≤ b.

(3)y�(x) = f (x), y(xi) = yi , x ∈ [xi , xi+1].

(4)y(xi+1) = y(xi) +

xi+1

∫
xi

f (s)ds, (i = 0, 1,… ,N − 1).

(5)
s∑

i=0

�iyn+i = h

k∑

i=0

�i fn+i

(n = 0, 1,… ,N − l;l = max(s, k)).

This method was investigated by some authors (see 
for example [8–14]). Note that method (5) in the case 
s = k is fundamentally investigated by Dahlquist [8] and 
have shown that if the method of (5) stable in the case 
s = k and have the degree p then p ≤ 2[k∕2] + 2 and for 
all the values of the order of k, there are stable methods 
with the maximal degrees. Here we use the known defi-
nition of the conception degree and stability has been 
proposed by Dahlquist [8].

Definition 1  The method (5) is stable if the roots of the 
characteristic polynomials �(�) of the method (5) lie in the 
unit circle on the boundary of which there is no multiply 
root. Here �(�) can be presented as:

Definition 2  The method has the degree of p, if the fol-
lowing holds:

Here p is integer.

It follows to remark that all known methods of type 
(5) are subjected to Dahlquist’s law. But in the work 
[13] have proved the existence of the stable methods 
of type (5) with the degree p = k +m + 1 (for the values 
k ≥ 3m,m = k − s ). The methods of the same property 
have constructed by other authors (see for example 
[14–16]). By taking into account this property of the for-
ward-jumping methods here consider the application of 
the forward-jumping methods to solving of the problem 
(3). Therefore let us suppose that s < k . Note that if in 
this case, the function of f(x) depends on the function 
of y(x), it is to say that f (x) ≡ �(x, y) then application of 
the forward-jumping methods accompanied by some 
difficulties. By taking into account this receive that the 
application of the forward-jumping methods to calcu-
lation of the definite integrals prefers than the known 
implicit or explicit methods. But for the calculation of 
y(xN) by forward-jumping methods we are need to use 
some values of function f(x) in outside of the consider-
ing segment.

By using the bounders p ≤ k +m + 1 (m ≤ [k∕3]) , 
receive that for the construction of more exact stable 
methods the value of k must be chosen greater. For exam-
ple, if k ≥ 9 then one can construct the stable method of 
type (5) with the degree p ≤ k + 4 . As is known for increas-
ing exactness the method (5) the increasing of the exact-
ness of the of initial-values yj (j = 0, 1,… , k − 1) is neces-
sary. Therefore the scientists have discussed to use the 

(6)�(�) = �s�
s + �s−1�

s−1 +⋯ + �1� + �0.

s∑

i=0

�iy(x + ih) − h

k∑

i=0

�iy
�(x + ih) = O(hp+1), h → 0.
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other schema for the construction of the stable methods 
with the high degrees. For this aim, proposed to use the 
Gauss, Chebyshev, Labbotto, and others interpolation 
polynomials. In the results of which appeared the new 
methods. These methods remained of the hybrid meth-
ods and in simple form can be written as following (see 
for example [17–20]):

here �i (i = 0, 1,… , k) are the hybrid points which can be 
defined as the solution of the some nonlinear system of 
algebraic equations.

To construct more accurate methods here have proposed 
to use the following method, which have been investigated 
and applied to the solving some similarly problems (see for 
example [21–24]):

This method can be received by using some of interpola-
tion polynomials in the computing of definite integrals. 
But here we want to construct the methods of type (8) by 
help of the method of unknown coefficients. For this aim, 
let us use the equality y�(x) = f (x) and to consider follow-
ing Taylor expansions:

By using these equalities in the asymptotic equality (4), 
receive that to hold the asymptotic equality (4) the satisfy-
ing of the following conditions is necessary and sufficient:

(7)
s∑

i=0

�iyn+i = h

k∑

i=0

�i fn+i+�i .

