
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1514 | https://doi.org/10.1007/s42452-019-1504-2

Research Article

Modelling of the mechanical properties of concrete with cement ratio 
partially replaced by aluminium waste and sawdust ash using artificial 
neural network

U. Alaneme George1   · M. Mbadike Elvis1

Received: 3 August 2019 / Accepted: 14 October 2019 / Published online: 30 October 2019 
© The Author(s) 2019    OPEN

Abstract
The use of aluminium waste (AW) and sawdust ash (SDA) in concrete was evaluated in this study where the cement ratio 
was partially replaced by fractions of AW and SDA introduced as a supplementary cementitious material. Artificial neural 
network (ANN) was adapted as the modelling tool for this study and was developed with a two-layer feed-forward network, 
hidden neurons with sigmoid activation function and linear output neurons for the simulation of the network. The setting 
time and concrete compressive strength at varying curing days were predicted using the neural network model with vari-
ations of constituents of the cement content consisting of OPC, SDA and AW as the input of the network. Three input and 
seven output data set were used for the model development using the following algorithms; Data Division: Random, Train-
ing: Levenberg–Marquardt and Calculation: MATLAB. The data sets are set aside for validation, training and testing; 70% of 
the samples are used for training, 15% for validation and 15% are also used for testing. The performance of the networks 
was evaluated using linear regression, RMSE and R-values. The model performance scored 0.91 and 0.07 for R2 and RMSE, 
respectively, and performed better than the linear regression model, the results indicate the efficiency, reliability and useful-
ness of ANN for predicting concrete mechanical properties where AW and SDA are used to replace cement ratio accurately.
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Abbreviations
ANN	� Artificial neural network
SCM	� Supplementary cementitious Material
AW	� Fraction of aluminium waste
SDA	� Fraction of saw dust ash
OPC	� Fraction of ordinary Portland cement
Initial ST	� Initial setting time
Final ST	� Final setting time
C–S–H	� Calcium silicate hydrate
ALEX	� Aluminium extrusion industry Inyishi
RMSE	� Root mean square error
ASR	� Alkali–silica reaction

3d	� 3-Day cured concrete compressive strength
7d	� 7-Day cured concrete compressive strength
28d	� 28-Day cured concrete compressive strength
60d	� 60-Day cured concrete compressive strength
90d	� 90-Day cured concrete compressive strength

1  Introduction

Supplementary cementitious materials (SCM) devel-
opment is essential to the advancing economical con-
struction materials to be used in the construction of a 
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self-sufficient means of shelter. Concrete in its basic form 
is the mixture of cement paste and aggregates. Cement is 
the major cementitious material in concrete but recently, 
SCM is introduced in the concrete mixtures which com-
plements the cementitious component proportion in con-
crete [1]. These materials are generally by-products from 
other processes or natural materials. Some of these mate-
rials are called pozzolans, which are class of siliceous and 
aluminous materials and by themselves do not possess 
any cementitious properties but when in finely divided 
format in the presence of water, chemically reacts with 
calcium hydroxide at ordinary temperature to form com-
pounds possessing cementitious properties [2].

In concrete, the aggregates have to be chemically inert 
so as not to react with the concrete caustic pore solution. 
However, when the aggregates are not inert, they react 
with the alkali hydroxides ions in concrete, causing expan-
sion and cracking over a period time. The use of pozzolans 
in the concrete mixture to partially replace the cement 
ratio can mitigate alkali–silica reaction (ASR) by reducing 
the alkalinity of the pore fluid due to reduced quantity of 
cement and by pozzolanic activity. The pozzolanic reac-
tion mechanism is a process of detachment of silicate 
anions from the reactive aggregate by hydroxyl ions from 
cement in the pore fluid. Sodium and potassium ions are 
the ions readily available in concrete to balance the reac-
tive amorphous silicate anions and an alkali–silicate gel is 
formed. The alkali–silicate gel is unstable in the presence 
of calcium ions forming stable calcium silicate hydrate 
(C–S–H) [3, 4]. In pozzolanic reaction, the particles are in 
finely divided state as there is much calcium available in 
the cement paste, there is a formation of alkali–silicate gel 
forms in a thin layer around the pozzolanic particle which 
then quickly converts to C–S–H resulting in no expansion 
and reduction in cracks due to the pozzolanic activity miti-
gating ASR in concrete [5].

ASR is a swelling reaction that occurs over time in 
concrete between the highly alkaline cement paste and 
the reactive non-crystalline silica found in many com-
mon aggregates given sufficient moisture. It is a reaction 
between alkali, water and amorphous silica. When the ASR 
is in the starting stage, the effect on compressive strength 
is less but when the ASR reaction is more, there is a huge 
loss of compressive strength [6]. ASR is one of the most 
troubling deterioration mechanism in concrete; the cracks 
can take years to appear and they can allow other dete-
rioration mechanism to destroy concrete. There can be 
enough water inside the concrete to fuel ASR. The cement 
paste has a very high pH, which means a lot of hydroxide 
ions. The pH attacks the aggregates causing a gel to be 
formed. The gel absorbs water and expands swells and 
this causes cracking once the ASR gels starts to expands, 
it causes the concrete to crack. As the cracks grows wider 

as more gels were formed, the gels then flows through the 
cracks and eventually gets to the outside of the concrete to 
stain the concrete. The importance of properly using SCMs 
is not only to mitigate ASR, but also to enhance its resist-
ance to other durability challenges, such as, reinforcement 
corrosion, sulphate attack, freezing and thawing [7, 8].