(8)
k−m∑

i=0

�iyn+i = h

k∑

i=0

�i fn+i + h

k∑

i=0

�i fn+i+�i

(|𝜈i| < 1, i = 0, 1,… , k).

y(x + ih) = y(x) + ihy�(x) +
(ih)2

2!
y��(x) +⋯ +

(ih)p

p!
y(p)(x) + O(hp+1),

y�(x + lih) = y�(x) + lihy
��(x) +

(lih)
2

2!
y���(x) +⋯ +

(lih)
p−1

(p − 1)!
y(p)(x) + O(hp).

(9)

k−m∑

i=0

�i = 0;

k∑

i=0

�i +

k∑

i=0

�i =

k−m∑

i=0

i�i ;

k∑

i=0

(
il

l!
�i +

(i + �i)
l

l!
�i) =

k−m∑

i=0

il+1

(l + 1)!
�i

l = 1, 2,… , p − 1.

By using the solution of the nonlinear system (9) one can 
construct the stable methods of type (8). Note that in the 
system of (9) there are p + 1 equations and 4k + 3 −m 
unknowns. If the system (9) has the solution in the case 
p + 1 = 4k + 3 −m , then receive that there exist the meth-
ods of type (8) with the degree p = 4k + 2 −m . In usually, 
the methods with the degree p = 4k + 2 −m are unus-
able. Here prove that there are exist the stable methods 
for k > 2 with the degree p ≤ 3k + 2 +m . But it not follows 
from here that Pmax = 3k + 2 +m (k ≥ 3m) . The system (8) 
is nonlinear therefore to find some conditions for the exist-
ence of the unique solution is not easy.

Consequently, the existence of stable methods of type 
(9) with maximal degrees is not known for us. These prop-
erties of the nonlinear system of algebraic equations have 
been met in investigation of the Gauss and Chebyshev 
methods. Therefore, to find of the Gauss node points the 
authors have used the known polynomials (see for exam-
ple [4, pp. 189–199, 25, pp. 463–469]). But here we for the 
finding of the solution of the system (9) have used the 
Mathcad program and in some cases receive the existence 
of the solution of the system (9) in the case p > 3k + 2 +m . 
Let us note that these solutions are approximate, therefore 
to assert about the existence of the stable methods with 
the degree p > 3k + 2 +m is not correct. But to say that it 
is not stable method with the degree p > 3k + 2 +m also 
is not correct. If to put �i = 0 (i = 0, 1,… , k) in the equality 
of (8) then receive the fundamentally investigated method 
which coincides with the method of (5). In this case, for the 
finding the values of the coefficients of this method one 
can be used the following way (see for example [26, 27]):

(10)

�0 = −�
(1)

0
+ �

(1)

1
− �

(1)

2
+⋯ + (−1)k−1�

(1)

k−2
+ (−1)k�

(1)

k−1

�i =

k−1∑

j=i−1

(−1)j−i+1(j + 1)j(j − 1)… (j − i + 2)�
(1)

j
∕i!

(i = 1, 2,… , k),

�0 = �
(2)

0
− �

(2)

1
+ �

(2)

2
+⋯ + (−1)k−1�

(2)

k−1
+ (−1)k�

(2)

k
,

�i =

k−1∑

j=i−1

(−1)j−i j(j − 1)… (j − i + 1)�
(2)

j
∕i!

(i = 1, 2,… , k).
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For the determined of the values of the constant �(1)

j
 and 

�
(2)

j
 (i = 0, 1,… , k) one can be used the following system:

here

As it follows from here the determination of the solution 
of the systems (10) and (11) is simpler than the determina-
tion of the solution of the system (9). Because in solving 
(11) on the first step we find the values of constants 
�
(1)

0
, �

(1)

1
, �

(1)

k−1
 and after them on the second step of the val-

ues of the constant �(2)

j
 (i = 0, 1,… , k) . But in solving of the 

system we must find the values of 2k-unknowns as the 
solution of the system (9). Let us remark that this idea is 
more effective in application of it to the construction of 
the multistep second derivative methods.

3 � Application of the multistep second 
derivative methods to calculation 
of the definite integral

The multistep second derivative methods in more general 
form can be written as:

here k, s, l are integer variable and independent on each 
other. By choosing these variables from the method (12) 
can be received the explicit, implicit and forward-jumping 
methods. Therefore method (12) called as more general 
form.

Let us consider application of the method (12) to calcu-
lation of the integral (2). In this case, receive the following:

By taking into account that the function of f(x) is known 
then receive that by using the method (13) one can calcu-
late the value of definite integral (1). The method (13) has 

j∑

i=0

Ci�
(1)

j−i
= �

(2)

j
(j = 0, 1,… , k;�

(1)

k
= 0),

(11)

Cm =

m∑

�=1

(−1)�−1Cm−i∕(i + 1);(C0 = 1;m = 1, 2, 3,…)

j∑

i=j−k+1

Ci�
(1)

j−i
= 0(j = k + 1, k + 2,… , p − 1).

(12)
s∑

i=0

�iyn+i = h

k∑

i=0

�iy
�
n+i

+ h2
k∑

i=0

�iy
��
n+i

,

(13)
s∑

i=0

�iyn+i = h

k∑

i=0

�i fn+i + h2
l∑

i=0

�i f
�
n+i

.

been fundamentally investigated by some authors (see 
for example [28–31]). If the method of (13) is stable and 
has the degree of p then there exist the methods with the 
degree p ≤ 2k + 2 (in the case s = k = l ) and there exists 
the methods with the degree p > 2k + 2 in other cases.

It follows to note that the conception of stability for the 
method (13) depends on the values of the coefficients �i 
(i = 0, 1,… , k) . If the conditions |�0| + |�1| +⋯ + |�s| ≠ 0 
are hold then the conception of stability for the method 
(13) is define as the stability of the method (5). But in the 
case |�0| + |�1| +⋯ + |�s| = 0 , the method (13) is said 
to be stable, if the roots of the polynomial �(�) lie in the 
unit circle on the boundary of which there are no multi-
ple roots without the double root � = 1 . It is evident that 
in this case the degree of the method (13) will be same 
with the degree of the method (5). For the simplicity, 
let us in the equality of (13) put s = k = l . As was noted 
above in this case there are stable methods with the 
degree p = 2k + 2 if |�0| + |�1| +⋯ + |�s| ≠ 0 holds. It is 
not difficult to understand that by using of the method 
(13) one can determine the value of yn+k , if the values yj 
(j = 0, 1,… , k − 1) are known. For solving of this, here pro-
posed to use the following method:

From this formula one can be received the Taylor expan-
sion for the value k = 1 . In this case, receive the one-step 
method which can be always applied to calculation of 
the definite integral (1), so that y0 = 0 . Thus by using 
the described way we can construct the predictor-
corrector methods with the different degrees to com-
pute the values yj (j = 0, 1,… , k − 1) and the values yn+k 
(n = 0, 1,… ,N − k;xN = x0 + Nh).

For the construction of stable methods of type (13) (in 
the case s = k = l ), let us consider for determined the val-
ues of the coefficients of the method (13).

As was noted above to determine the values of the coef-
ficients of the method (13) one can be used the method of 
unknown coefficients. And in this case, receive the system 
of algebraic equations which is similar to the system (9). 
But here we want to present the way for the finding of the 
values of the coefficients for the method (13) in using of 
which the volume of the computational work less than 
the computational work receiving in solving of the system 
which is similar to the system (9).

To find of the values of the coefficients �i , �i , �i 
(i = 0, 1,… , k) here proposed to use the following sequence 
linear systems of the algebraic equations and the system of 
(10):

(14)
k∑

i=0

�iyn+i =

s∑

j=1

hj
k∑

i=0

�
(j)

i
y
(j)

n+i
.
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But for the finding of the values of coefficients �(l)
m  

(l = 1, 2, 3;m =, 1,… , k) here present to use the following 
system of algebraic equations:

Here, the constant C is the coefficient of the principal 
part in the expansion of the remainder term of the con-
structed methods. The equivalents of the system (9) and 
(16) one can be found in the work [25].

Let us note that in the case k = 2 linear part of the 
method (13) can be proposed as: yn+2 − yn . In this case, by 
replace h to h / 2 from the mentioned linear part receive: 
yn+1 − yn . Thus by this way have constructed the one-step 
method which is similar to hybrid methods. This scheme 
can be generalized by the following way:

For the receiving of the one-step method from the 
method (17) it is enough to choose step size h in the form 
h / k. It follows to note that the method (17) can be unsta-
ble for the values k > 2 . But the receiving of the one-step 
form that will be stable.