ANN is a techniques which mimic the processing man-
ner of a human brain and it deals with nonlinear and 
complex generalization. It make use of different layers of 
mathematical processing and activation functions to make 
generalization of the information it’s fed. The network have 
the capacity to learn from experience and they need to 
do so with the aid of tremendous amount of information 
thrown at them called the training set. It learns through 
a process of re-adjustments of the weighted parameters 
between the processing elements and element parame-
ters [9–11]. ANN are increasingly adapted to solve numer-
ous civil engineering and material science problems due 
to the generation of a model with robust performance. 
To overcome the setbacks of empirical approach, artificial 
neural network (ANN) which has scored attention due to 
its flexibility has been implemented in various engineering 
applications in modelling of nonlinear multivariate inter-
relationships of the behaviour of concrete strength and 
setting time [12].

Paulson et  al. [13], experimentally optimized the 
replacement extent of cement content with silica fume; 
the compressive strength of silica fume concrete was pre-
dicted using artificial neural network (ANN). The constitu-
ent materials added for production of concrete are taken 
as inputs. The ANN was trained with the experimental 
data till the Mean Square Error (MSE) was consistent at 
improved performance of the model.

Aref et al. [14], research on the effect of volcanic scoria 
(VS) on the properties of concrete. Twenty-one concrete 
mixes with three water–cement ratios (0.5, 0.6, and 0.7) 
and seven replacement levels of VS (0%, 10%, 15%, 20%, 
25%, 30%, and 35%) were produced. Water permeability, 
compressive strength, and the porosity of the concrete 
were investigated. Artificial neural networks (ANNs) were 
used for prediction of the investigated properties using 
feed-forward back-propagation neural network. The use 
of ANN models provided a more accurate tool to capture 
the effects of five parameters (cement content, volcanic 
scoria content, water content, super plasticizer content, 
and curing time) on the investigated properties.

Hocine et al. [15], In their research, optimum content of 
supplementary cementing materials (SCMs) such as lime-
stone filler (LF) is used to blend with Portland cement which 
resulted in many environmental and technical advantages, 
such as enhancement of sustainability in concrete indus-
try, increase in physical properties and reducing CO2 emis-
sion are well known. Artificial neural networks (ANNs) was 
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applied in the work using feed-forward back-propagation 
algorithm and transfer function of Tan-sigmoid for training 
the network. The training, testing and validation of data 
during the back-propagation training process yielded 
good correlations exceeding 97%. The results of this study 
revealed that the proposed ANNs model showed a high 
performance as a feasible and highly efficient tool for simu-
lating the LF concrete compressive strength prediction.

2 � Neural networks

ANN are basically inspired by the neurons of a human 
brain which are similarly to a new born baby, as he/she 
learns from experience and we want the neural network 
to do that very quickly. The building block of a neural 
network is the neuron. ANN works in a similar way with 
the biological neural system; design to simulate and gen-
eralize large sets of data the same way the human brain 
analyses and processes the information [16]. An Artificial 
Neural Network Application provides an alternative way 
to solve complex problems; it is among the newest signal 
processing technologies. Artificial neural networks offer 
real solutions which are difficult to match with other tech-
nologies. Neural network based solution is very efficient 
in terms of development, time and resources. The input/
output training data is fundamental for the networks as it 
communicates the information that will be necessary to 
discover the optimal operating point. A nonlinear nature 
of neural network makes its processing elements flexible 
in their system [17]. The self-learning ability of the network 
enable it to generate better results as more data becomes 
available [18]. So if you train your network with more data, 
the more accurate the model output. A neural network is a 
combination of different features which evaluates the vari-
ous input features to find patterns and data generalization 
using a neural network architecture [19]. ANN consists of 
five main parts; Inputs are information which enters the 
neuron. Weights are values that amplify or de-amplify the 
effect of an input signal. Sum function is a function which 
evaluates the effect of inputs and weights absolutely in the 
network. We have to multiply each input with the given 
edge weight and have to add these values together [20].

where xi is the input parameters and wi is the edge 
weights.

The activation function is going to converts the results 
from the sum function depending on the type utilized. A 
step function activation function will output 1 if the input 
is higher than a certain threshold and 0 when otherwise. 

(1)sum =

n∑
i=0

xiwi

Whenever we have neurons connected to other neurons; in 
calculating the output, we first use the sum function that is 
sum up the incoming signals and then the activation func-
tion is going to take this sum that have been calculated by 
the sum function. The activation function is going to decide 
whether the neuron gets fired or not [21, 22].

In general, for multiple layer feed-forward models the sig-
moid activation function is used. The output of the neuron 
is computed using Eq. (2) with a sigmoid activation function 
as follows

where α is the constant of proportionality used to control 
the slope of the semi-linear region.