4 � The construction of some simple methods 
and their application to the calculation 
of definite integrals

In first let us consider constructing of stable methods of 
type (5). As is known for the case s = k one can construct 
stable methods with the degree p ≤ 8 having the explicit 
and implicit type for the k ≤ 6 . Therefore let us consider 
the case when s < k and put k = 2 . In this case, the integer 

(15)

�0 = �
(3)

0
− �

(3)

1
+ �

(3)

2
+⋯ + (−1)k−1�

(3)

k−1
+ (−1)k�

(3)

k
,

�i =

k−1∑

j=i−1

(−1)j−i j(j − 1)… (j − i + 1)�
(3)

j
∕i!, i = 1, 2,… , k.

(16)

j∑

i=0

Ci�
(1)

j−i
+

j∑

i=0

(−1)j−i+1

j − i + 1
�
(3)

j−i
= �

(2)

j
, j = 0, 1,… , k, �

(1)

k
= 0;

j+k∑

i=j+1

Ci�
(1)

j+k−i
+

j+k∑

i=j

(−1)i

i
�
(3)

j+k−i
= 0, j = 1,… , k;

j+2k∑

i=j+k+1

Ci�
(1)

j+2k−i
+

j+2k∑

i=j+k

(−1)i

i
�
(3)

j+2k−i
= 0, j = 1,… , k;

3k+1∑

i=2k+1

Ci�
(1)

3k+1−i
+

3k+1∑

i=2k+1

(−1)i

i
�
(3)

3k+1−i
= C .

(17)yn+k − yn = h

k∑

i=0

�i fn+i + h2
l∑

i=0

�i f
�
n+i

.

m can receive the value m = 1 and the maximal value of 
the degree for this method will be equal to p = 3 , which 
can be written as:

And now let us put k = 3 and m = 2 then receive:

But for the case k = 4 and m = 3 the stable method can 
be written as:

The method (19) has the degree p = 4 but the method (20) 
has the degree p = 5 . In [11] has proved that for the coef-
ficients |𝛽k−m+i| > |𝛽k−m+i+1| and 𝛽k−m > 0 (for 𝛼k−m > 0 ), 
𝛽k−m+i𝛽k−m+i+1 < 0 are hold if the coefficients satisfies the 
condition: �k−m+i ≠ 0 , �k−m+i+1 ≠ 0 . The above described 
methods satisfy these conditions.

The application of the methods (18) and (20) to the calcu-
lation of the integral (1) is very simple because y0 is known. 
Now let us consider the case k = 3 and m = 1 . In this case, 
the method with the maximal degree can be written as:

This method stable and has the degree p = 5 . If in this 
method the step size h replace by the h / 2, then receive:

The using the method (22) is more difficult than the 
method of (20) so that in the method of (22) is partici-
pate the term of yn1∕2 . To find this value, one can use the 
method (19) or the method of (20). But if consider the case 
m = 0 and k = 2 then receive the following stable method 
with the degree p = 4:

and in this method after replacing of h by the h / 2 receive:

which can be applied to the computing of the integral (1) 
in separate form. Now let us consider construction of the 
stable method of type (8) and put k = 1 . In this case, from 
the method (8) one can receive the stable methods having 
the different order of accuracy. For example the method 
with the degree p = 6 can be written as:

This method is implicit. In this case, the explicit method 
with the degree p = 5 can be written as:

(18)yn+1 = yn + h(5fn + 8fn+1 − fn+2)∕12.

(19)yn+1 = yn + h(9fn + 19fn+1 − 5fn+2 + fn+3)∕24.

(20)
yn+1 = yn + h(251fn + 646fn+1 − 264fn+2 + 106fn+3 − 19fn+4)∕720.

(21)
yn+2 = (8yn+1 + 11yn)∕19 + h(10fn + 57fn+1 + 24fn+2 − fn+3)∕57.

(22)
yn+2 = (8yn+1 + 11yn)∕19 + h(10fn

+ 57fn+1∕2 + 24fn+1 − fn+3∕2)∕114.

yn+2 = yn + h(fn+2 + 4fn+1 + fn)∕3,

(23)yn+1 = yn + h(fn+1 + 4fn+1∕2 + fn)∕6,

(24)
yn+1 = yn + h(fn + fn+1)∕12 + 5h(fn+� + fn+1−�)∕12,

� = 1∕2 −
√
5∕10.
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If suppose that �i = 0 (i = 0, 1,… , k) , then can be prove 
that there are the stable methods with the degree 
p = 2k + 2 . In the case k = 1 , the method with the degree 
p = 4 has the following form:

And now let us consider construction of the multistep 
second derivative methods. As was noted above if these 
methods are stable then the degree of these methods sat-
isfies the condition p ≤ 2k + 2 . In first let us put s = k = l 
and k = 1 . Then from the method of (18) one can receive 
the following methods (see for example [27–30]):

Note that the method of (27) is implicit, the method (29) is 
explicit, but the method (28) depends on its application can 
be explicit or implicit. In our case, the method (28) is explicit 
because function f(x) independed on the function of y(x).

And now let us consider the case k = 2 . In this case, 
from the (14) receive (see for example [11, p. 288]):

These methods are stable and have the degree p = 4 and 
p = 6 respectively. Now let us consider construction of 
the stable forward-jumping second derivative methods. 
It is clear that if m = 1 then k ≥ 2 . Therefore consider the 
case m = 1 and k = 2 . In this case the stable method with 
the degree p = 6 can be written as (see for example [11, p. 
288]):

(25)

yn+1 = yn + hfn∕9 + h((16 +
√
6)fn+3∕5−� + (16 −

√
6)fn+3∕5+�)∕36,

� =
√
6∕10.

(26)
yn+1 = yn + h(fn+l + fn+1−l)∕2,

l = 1∕2 −
√
3∕6.

(27)
yn+1 = yn + h(fn+1 + fn)∕2 + h2(−f �

n+1
+ f �

n
)∕12,

Rn = h5f
(IV )

(�)
∕720,

(28)
yn+1 = yn + h(fn+1 + 2fn)∕2 + h2f �

n
∕6,

Rn = −h4f
(3)

(�)
∕72,

(29)
yn+1 = yn + hfn + h2f �

n
∕2,

Rn = h3f ��
(�)
∕6.

(30)

yn+2 = yn+1 + h(−fn+1 + 3fn)∕2 + h2(17f �
n+1

+ 7f �
n
)∕12,

(31)
yn+2 = yn+1 + h(101fn+2 + 128fn+1 + 11fn)∕240

+ h2(−13f �
n+2

+ 40f �
n+1

+ 3f �
n
)∕240.

(32)
yn+1 = yn + h(11fn+2 + 128fn+1 + 101fn)∕240

+ h2(−3f �
n+2

− 40f �
n+1

+ 3f �
n
)∕240.

For the construction of more exact methods let us put 
k = 3 and m = 1 . In this case the stable method with the 
degree p = 9 can be written as following:

If in the case k = 3 , put m = 2 , then receive the following 
one-step method with the degree p = 9 (see for example 
[11, p. 289]):

The stable methods (32)–(34) have maximal degrees. As 
was noted above by using the high derivatives of the solu-
tion of the considering problems in the construction of the 
numerical methods, the values of the degrees for these 
methods can make greater. For example the following 
methods:

The methods (35) and (36) are stable and have the 
degrees p = 6 and p = 8 , respectively. Note that the above 
described methods don’t allow some difficulties in appli-
cation of them to calculate the definite integrals. For the 
illustration of the received here results let us apply the 
methods (18)–(20) and (24)–(26) to calculate the follow-
ing definite integral:

This problem has been reduced to solve the problem: 
y�(x) = exp(�x) y(0) = 0 the exact solution for which can 
be written as: y(x) = exp(�x) − 1 . This problem has been 
solved by using of forward-jumping methods (17)–(20), 
hybrid methods (24)–(26) and multistep multiderivative 
methods (27), (35) and (36). For the comparison of the 
received results have been solved the considering prob-
lem for the different values � and h = 0, 1.

The results of the calculation of given definite integral 
have been tabulated in Tables 1 and 2.