2.1 � Artificial neurons

ANN are computing systems that are inspired by the brains 
neural network, these networks are based on collection 
of connected units called artificial neurons. Each connec-
tion between these neurons can transmit a signal from one 
neuron to another. The receiving neuron then processes the 
signal and signals the downstream neurons connected to 
it [23]. Neurons are typically organized in layers, different 
layers may perform different transformations in the inputs 
and signals are essentially transferred from the first layer also 
known as the input layer to the last layer which is the output 
layer; in between the input and output layers we have the 
hidden layer. The neuron is an artificial node which performs 
the necessary tasks of taking the input from the preceding 
nodes, applying the learning techniques to generate the 
edge weights. The sum function add up the input signals 
multiplied by their respective edge weights and then pass 
the sum to an activation function which evaluates the com-
posite prediction or probabilities to produce the output 
signal. These generation of fused predictions is what hap-
pens to every node in a neural network and because of this, 
the predictions for ANN are progressively processed until 
the final output is obtained. For a given neuron, let there 
be m + 1 inputs with signals x0 through xm and weights w0 
through wm. Usually, the x0 input is assigned the value + 1, 
which makes it a bias input with wk0 = bk. This leaves only m 
actual inputs to the neuron: from x1 to xm [24, 25].

The output of the kth neuron is:

where � is the transfer function.
The structure of a perceptron which is the basic unit 

of an artificial neuron network is shown in Fig. 1 which 
shows the structure of a typical neuron with the basic 

(2)(output) =
1

1 + e−�(sum)

(3)yk = �

(
m∑
j=0

wkjxj

)
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components and the activation functions. The way it pro-
cesses information with the model of the human’s nervous 
system. Suppose we have some inputs coming from one 
end, biologically these are equivalent to the dendrites; 
then, we have the input vectors multiplying the weights 
to get the linear combination; from there we move to the 
stage of nonlinearity which is taking care of using activa-
tion functions. The output is analogous to the axon of a 
biological neuron, and its value propagates to the input 
of the next layer, through a synapse. It may also exit the 
system, possibly as part of an output vector [26].

2.2 � Learning of the ANN

This is the major phase in neural network development, 
the progressive re-adjustments of the weighted param-
eters is called training which is done by either allocating 
weights evaluated from the training data set or by adjust-
ing the weights with respect to same criterion automati-
cally [27]. ANN’s learning rule or learning process is an 
algorithm or mathematical logic which enhances the net-
work’s performance and better generalization of the data 
sets. It is done by updating the weights and bias which 
are adjustable parameters when a network is simulated 
using a specific data environment. A learning rule will 
adopt existing conditions (biases and weights) of the net-
work after training and will compare the observed results 
and measured results of the network to produce new and 
improved values for bias and weights [28].

2.2.1 � Types of learning in ANN

The most relevant features of artificial neural networks 
is their capability of learning from the presentation of 

samples data sets (patterns), which expresses the system 
behaviour. This is accomplished by presenting the network 
with a number of training samples. Once the network has 
learned the relationship between inputs and outputs, it 
can generalize solutions, meaning that the network can 
produce an output which is close to the expected (or 
desired) output of any given input values. The training 
process of a neural network involves applying the required 
ordinate steps for tuning the synaptic weights and thresh-
olds of its neurons, in order to generalize the solutions pro-
duced by its outputs. The set of ordinate steps used for 
training the network is called learning algorithm. During 
its execution, the network will thus be able to extract dis-
criminate features about the system being mapped from 
samples acquired from the system [29–31].

Depending upon the process to develop the network, 
the various types of ANN are explained in Table 1.

2.3 � Back propagation

We try to minimize the weights of the neurons for those that 
are contributing more to the error and this happens while 
tracking back the neurons of the neural network, and find-
ing where the error lies. This learning process is called back 
propagation. Because we mainly have control of the weights 
we can use back propagation to minimize the predicted 
error of a neural network by adjusting the weights simul-
taneously [36, 37]. We propagate from the opposite down 
to the input layer and adjusting the weights to minimize 
the error and answers the question; how far are we from 
the output? We go back and adjust the weights slowly so 
that we get a smaller error in the next forward-propagation 
integration and we repeat the process for all the inputs and 
outputs in the training data set until the error that we get is 
very small for which is sufficient for our application [38]. The 
major feature of back propagation is its recursive, efficient 
and iterative method for evaluating the weights updates in 
order to improve the network performance. In the context of 
learning, back propagation is used by the stochastic gradient 
descent optimization to update the adjustable parameters 
by calculating the gradient of the loss function [39].

2.4 � Multiple linear regression

Multiple linear regression (MLR) is a statistical method 
used to generate relationship between several independ-
ent variables and a dependent variable. In MLR, the pre-
dicted value which is a continuous dependent variable 
Y is a linear transformation of one or more independent 
variables X such that the sum of squared deviations of the 
predicted Y and observed parameter is a minimum. With 
three independent variables, as presented in this paper, 
the prediction of Y is expressed by the following formula:

X0

X1 WK0 = bK

WK1

X2

WK2

X3 WK3 VK ( ).ϕ yK

.

.

WKm

Xm

Fig. 1   The structure of a neuron
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where bi values are called regression weights and are cal-
culated in a way that minimizes the sum of squared devia-
tions and Xi are the independent variables [40].

2.5 � Optimization algorithm

In optimization of a design, the design objective could be 
simply to maximize the efficiency of production or to mini-
mize the cost of production. An optimization algorithm is 
a procedure which is executed iteratively by comparing 
various solutions till an optimum or a satisfactory solution 
is found. With the advent of computers, optimization has 
become a part of computer-aided design activities. Opti-
mization algorithms helps us to maximize or minimize an 
objective function which is simply a mathematical func-
tion dependent on the model’s internal learnable param-
eters which are used in computing the target values from 
the set of predictors used in the model. The weights and 
the bias values of the neural network which is its internal 
learnable parameters are used in computing the output 
values and are learned and updated in the direction of 
optimal solution [41].

All optimization algorithms require the user to supply 
a starting point, usually denoted by X0, starting from X0, 

(4)Y = b0 + b1X1 + b2X2 + b3X3
optimization algorithms generate a sequence of iterates 
X1, X2, X3, … Xk, Xk+1, ….

The process of iteration terminates when either no 
more progress can be made or when it seems that solution 
has been approximated with sufficient accuracy.

For moving from the current iterate Xk, to a new iterate 
Xk+1, trusted region method is the continuous optimization 
algorithms used in the neural network modelling. Most of 
the continuous optimization algorithms follow either Line 
Search Method or Trust-Region Method [42, 43].

3 � Experimental program

Concrete mixtures with varying proportions of AW and 
AW/SDA replacement ranging from 0 to 40% were inves-
tigated in order to ascertain its compressive strength. We 
intend to evaluate the effect of SDA and AW which are 
industrial wastes in concrete; the rate of strength gain is 
very rapid during the first 28 days of casting after which 
it then slows down. The reason for this is the presence of 
water. The water helps to facilitate the hydration process 
by dissolving the cement minerals, but it also contributes 
ions, in the form of hydroxyl groups (OH-), to the hydration 
products.

Concrete gains compressive strength swiftly in its ini-
tial days after casting, up to 90% in only 14 days. Then, 

Table 1   Types of learning in ANN [32–35]

Supervised learning Where the training data set is the input to the network and measured output is known; weights are adjusted until 
optimum yield design value. Supervised learning is a case of pure inductive inference, where the free variables 
of the network are adjusted by knowing a priority, i.e. the desired outputs for the investigated system. Just as the 
case of learning from a teacher

Unsupervised learning The input data set is used to train the neural network until the output is known. The output classifies the input 
data and adjust the weights by feature instruction in the input data. No dependent variable is provided, the 
resulting map of cases is based on the intrinsic similarities of the input data. The most common unsupervised 
networks are Kohonen networks (Self Organizing Maps); it uses no external teacher and is based upon only local 
information. It is also referred to as self-organization, in the sense that it self-organizes data presented to the 
network and detects their emergent collective properties

Reinforcement learning This is when the output is unknown but the network provides a feedback whether the input is right or wrong, 
it is a semi-supervised learning. The learning algorithms used on reinforcement learning adjusts the internal 
neural parameters relying on any qualitative or quantitative information acquired through the interaction with 
the system (environment) being mapped, using this information to evaluate the learning performance. Several 
learning algorithms used by reinforcement learning are based on stochastic methods that probabilistically select 
the adjustment actions, considering finite set of possible solutions that can be rewarded if they have chances of 
generating satisfactory results

Offline learning It is when the adjustment of the weight vectors and threshold is do everything after training is presented to the 
network. It is also known as batch learning. Networks using offline learning requires, at least, one training epoch 
for executing one adjustment step on their weights and thresholds. Hence, all training samples must be available 
during the whole learning process

Online learning The adjustment of the weight vectors and the threshold is done only after presenting each sample to the network. 
It is used when the behaviour of the system being mapped changes rapidly, thus the adoption of offline learning 
is almost impractical because the samples used at a given moment may no more represent the system behaviour 
in posterior moments. However, since patterns are presented one at a time, weight and threshold adjustment 
actions are well located and punctual, and they reflect a given behavioural circumstance of the system. There-
fore, the network will begin to provide accurate responses after presenting a significant number of samples
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its strength have reached 99% in 28 days, still concrete 
continues to gain strength after that period, but that rate 
of gain in compressive strength is very less compared to 
that before 28 days. In carrying out these tests we intend 
to find out the effect of hydration periods on the compres-
sive strength so as to understand the method of strength 
development of the concrete mixes [26, 44, 45].

The target characteristic strength of 35 N/mm2 with a 
cement content of 290 N/mm2, a coarse aggregate content 
of 1198.65 kg/m3, a fine aggregate content of 766.35 kg/
m3 and a water–cement ratio of 0.45. The AW was obtained 
from Aluminium Extrusion Industry (ALEX), Inyishi in Ike-
duru L.G.A., Imo State, Nigeria. It is produced by heating 
aluminium scraps at a temperature of 1980 °C in a furnace. 
The waste is then sieved through a 150 μm sieve size so as 
to obtain the particles of waste in a finely divided state. On 
the other hand, SDA was obtained from timber at Owerri, 
Imo State. The saw dust was burned in a control incinera-
tion and sieve with 150 μm sieve size.

To achieve the purpose of this research, cementitious 
portion of the concrete will be partially replaced by vary-
ing ratios of AW and SDA and the mechanical properties 
and setting time evaluated and modelled using ANN. 
The mixes were cast using 150 mm × 150 mm × 150 mm 
cube sizes. After 24 h, the specimen were demoulded and 
cured in Ca(OH)2 saturated distilled water. The curing were 
done at 3, 7, 28, 60 and 90 days, respectively. Fragments of 
some of the broken paste specimens were tested to detect 
their composition by X-ray diffractometry (XRD) and their 
microstructures by scanning electron microscopy (SEM).