(33)

yn+2 = (416yn+1 − 103yn)∕313 + h(157fn+3 + 1123fn+2

+ 8451fn+1 − 2830fn)∕25353 + h2(−11f �
n+3

− 630f �
n+2

+ 1557f �
n+1

− 92f �
n
)∕8451.

(34)

yn+1 = yn + h(1985fn+3 + 12015fn+2

+ 42255fn+1 + 34465fn)∕90720 + h2(−163f �
n+3

− 2421f �
n+2

− 7659f �
n+1

+ 1283f �
n
)∕30240.

(35)
yn+1 = yn + h(fn+1 + fn)∕2 − h2(f �

n+1
− f �

n
)∕10

+ h3(f ��
n+1

− f ��
n
)∕120,

(36)
yn+1 = yn + h(fn+1 + fn)∕2 − 3h2(f �

n+1
− f �

n
)∕28

+ h3(f ��
n+1

− f ��
n
)∕84 − h4(f ���

n+1
− f ���

n
)∕1680.

(37)I = �

1

∫
0

exp(�s)ds.
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For construction of the stable methods with high 
degrees here proposed the three ways. And have given 
some of the concrete methods of forward-jumping, hybrid 
and multistep second derivative types which have been 
compared by application of them to solve the example 
(37).

Remark. As in known in solving of many natural science 
problems arises the necessity for the computation of dou-
ble integrals which in simple form can be written as:

Let us transfer above described way to calculation of the 
integral (38). For this aim let us consider the following 
function:

Calculation of this integral can be reduced to solving of the 
following initial-value problem:

(38)ID =

b

∫
a

d

∫
c

f (x, y)dxdy.

u(x, y) =

x

∫
a

y

∫
c

f (s, t)dsdt.

here

5 � Conclusion

As was noted above here have described some ways to 
calculate the definite integral and their application to the 
computing of the double integrals. Given some compari-
son of the methods which have been recommended for 
calculation of the definite integrals. Have shown that the 
behavior of the errors for using methods depends on its 
type. For this aim, have used the results received for the 
step-size h = 0, 1 which have tabulated in Tables 1 and 2. 
And also have shown that the errors basically depend on 
the properties of the solution of considering problems. As 
is seen from the Table 2 the results received by forward-
jumping methods for the h = 0, 1 and m = 5 are not sat-
isfying results and cannot be considered as normal. But 
results received for the step-size h = 0, 1 and m = 1 can be 
considered as normal. We hope that the above-described 
method will find its wide application in solving scientific 
and engineering problems. To show the advantages of 
described here method has considered the application of 
the above-mentioned method to calculate double definite 
integrals. And to calculate the values of concrete double 
integrals were applied to the proposed here methods. Tak-
ing into account the received here results have obtained 
that both methods to allow as theoretical and practical 
interest. This method is a new direction in the computa-
tion of definite integrals and we believe that it will find its 
followers.
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F�(xi , y) = f (xi , y), F(xi , c) = 0, (i = 0, 1,… , n),

u�(x, d) = F(x, d), u(a, d) = 0,

F(x, y) =

y

∫
c

f (x, t)dt.

Table 1   Results for solving example in the case � = ±1

� = 1 � = −1

Method 27 2.39E−7 8.78E−8
Method 35 1.70E−11 6.27E−12
Method 36 2.22E−16 3.33E−16
Method 18 7.43E−5 2.54E−5
Method 19 4.91E−6 1.54E−6
Method 20 3.65E−7 1.05E−7
Method 26 3.98E−8 1.46E−8
Method 25 2.38E−10 8.79E−11
Method 24 1.14E−12 4.18E−13

Table 2   Results for solving example in the case � = ±5

� = 5 � = −5

Method 27 0.36624 8.57E−5
Method 35 2.27E−5 1.53E−7
Method 36 2.25E−8 1.52E−10
Method 18 0.926199 4.32E−3
Method 19 0.366244 1.12E−5
Method 20 0.16476 3.21E−4
Method 26 2.11E−3 1.43E−5
Method 25 6.30E−5 4.31E−7
Method 24 1.51E−6 1.02E−8
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