3.1 � Data processing

The multiple layer perceptron (MLP) is the type of neural 
network used for this research study with feed-forward 
back-propagation algorithm development incorporated 
in a computer program for the ANN simulation, MATLAB 
software. Different architectures were tried through which 
the appropriate structure was determined for the data sets 
which includes determination of the number of hidden 
layer’s neurons. Levenberg–Marquardt training algorithm 
is the training algorithm used; in which training is auto-
matically halted when generalization cease to improve, 
and indicated by an increase in the mean square error of 
the validation samples. Levenberg–Marquardt algorithm 
is a very efficient technique used in nonlinear least square 
programing with unconstrained or unbounded con-
strained problems for finding minima, and performs well 
on most test functions. This method usually have more 
rapid convergence than other algorithms. But this algo-
rithms need to maintain large matrixes in memory and 
requires a lot of space. It is basically used for the solution 
of the nonlinear regression problems. The performance of 

the ANN model is then tested using coefficient of determi-
nation, R2 and means of root mean squared error, RMSE. 
Gradient descent algorithm back-propagation learning 
rule is employed with activation functions as logarithmic 
sigmoid (logsig) and tangent sigmoid (tansig) for the train-
ing and validation [46, 47].

3.2 � Methods

3.2.1 � Compressive strength

To determine the compressive strength of concrete, 
cement and fine aggregates were mixed thoroughly; after 
mixing, the concrete cubes measuring 150 mm x 150 mm 
x 150 mm were lubricated to reduce friction between the 
concrete and the cube mould. By the use of scoop, the 
cubes were filled to the brim and compacted also. The 
compaction was done in three layers; after the concrete 
had gained sufficient strength (24 h), the concrete cubes 
will then be demoulded and were taking inside the curing 
tank. The concrete cubes were cured for 3, 7, 28, 60 and 
90 days, respectively. At the end of each curing period, the 
concrete cubes were crushed and the average strength 
recorded [48].

3.2.2 � Setting time test

The setting time laboratory experiment was conducted 
in accordance with BS12 [49] using vicat apparatus. It 
uses final and initial setting pins to determine the initial 
and final setting time, respectively. The initial setting pin 
is 1.13 ± 0.05 mm in diameter. The final setting pin has a 
circular cutting edge 5 mm diameter (outer pin) and set 
0.5 mm (inner pin) behind the tip of the needle. Initial set-
ting time is that time period between the time water is 
added to cement and time at which 1 mm square section 
needle fails to penetrate the cement paste, placed in the 
Vicat’s mould 5–7 mm from the bottom of the mould. Final 
setting time is that time period between the time water 
is added to cement and the time at which 1 mm needle 
makes an impression on the paste in the mould but 5 mm 
attachment does not make any impression [50].

•	 The procedure

1.	 Before commencing setting time test, do the con-
sistency test to obtain the water required to give 
the paste normal consistency (P).

2.	 Take 400 g of cement and prepare a neat cement 
paste with 0.85P of water by weight of cement.

3.	 Gauge time is kept between 3 and 5 min. Start the 
stop watch at the instant when the water is added 
to the cement. Record this time (t1).
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4.	 Fill the Vicat mould, resting on a glass plate, with 
the cement paste gauged as above. Fill the mould 
completely and smooth off the surface of the 
paste making it level with the top of the mould. 
The cement block thus prepared is called test 
block.

•	 Initial setting time

1.	 Place the test block confined in the mould and 
resting on the non-porous plate, under the rod 
bearing the needle.

2.	 Lower the needle gently until it comes in contact 
with the surface of test block and quick release, 
allowing it to penetrate into the test block.

3.	 In the beginning the needle completely pierces 
the test block. Repeat this procedure i.e. quickly 
releasing the needle after every 2 min till the nee-
dle fails to pierce the block for about 5 mm meas-
ured from the bottom of the mould. Note this time 
(t2).

•	 Final Setting Time

1.	 For determining the final setting time, replace the 
needle of the Vicat’s apparatus by the needle with 
an annular attachment.

2.	 The cement is considered finally set when upon 
applying the final setting needle gently to the sur-
face of the test block; the needle makes an impres-
sion thereon, while the attachment fails to do so. 
Record this time (t3).

•	 Calculation

where t1 = time at which water is first added to cement, 
t2 = time when needle fails to penetrate 5–7 mm from 
bottom of the mould, t3 = Time when the needle makes 
an impression but the attachment fails to do so.

3.3 � Microstructural and mineralogical analysis

Experiments were carried out to determine the effect of 
SDA and AW on setting time and compressive strength 
of the cement paste and mortar, respectively. X-ray dif-
fractometry (XRD) and scanning electron microscopy 
(SEM) were applied to assess the change of the hydrated 
phases. The XRD of the paste at different hydration pro-
cesses shows that 0% replacement of cement with SDA 

(4)Initial setting time = t2 − t1

(5)Final setting time = t3 − t1,

and AW had a typical hydration process. The peaks of 
Ca(OH)2 diminished the XRD patterns and their intensity 
increased with time. With those of C3S also decreased with 
time. With increasing addition of SDA and AW, the peaks 
of Ca(OH)2 decreased in intensity. Whereas the highest 
peak in 0% replacement of cement with SDA and AW cor-
responded to that of Ca(OH)2, it nearly disappeared in 40% 
replacement of cement with SDA and AW. The XRD pattern 
of 40% replacement of cement with SDA and AW at differ-
ent hydration periods were essentially the same, except 
for some differences in intensity.

The typical microstructures of the paste were evaluated 
by SEM observation. The observation indicated that a large 
amount of C–S–H gel occurred in 5% replace of cement with 
SDA and AW at 3 days of hydration. This gel not only formed 
dense surface coverage on the cement particles but also 
developed in the pores. A similar structure was observed 
in 10%, 20%, 30% and 40% replacement of cement with 
SDA and AW. In contrast, only traces of C–S–H gel can be 
observed that massive Ca(OH)2 grew through regions of 
C–S–H gel in 0% replacement of cement with SDA and AW 
at 90-day hydration period, but Ca(OH)2 did not survive in 
mature hydrated paste (40% replacement of SDA and AW).

The setting time of cement paste is recognized to be 
caused by the increasing volume of hydration products. 
This process leads to a decrease in the distance between 
individual particles until plastic flow is restricted by cohe-
sive forces. Although some research reports that setting is 
controlled by crystallization of ettringite, most accept the 
importance of alite hydration, especially for normal set-
ting. It is reasonably deduced that the setting of the pastes 
with SDA and AW is primarily attributed to the formation of 
C–S–H attributed to the formation of C–S–H resulting from 
C3S hydration as well as reaction between Ca(OH)2 and 
SDA and AW. As SDA and AW have high pozzolanic activity, 
they will react with Ca(OH)2 released by hydration of C3S to 
form C–S–H. The presence of Ca(OH)2 deposits may weaken 
the bonds between hydration particles as well as between 
cement and aggregates. With increasing amounts of SDA 
and AW, Ca(OH)2 diminished or fully disappeared and trans-
formed into C–S–H. This observation suggested that weaker 
points in the mortar due to the occurrence of Ca(OH)2 have 
been eliminated while at the same time the content of 
C–S–H increased. This may be why addition of SDA and AW 
increases the strength of the mortar significantly.

3.4 � Performance measure

The model results were analysed using computer statisti-
cal software SPSS 25.0 to determine the goodness of fit 
and loss function parameter such as, root mean square 
error (RMSE) calculated using Eqs. (6–7), where n denotes 
the number of instances presented to the model and Mi 
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and Pi represents measured and predicted output, respec-
tively; the results were calculated and used to evaluate the 
performance of ANN model.

RMSE is the standard deviation of the difference between 
the measured and predicted outputs known as residuals or 
prediction errors. These residuals enable us measure how 
far we are from the regression line data points. RMSE also 
help us to evaluate the measure of how spread out these 
residuals are from the fitted line. There is a direct relation-
ship between RMSE and R-values; if the RMSE is 0 then the 
correlation coefficient is 1 and vice versa, because all of 
the points lie on the regression line signifying minimum 
or no errors [51]. Coefficient of determination is a measure 
of how much of the variance in the observed values of the 
dependent variables can be explained by its relationship 
to the independent variable. It is the percentage of the 
variation explained by the linear regression. It is calculated 
by squaring the Pearson correlation coefficient value. It 

(6)RMSE =

����
�∑n

i=1

�
Mi − Pi

�2
n

�

(7)R2 =

⎛
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x
∑

y�
n
∑

x2 −
�∑

x
�2�

n
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�2

⎞
⎟⎟⎟⎠

2

is the ratio of two sums of squares identities. It can take 
values from 0 to 1, the closer the value is to 1, the better 
explanatory power of the independent variable [52].

3.5 � Data set used for the model development

The experimental results obtained from laboratory 
methodology to evaluate the mechanical properties 
of the concrete with respect to varying proportions of 
AW and SDA to partially replace the cement content in 
the cementitious portion of the concrete. The bar chart 
shown in Figs. 2, 3 and 4 gives a detailed insight of the 
general data constituting a total of thirty data set.

Figure 2 shows the various mix ratios of the ingredients 
namely; OPC, SDA and AW. We have the number of runs 
(30). The OPC ratio was dominant while varying ratios of 
AW and SDA ranging from 0 to 40%. These values repre-
sent the ratios for the mixture components which is why 
it is used as the input parameter of the neural network.

Figure 3 shows the setting time of the cement paste with 
respect to the mixture ratios of the ingredients in seconds, 
and Fig. 4 shows the compressive strength of concrete at 
varying hydration periods in N/mm2 ranging from 3 to 
90 days. The experimental responses were further used in 
developing the model as the target parameter. The rate of 
strength gain with respect to different hydration periods 
was evaluated for the concrete mixed with AW and SDA.
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The descriptive statistics of the result obtained from 
laboratory tests used for the ANN model development 
are presented in Table 2.

4 � Results and discussion

The chemical and physical characteristics of AW and 
SDA shows that AW contains high percentage of SiO2 
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(56.58%), Al2O3 (15.89%) and CaO (18.2%) while that of 
SDA has a higher percentage of SiO2 (67.2%), MgO (5.8%) 
and CaO (10%). The loss in ignition is 6.4 and 4.67 for 
AW and SDA, respectively; the full chemical composition 
analysis results are shown in Table 3.

4.1 � ANN model development

Figures 5, 6, 7, 8 and 9 are the results gotten from MAT-
LAB software. The structure of the ANN performed in this 
research, a two-layer feed-forward network, the activa-
tion functions used are the sigmoid transfer function in 

the hidden layer, and a linear transfer function in the 
output layer is shown in Fig. 2. The network architecture 
is 3-12-7 with OPC, AW and SDA ratio of the cementitious 
component of the concrete the input parameter while 

Table 2   Statistical parameters of data sets used for training the ANN

Input/output parameters Mean Standard error Standard 
deviation

Sample variance Range Minimum Maximum

OPC (%) 0.765 0.024 0.129 0.017 0.450 0.550 1.000
AW (%) 0.118 0.021 0.115 0.013 0.400 0.000 0.400
SDA (%) 0.118 0.021 0.115 0.013 0.400 0.000 0.400
Initial ST (mins) 77.200 2.846 15.586 242.924 56.000 50.000 106.000
Final ST (mins) 647.600 8.194 44.878 2014.041 160.000 570.000 730.000
3d (N/mm2) 8.236 0.324 1.774 3.148 8.040 5.450 13.490
7d (N/mm2) 10.977 0.517 2.830 8.009 14.050 7.910 21.960
28d (N/mm2) 19.285 0.501 2.744 7.532 10.570 15.070 25.640
60d (N/mm2) 22.442 0.712 3.899 15.205 15.010 16.810 31.820
90d (N/mm2) 27.626 0.880 4.820 23.230 15.680 19.750 35.430

Table 3   Physical and chemical properties of AW and SDA

Property AW SDA

Moisture content % 0.28 0.36
Specific gravity 3.39 2.4
Bulk density (kg/m3) 776 846
PH 8.2 9.7
MgO (%) 0.5 5.8
Fe2O3 (%) 0.26 2.3
Na2O (%) 0.36 5.8
SiO2 (%) 56.58 67.2
ZnO2 (%) 0.79 0
MnO (%) 0.56 0.01
Loss in ignition 6.4 4.67
SO4 (%) Nil Nil
CuO (%) Trace Nil
TiO2 (%) Trace Nil
Al2O3 (%) 15.89 4.1
CdO (%) Trace Nil
K2O (%) Nil 0.1
SO2 (%) Nil 0.5
CaO (%) 18.2 10
P2O5 (%) Nil 0.5

Fig. 5   The ANN architecture
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the output parameters are the final and initial setting 
time and the concrete compressive strength for curing 
days of 3, 7, 28, 60 and 90, respectively. The generaliza-
tion of the data set will help us evaluate the performance 
of AW and SDA replacing cement content in concrete. 
To achieve this purpose, the input parameters are the 
cementitious portion of the concrete which will be par-
tially replaced by varying proportions of AW and SDA 
while the output parameters are the response of the 
mixture with respect to setting time and compressive 
strength with varying hydration periods.

4.1.1 � ANN training state

Figure 6 shows the training state for the ANN model; the 
errors are repeated 6 times after epoch 9 and the test 
was stopped at epoch 15 with the gradient of 8.486. The 
error is repeated starting from epoch 10 demonstrated 
over-fitting of the data. Therefore, epoch 9 is selected as 
the base and its weights are chosen as the final weights. 
Moreover, the validation check is 6 at epoch 15, because 
the errors are repeated 6 times before the process finally 
stopped.

4.1.2 � ANN validation performance

Figure 7 shows the mean squared error and validation 
performance of the network starting at a large value and 
descending to a small value. The training, validation, and 

test were displayed in the plot. The optimal validation per-
formance is 15.767 at 9 epoch after 6 error repetitions, the 
process is ended at epoch 15 as shown in the x-axis of the 
plot.

4.1.3 � ANN error histogram

Figure 8 presents the error histogram chart with 20 bins 
for the validation, test and training, in ANN modelling. As 
it is shown in the figure, the zero error is indicated with a 
yellow line in the middle with 120 instances in the train-
ing set.

Fig. 6   ANN training state Fig. 7   Validation performance of the ANN

Fig. 8   ANN error histogram
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4.1.4 � ANN regression plot

Figure 9 shows the coincidence between the target and 
response variables which is the coefficient of determina-
tion for validation, training and test steps, respectively. 
R-values is a statistical evaluation of how close the data 
sets are to the fitted regression line. The “Target” values 
as displayed in the regression plots imply the “Measured” 
values and the “Output” values represent the “Predicted” 
values. From the regression plot, the R-values confirms 
acceptable accuracies of the model in both the training 
and validation steps.

4.2 � Regression model calculations

The multiple regression analysis results showing the model 
summary, regression coefficients and RMSE is presented in 
Table 4. From the results, the model exhibits and average 
and non-robust performance.

4.3 � ANN model validation

The performance of ANN model in predicting the set-
ting time and 3-, 7-, 28-, 60- and 90-day compressive 
strength of concrete is evaluated using R-values and 
RMSE. Figure 10 shows the residual output line of fit plot 
for initial ST with R2 = 0.9273 and equation of line of fit is 
y = 0.9339x + 4.5984.

Figure 11 shows the residual output line of fit plot 
for Final ST with R2 = 0.8514 and equation of line of fit 
is y = 0.8319x + 105.84 indicating a satisfactory perfor-
mance of the model as shown below.

Figure 12 shows the residual output line of fit plot for 
3-day compressive strength with R2 = 0.8597 and equa-
tion of line of fit is y = 1.1975x − 1.4714.

Figure 13 shows the residual output line of fit plot for 
7-day compressive strength with R2 = 0.9346 and equa-
tion of line of fit is y = 1.037x − 0.2554.

Fig. 9   Regression plot for 
training, test and validation of 
the ANN
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Table 4   Regression analysis 
results

Model summary Regression coefficients

S R-Sqd R-Sqd adj R-Sqd pred Constant OPC AW SDA RMSE

Initial ST 5.499 88.84 87.55 84.42 − 734 7.8 8.96 8.85 2.3
Final ST 24.76 72.71 69.57 64.02 4250 − 36.44 − 33.76 − 34.07 4.1
3d 0.592 90.01 88.85 86.22 92.3 − 0.806 − 0.932 − 0.936 11
7d 1.524 73.99 70.99 61.87 83.7 − 0.678 − 0.864 − 0.869 7.2
28d 0.65 94.45 94.45 93.13 90.3 − 0.658 − 0.844 − 0.881 5.5
60d 1.064 92.56 92.56 90.99 109.4 − 0.795 − 1.079 − 1.094 8
90d 1.14 94.98 94.4 93.34 218 − 1.808 − 2.148 − 2.185 6.4

Fig. 10   Initial setting time line 
of fit plot

y = 0.9339x + 4.5984
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Figure 14 shows the residual output line of fit plot for 
28-day compressive strength with R2 = 0.9452 and equa-
tion of line of fit is y = 1.0189x − 0.2159.

Figure 15 shows the residual output line of fit plot for 
60-day compressive strength with R2 = 0.8831 and equa-
tion of line of fit is y = 1.1236x − 2.396.

Figure 16 shows the residual output line of fit plot for 
90-day compressive strength with R2 = 0.9516 and equa-
tion of line of fit is y = 1.0044x − 0.0641.

Table  5 shows the root mean square error (RMSE) 
which is the standard deviation of the residuals (pre-
diction errors). Consequently, the combined use of R 
and RMSE was found to yield a sufficient assessment 
of ANN model performance and allows comparison of 
generalization accuracy of the predicted ANN model 
performance. This combination also reveals that there 
is no significant difference between the measured and 
predicted output parameters.

Fig. 12   3-Day cured concrete 
compressive strength line of 
fit plot

y = 1.1975x - 1.4714 
R² = 0.8597

0

2

4

6

8

10

12

14

16

5 6 7 8 9 10 11 12

3d
 

3d-model

3d Predicted 3d Linear (3d) Linear (Predicted 3d)

Fig. 13   7-Day cured concrete 
compressive strength line of 
fit plot
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The regression model performance scored 86% and 
6.35 for R2 and RMSE, respectively, compared to 0.91 
and 0.07 for R2 and RMSE, respectively, of the ANN 
model. We can observe a better and improved perfor-
mance which is a major advantage of neural network 
modelling and also taking into account nonlinear rela-
tionship of the variables.

5 � Conclusion

Based on the findings of this investigation, the following 
conclusions can be drawn:

•	 The ANN model for predicting the mechanical prop-
erties of SDA and AW concrete performed well in 

Fig. 14   28-Day cured concrete 
compressive strength line of 
fit plot
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Fig. 15   60-Day cured concrete 
compressive strength line of 
fit plot
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predicting, the statistical parameter R2 is 0.99997, 
0.99805, and 0.9999 for training, testing and vali-
dation steps, respectively. The accuracy of the ANN 
model is due to the fact that the nonlinear relation 
between the input variables is considered. Therefore, 

the ANN is a reliable method for predicting mechani-
cal properties of SDA and AW concrete.

•	 Due to their specific surface area and amorphous 
characteristics, both AW and SDA have remarkable 
pozzolanic activity and can therefore be used as SCM. 
This is because SCM added to concrete mix as a partial 
cement replacement can reduce the likelihood of ASR 
occurring as they reduce the alkalinity of the pore fluid 
thereby enhancing better performance.

•	 With the incorporation of SDA and AW as SCM by 
replacement, the setting time is shortened. This is due 
to the early formation of a large amount of C–S–H gel 
from hydration of C3S and from the reaction of SDA 
residues and Ca(OH)2.

•	 The addition of SDA and AW residues increase the 
compressive strength of the concrete. The increase in 
strength is due to the fact that Ca(OH)2 diminished or 
wholly disappear and C–S–H increases.

•	 The root mean square error (RMSE) and R-value were 
used as yardstick and criterions for performance test-
ing of the model. The results based on the conditions 
from Table 5 show a good correlation which means that 
the dependent variable can be predicted without error 
from the independent variable.

•	 Linear Regression was used in model validation with 
86% and 6.35 for R2 and RMSE, respectively, compared 
to 0.91 and 0.07 for R2 and RMSE, respectively, of the 
ANN model which shows than ANN model performs 
better.

•	 The results obtained from the developed Artificial Neu-
ral Network model were compared with results from 

Fig. 16   90-Day cured concrete 
compressive strength line of 
fit plot
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Table 5   Condition of model validity

Output Statistical 
param-
eter

Condition Results 
obtained

Remarks

Initial ST R > 0.8 0.9273 Satisfactory
RMSE To be close 

to 0
0.142 Good

Final ST R > 0.8 0.8514 Good
RMSE To be close 

to 0
0.0197 Satisfactory

3d R > 0.8 0.8597 Good
RMSE To be close 

to 0
0.1623 Good

7d R > 0.8 0.9346 Satisfactory
RMSE To be close 

to 0
0.0785 Good

28d R > 0.8 0.9452 Satisfactory
RMSE To be close 

to 0
0.1062 Good

60d R > 0.8 0.8831 Satisfactory
RMSE To be close 

to 0
0.0015 Satisfactory

90d R > 0.8 0.9516 Good
RMSE To be close 

to 0
0.0346 Satisfactory
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experimental studies. The average prediction to the 
experimental data were close when compared, indi-
cating the ability of the model to predict concrete mix 
ratio accuracy and effectively.
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